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Abstract
Colon cancer is a major public health issue, affecting a growing number of individuals worldwide. Proper and early diagno-

sis of colon cancer is the necessary first step toward effective treatment and/or prevention of future disease relapse. Artificial 
intelligence and its subtypes, deep learning in particular, tend nowadays to have an expanding role in all fields of medicine, and 
diagnosing colon cancer is no exception. This report aims to summarize the entire application spectrum of deep learning in all diag-
nostic tests regarding colon cancer, from endoscopy and histologic examination to medical imaging and screening serologic tests.

Introduction
The colon is one of the organs most commonly af-

fected by malignancy. In particular, colon cancer is the 
third most common malignancy in both men and wom-
en [1–5]. Since 2020 there have been approximately  
2 million new cases diagnosed each year, and despite 
the existing advanced screening tests, colorectal cancer 
(CRC) is the second most common cause of death by 
cancer worldwide, with approximately 1 million deaths 
globally [6, 7]. Unfortunately, according to the Interna-
tional Agency for Research on Cancer and the World 
Health Organization, the overall burden of CRC between 
2020 and 2040 is expected to increase by about 56%, 
and the annual number of associated deaths by about 
69% [6]. Furthermore, while it was thought to affect 
most countries that have adopted a western-type life-
style, new studies suggest that CRC is an emerging pub-
lic health issue even in other parts of the world, such 
as sub-Saharan Africa [8]. Therefore, early diagnosis 
and receiving proper treatment are necessary for the 
prevention of deaths caused by CRC. Artificial intelli-

gence (AI), and its subtype called “deep learning (DL) in 
particular, is one of the newest tools for achieving this 
goal [9–11].

The term AI in general refers to all technological 
applications that under ordinary circumstances require 
human skills, such as decision-making and visual per-
ception [12–14]. DL is a subfield of AI, and its function 
is inspired by the function of the actual animal nervous 
system: Artificial neurons are trained to find patterns in 
a limited amount of data in order to progressively extract 
higher-level features from them, such as histologic image 
diagnosis and classification. AI and DL have been mas-
sively adopted over the years in medicine to assist and/
or add precision to diagnosis, patient stratification, drug 
discovery, and biomedical research in general [12–14]. 
Diagnosing CRC could not be an exception to this rule 
[3, 15, 16]. In fact, the increasing interest concerning the 
use of DL in an attempt to diagnose CRC is reflected in 
a parallel increase in the number of published research 
regarding this issue. For instance, although the first pa-
per on applying DL to CRC management appeared on the 
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PubMed database in 2015, there was a significant rise in 
published articles: 1 in 2015, 3 in 2016, 5 in 2017, 57 in 
2021, and 51 in 2022. 

DL has been incorporated in all diagnostic processes 
regarding CRC, from histopathological classification and 
endoscopic tumour identification to radiological diagno-
sis through CT scans and CT colonoscopy, and further 
serological screening tests. This review aims to summa-
rize the achievements of DL application in diagnosing 
CRC, and discuss the practical benefits along with the 
eventual drawbacks of applying such technology to CRC 
diagnosis.

DL and histopathological diagnosis  
of CRC

Pathology was among the first subfields of medicine 
to embrace AI to its benefit. Therefore, making a CRC 
diagnosis from a histological examination would be no 
exception to this rule. According to current diagnostic 
guidelines, histologic samples are required to be exam-
ined by pathologists to precisely diagnose the presence 
of malignancy and identify the exact histologic type and 
grade of the histologic lesion that is under investigation 
[3, 17, 18]. The usual protocol requires the application of 
a special stain onto the tissue samples, most commonly 
haematoxylin and eosin (H&E), before microscopic ex-
amination. However, both the tissue sample preparation 
and microscopic examination can be quite tedious and 
time-consuming [10, 19–21]. Moreover, the diagnostic 
verdicts made by pathologists may have significant vari-
ability among different examiners [22]. Aiming toward 
quicker and more precise diagnosis, DL can assist in the 
pathologic identification of CRC in various ways.

Most studies regarding the diagnosis of CRC with 
assistance by DL have been conducted through convo-
lutional neural networks (CNN), a form of supervised 
DL with multiple layers of artificial neurons, in which 
each “neuron” of one layer is connected directly with 
all neurons of the upper layer. To achieve diagnosis, it 
is necessary to train a CNN to identify the presence of 
malignant tissue. The result would be either diagnosing 
cancer or not, or diagnosing the exact histological type 
of CRC [23–25]. Either way, 2 training strategies have 
been proposed, all with reported sensitivity over 90% 
[19, 25, 26]: training the CNN with manually selected 
pre-annotated images extracted from parts of pathol-
ogy slides (whole slide images – WSI) with previously 
diagnosed CRC or with a minimum load of information 
from annotated WSI, because current data from WSI 
appear to be relatively limited and because manual 
pre-annotation and selection of pathologic areas (either 
randomly or intentionally selected sub-regions) in WSI 
can be extremely time-consuming, like the traditional 

pathological examination, as a whole [20, 21, 23, 27, 
28]. Surveys on both tactics have reported an accuracy 
of up to 96% [20, 26, 27]. Overall, depending on the 
dataset of reference, DL has been reported to achieve 
up to 99.12% sensitivity in diagnosing DL [10, 23, 28]. 
Interestingly, apart from the extensively researched 
supervised CNN, Sari et al. proposed in 2019 a totally 
semi-supervised DL strategy for unsupervised final fea-
ture extraction from WSI of pathology slides, reporting 
sensitivity levels non-inferior to supervised CNN [29]. 
Further research could yield interesting further data re-
garding this DL alternative.

However, apart from merely diagnosing CRC from 
WSI, DL has enabled the extraction of more diagnos-
tically valuable features from histologic slides. First of 
all, diagnostic protocols with the assistance of DL have 
been proposed in order to predict directly, and without 
any further testing and/or staining resulting in time 
waste, from the H&E slides the underlying molecular 
status of CRC, something that is crucial for the optimal 
treatment selection based on accurate patient stratifi-
cation and the determination of the overall prognosis 
of a patient at the exact time of the primary diagnosis 
of CRC [30, 31]. Therefore, thanks to DL, it is feasible to 
detect if the underlying CRC is related to K-RAS, TP53, 
and BRAF mutations and define the CRC subtype based 
on the underlying gene expression profile with the re-
ported area under the receiver operating characteristics 
(AUROC)  from 0.73 to 0.86 depending on each tested 
mutation, directing clinicians early to the appropriate 
treatment and follow-up options, even if testing for 
those mutations is not available at their existing labora-
tories and hospitals [32–35]. Furthermore, DL has been 
used to successfully test WSI for microsatellite insta-
bility (a status of genetic hypermutation due to severe 
DNA repair mismatch, which requires administration of 
immunotherapy as a first-line treatment option), with-
out further preparations on H&E stained slides, with 
a reported AUROC of up to 0.865 and sensitivity up to 
76%, exceeding the AUROC and sensitivity of the con-
trol group consisting of experienced pathologists [36–
40]. What is more, DL via CNN has been proven efficient 
in extracting further information regarding the cellular 
characteristics of CRC and spatial features regarding 
the tumour microenvironment, such as the stroma:tu-
mour ratio and the presence and/or the type of white 
blood cells infiltrating the peritumoral region, avoiding 
the inter-observational variability. For this purpose, to 
avoid artifacts caused by the H&E staining, according 
to various researchers, infrared microscopy could be 
a non-inferior alternative; infrared microscopy could 
enhance details regarding the molecular background of 
the existing CRC and information concerning the spatial 
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features of the tumour [41–44]. For this purpose, both 
direct infrared microscopic observation of H&E slides 
or image editing through Fourier transformation have 
yielded quite promising outcomes, reporting an AUROC 
up to 0.83 and sensitivity ranging from 69% to 83% 
depending on the tumour grade [22]. Taking advantage 
of the data derived from the intervention of DL in ex-
tracting data associated with the tumour architecture, 
such as the characteristics of the submucosal adipose 
tissue, could also provide estimations regarding patient 
survival; in 2021 Wulczyn et al. developed a DL protocol 
able to predict patient survival with an accuracy up to 
87–95.5% [45–47].

Finally, DL has enabled the estimation of the possibil-
ity of distant lymph node metastasis directly from WSI; 
Schiele et al. in 2021 reported a CNN architecture using 
binary images from H&E slides and clinical data from 
patients with metastasized CC, achieving a sensitivity 
of about 75.6% in successfully predicting metastatic 
disease [48]. Interestingly, one year earlier Tsirikoglou 
et al. reported that it is also feasible to detect lymph 
node metastases in CRC with minimal or absolutely no 
clinical data of metastasis, only by taking advantage of 
the histological characteristics of the pathologic sam-
ple [49]. Further research could provide a deeper insight 
into metastasis prediction of CRC in the future. Overall, 
the interference of DL and CNN in examining pathology 
slides has transformed CRC diagnostics.

DL and endoscopic diagnosis of CRC
To obtain a histologic specimen of an underlying 

CRC it is necessary first to locate the exact area of 
the lesion and then to perform a biopsy on it. This is 
achieved through a colonoscopy and endoscopic pro-
cess that is considered the gold standard for making 
a diagnosis of CRC possible. Although the exact time 
of performing a colonoscopy varies according to cur-
rent guidelines, it is commonly suggested as a check-up 
in adults above the age of 50 years, and the interval 
between each colonoscopy session is shorter if a large 
number of lesions and/or lesions of considerable size 
(more than 10 mm) are diagnosed initially [1, 7, 50, 51]. 
In general, CRC presents as lesions in colonic mucosa 
protruding into the enteric lumen, called polyps, and 
less frequently as mucosal ulcers [50–54]. Most pol-
yps are benign. Malignant or pre-malignant polyps are 
called adenomas. Overall, larger lesions are easier to 
detect. However, it is crucial not to miss even smaller 
lesions, particularly smaller than 5 mm, from which up 
to 16% might be endoscopically missed; it is estimated 
that every 1% increase in adenoma detection rate (ADR) 
is associated with a 3% drop in CRC incidence [55]. The 
experience of the person who performs the colonoscopy 

session is an inevitable factor contributing to successful 
adenoma diagnosis and localization. However, even ex-
perienced endoscopists cannot perform with 100% di-
agnostic success; in fact, up to 26% of polyps remained 
undiagnosed within a single colonoscopy session [51, 
56]. In addition, CRC can develop during the interval 
between 2 colonoscopy sessions according to standard 
guidelines, leading to almost 58% of CRC patients with 
advanced disease at the time of diagnosis, even with 
compliance with the screening guidelines [57]. There-
fore, it crucial to maximize ADR and polyp detection 
capacity and minimize the existing diagnostic variabil-
ity among endoscopic doctors, and DL has made some 
significant contributions to this [51, 58].

Overall, DL can assist in accurate CRC diagnosis in  
2 different ways: either lesion localization and/or diag-
nosing whether it is adenomatous or not, a challenging 
task even for experienced endoscopists. Most of the 
conducted studies have focused on polyp detection and 
localization, and for this purpose they have proposed 
numerous CNN protocols. The reported results are quite 
promising, despite the initial concern that CNNs were 
mostly trained with static images from recorded colo-
noscopies instead of a real-time video: In all studies, 
DL has demonstrated a decrease in adenoma miss rate 
and an increase of up to 80% in ADR, which was higher 
when the CNN was compared to less experienced and/
or trainee endoscopists, exactly as if DL functioned as 
a “second pair of eyes” for doctors [58–61]. The reported 
CNN models appear to have reached an accuracy ranging 
from 93.6% to 96% in detecting polyps in real-time and 
a negative predictive value of up to 92.6% [16, 62–65]. 
In addition to all the above, DL has also been applied to 
improving polyp detection in water-exchange colonosco-
py, a relatively new endoscopic technique that uses wa-
ter currents instead of air-assisted bowel distension; in 
a review published by Hsieh et al. in 2019, combining DL 
protocols and water-exchange leads to overall increased 
ADR, providing a diagnostic modality that could be of 
particular benefit for less experienced and/or trainee 
doctors [66]. And apart from mere polyp detection, DL 
has the capacity to progress diagnostically one step fur-
ther: In 2021 Minami et al. developed a DL protocol able 
to diagnose submucosal invasion directly from endoscop-
ic data, with sensitivity up to 87.2% and AUROC 0.758; 
this information provides valuable insight for planning 
and managing future operative management of CRC pa-
tients even in the early stages of CRC [45].

At the same time, quite promising results come 
from the application of CNNs in perfectionating optical 
biopsy of polyps; in other words, differentiating adeno-
matous from non-adenomatous lesions. Beginning in 
2017, Komeda et al. proposed a CNN architecture for 
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primary optical biopsy, resulting in 70% accuracy and 
an AUROC of about 0.751 in a non-real-time polyp-de-
tection study [67]. One step further was achieved in 
2018 by Misawa et al., who reported a DL protocol of 
real-time polyp optical biopsy, with a sensitivity reach-
ing up to 90% and AUROC of about 0.87 [56].

Furthermore, along with the above studies that 
have been conducted with RGB-coloured images, bina-
ry in grey-scale editing of colonoscopy images can be 
an interesting alternative; in 2021, Hsu et al. reported 
a CNN architecture trained with grey-scale colonoscopy 
images, resulting in higher detection and diagnostic re-
al-time accuracy in comparison to RGB images (95.1% 
to 94.1%, respectively), taking advantage of the higher 
processing speed when computers and DL receive grey-
scale images [68].

Interestingly, DL can assist in improving CRC diag-
nosis through a parallel path, by dealing directly with 
the traditional technical parameters, such as the level 
of colon preparation and distension, the size of the in-
spected colon surface, and the quality of the existing 
endoscopic view. For this purpose, in 2020 Thakkar  
et al. proposed a CNN model that could provide  
real-time metrics regarding endoscopic technical pa-
rameters and interact with the performing endoscopist 
by giving real-time feedback regarding his/her actions 
for obtaining ideal procedure conditions [69]. The re-
ported result was an increase in ADR; however, further 
research is required in this direction.

Finally, DL has also been applied to CRC diagnosis 
made by using an endoscopic capsule, a diagnostic al-
ternative for patients unable to comply with colonosco-
py requirements or when traditional endoscopy is con-
traindicated for them [70–72]. Overall, each swallowed 
capsule produces approximately 50,000-100,000 image 
frames, the evaluation of which is of course time-con-
suming and prone to diagnostic errors [73]. Beginning 
in 2021 and up to the time of this writing, various CNN 
diagnostic protocols have been developed, with AUROC 
up to 0.99 and sensitivity up to 96.9% [73].

In conclusion, DL appears to be a valuable ally in the 
accurate endoscopic diagnosis of CRC.

Application of DL in other diagnostic 
tests for CRC

This section will feature the outcome of applying DL 
protocols in other tests attempting to diagnose CRC. 
Overall, DL has been successfully implemented in the 
following:

1. CT colonography: CT colonography is an alter-
native but increasingly popular process for detecting 
polyps within the bowel lumen, especially for people 
unable to cooperate and/or tolerate the convention-

al colonoscopy and/or with strong contraindications 
against it, in which a depiction of the bowel lumen is 
reconstructed after extensive bowel scanning through 
a differentiated CT scan protocol [52, 57, 74–77]. The 
outcome leads to polyp detection through X-ray-de-
rived images, which is prone to all limitations related 
to patient preparation as the conventional colonoscopy. 
Attempts have been made to maximize ADR with DL 
through CT colonoscopy; beginning in 2019, Cao et al. 
reported a CNN model able to characterize colon polyps 
as benign or not with an AUROC of about 0.945 but 
with a high standard deviation (more than 25%) [78–
80]. In the subsequent years, Wesp et al. and Hedge 
et al. published trials with DL attempting to perform 
the same polyp characterization, achieving an AUROC 
up to 0.83 and sensitivity of about 80%. Interestingly, 
all researchers pointed out that both the training sam-
ple and the patient sample datasets in their trials were 
small (less than 100 patients), suggesting that further 
research is required to establish the role of DL in opti-
mizing CRC diagnosis through CT colonoscopy after the 
initial promising results [80].

2. CT scan: CT scans are not a first-line test for di-
agnosing CRC compared to endoscopy and pathologic 
examination, but they are the gold standard for identi-
fying the extent of disease staging at the time of pre-
liminary diagnosis [81]. However, because a CT scan is 
usually performed before any surgical intervention, on 
a CRC patient, the need to extract the maximal amount 
of diagnostic information from a CT scan has encour-
aged various researchers to explore the outcome of the 
potential involvement of DL in data extraction from CT 
scans. In 2022, Wang et al. managed through 3D-re-
construction of CT scan images of patients in disease 
stage II and III in a correlation of the serum levels of 
CEA (carcinoembryonic antigen), along with the involve-
ment of a DL protocol to increase the rate of diagnosing 
extra-peritoneal CRC, reporting having reached a sen-
sitivity of about 95%. Further future relative research 
would be of particular interest in the pursuit of further 
diagnostic data from CT scan images [82].

3. Although OCT has been traditionally used for di-
agnosing diseases of the retina, recent research data 
suggest that it could be further expanded in other 
tissues and organs by defining benign and malignant 
tissue layers [83]. In particular, OCT is applied to CRC 
diagnosis, and in 2020 using DL for real-time CRC di-
agnosis was reported, by training a CNN with 26,000 
OCT images. According to the published outcome, the 
CNN achieved 100% sensitivity and AUROC of about 
0.998, demonstrating a promising potential of evolv-
ing to another competent tool for CRC optical diag-
nosis [84].
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Applying DL for CRC optimization: 
current aspects and future challenges

Each problem requires a proper solution, and be-
cause CRC is a worldwide growing public health issue, 
it is inevitable that it will be tackled properly without 
implementing novel technologies. Applying the fea-
tures made available by AI and DL in particular appears 
to have a deeply transforming effect in medicine and 
biomedical research in general, including CRC. Over-
all, DL protocols appear to optimize CRC diagnosis by 
increasing diagnostic accuracy, adding to the value of 
clinicians’ experience, minimizing diagnostic variability 
among doctors, and maximizing and/or expanding the 
extracted clinical data without performing additional 
conventional diagnostic tests on the existing diagnos-
tic material (histologic samples, endoscopy images, etc.) 
[11, 28, 85].

However, although deducing that clinicians could be 
substituted by computer-assisted AI systems might ap-
pear inevitable, in fact, DL could prove to be a valuable 
helping hand in the effort to achieve fast CRC diagnosis. 
As wel as helping trainee doctors gain experience in CRC 
diagnosis during their internship years, DL could first of 
all function as a quick and efficient confirmatory test af-
ter the initial traditional clinical investigation. In addition 
to this, adding DL to CRC diagnosis could be beneficial 
for health systems on a global scale. The number of CRC 
patients is rising without an equivalent increase in the 
relative number of field doctors, leading to an increase 
in the diagnostic workload for doctors, something that 
leads to diagnostic mistakes [86, 87]. Furthermore, the 
number of new CRC cases tends to increase even in 
poorer countries, where neither experienced clinicians 
nor the patients can afford an extensive diagnostic 
work-up. However, DL can speed up the CRC diagnostic 
process (using computer-assisted data processing tech-
nology) with minimal misdiagnosis, allowing clinicians 
to save valuable time for other, probably more urgent 
clinical tasks, and make its benefits available worldwide 
even in less developed regions, with a considerable 
fund-saving capacity that is worth considering.

On the other hand, it appears that DL is currently 
far from being accepted as a standard diagnostic mo-
dality for CRC screening despite the initial promising 
results of the existing trials. It is necessary to establish 
globally accepted standards of CNN training (each tri-
al created diverse CNN training conditions) based on 
larger patient and/or image and data sets. Furthermore, 
especially for DL in bowel endoscopic investigation, it is 
necessary to standardize not only the DL protocols but 
also the performance technique that the DL is asked 
to reinforce because marked differences were noticed 
when the first related trials from Europe started to 

show up among the overwhelming majority that have 
been conducted in China [15, 58]. What is more, con-
cerns have been widely expressed regarding the proper 
way of adapting medical training to the new conditions 
dictated by widely used DL systems, the potential dan-
ger of personal patient data leakage, and the economic 
impact that the increased computing power for per-
forming DL projects on a wide scale would have on the 
current capacity of our health systems [11, 15, 58, 88]. 
Still, further research might also contribute to the im-
provement of the collateral technical issues.
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