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Abstract

Immune diseases are caused by the imbalance of immune regulation. This imbalance is regulated 
by many factors, both negative and positive. Leukocyte immunoglobulin-like receptor B4 (LILRB4) is 
a member of leukocyte immunoglobulin-like receptors (LILRs). LILRs are expressed constitutively on 
the surface of multiple immune cells which associate with membrane adaptors to signal through multi- 
ple cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs) or immunoreceptor tyro-
sine-based activation motifs (ITAMs). Through ITIM, LILRB4 could recruit the src homology domain 
type-2-containing tyrosine phosphatase 1 or 2 (SHP-1 or SHP-2) into the cell membrane. In addition, 
many factors can induce the expression of LILRB4, such as vitamin D, interferon and so on. Studies have 
demonstrated that LILRB4 had a negative regulatory role in various of immune diseases. The present 
review intends to expound the structure and function of LILRB4, as well as its regulators and receptors 
in the immune cells, so as to provide a theoretical basis for immune disease therapy. 
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Introduction

Immune response (IR) refers to the process whereby 
immune cells recognize, activate, proliferate, differentiate 
antigen molecules, produce immune substances and gen-
erate specific immune effects under stimulation of anti-
gens. The immune response can be activated or inhibited 
in the body, which are balanced by substances ensuring 
immune responses to pathogens in the immune system, 
such as leukocyte immunoglobulin-like receptors (LILRs). 
Leukocyte immunoglobulin-like receptor B4 (LILRB4) be-
longs to the LILR family, which is widely distributed on 
immune cell membranes. LILRB4 is a kind of inhibitory re-
ceptor that plays a key role in immune checkpoint pathways 
and participates in regulating multiple immune diseases [1].

The structure of LILRB4 

LILRB4 is a member of the leukocyte immunoglob-
ulin-like receptor (LIR) family, which is found in a gene 
cluster in chromosomal region 19q13.4 [2, 3]. According 
to the role of intracellular motifs, immunoglobulin-like 
transcripts (ILTs) were divided into the activated receptor 
LILRA and the inhibitory receptor LILRB. The activating 
receptor LILRA includes six receptors, LILRA1-LILRA6, 

while the inhibitory receptor includes LILRB1-LILRB5  
[4, 5]. Inhibitory LILR members have a long cytoplas-
mic tail containing different sets of immunoreceptor tyro-
sine-based inhibitory motifs that recruit phosphatases and 
thus contribute to downstream inhibitory signaling path-
ways [6, 7]. Activating members on the other hand have 
truncated cytoplasmic regions and are thought to associate 
with activating adaptor proteins via a positively charged 
amino acid in the transmembrane domain (e.g. LILRA2 and 
LILRA4 both associate with the γ chain of FcεRI) [8, 9]. 
LILRBs contain two or four extracellular immunoglobulin 
domains, a transmembrane domain, and two to four cyto-
plasmic immunoreceptor tyrosine-based inhibitory motifs 
(ITIMs) [10]. Interestingly, LILRB4 is somewhat unusual 
as whereas most family members contain four immunoglob-
ulin-like domains in their extracellular region (designated 
D1, D2, D3, and D4) LILRB4 is one of two members that 
only possess two immunoglobulin-like domains (the other 
one is the closely related activating receptor LILRA5) [11].

The function of LILRB4 
The immune system is regulated by LILRB4, which is 

produced on immune cells and may bind to MHC class I 
molecules on antigen-presenting cells as well as other 
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ligands such as integrins αVβ3, apolipoprotein E, and 
fibronectin [12-15]. Furthermore, it can also function in 
antigen capture and presentation. Previous studies have 
indicated that ILT3-Fc acts through BCL6 and is a potent 
immunosuppressive agent for reversing the onset of allo- 
or possibly autoimmune attacks against pancreatic islets 
[16]. It is thought to control inflammatory responses and 
cytotoxicity, which is helpful to focus the immune re-
sponse and limit autoreactivity. Chang et al. found that 
ILT3-Fc inhibits T cell activation and induces the gener-
ation of Ts targeting multiple inflammatory miRNA path-
ways [17]. Simultaneously, LILRB4 can regulate marginal 
zone B cells and antibody production [18]. In cardiomy-
ocytes, LILRB4 can regulate apoptosis and mediate myo-
cardial hypertrophy [19].

Regulators of LILRB4 expression 
LILRB4 has been proven to play an important role in 

the immune system. There are three main substances that 
can regulate LILRB4 expression: immunosuppressants, 
immunomodulators and anti-inflammatory drugs (Fig. 1). 

Penna et al. detected a significant increase in the expres-
sion of ILT3 after treatment with 1,25(OH)

2
D

3
, and proved 

that 1,25(OH)
2
D

3
 can induce the production of regulatory  

T cells through ILT3-dependent and non-ILT3-depen-
dent pathways, while ILT3-dependent pathways are 
necessary for the induction of CD4+Foxp3+ regulatory  
T cells [20] (Table 1). Rochat et al. found that vitamin D 
supplementation during pregnancy was associated with 
increased ILT3 gene expression in a prospective trial 
[21]. However, Waschbisch et al. found that interferon-β 
alone or in combination with vitamin D could induce up-
regulation of ILT3 in vitro [22]. Interferon treatment led 
to a significant increase in monocyte ILT3 in vitro, and 
dihydroxyvitamin D

3
 also enhanced ILT3 expression. 

Švajger et al. found similar synergies between interferon 
(IFN)-γ and 1,25(OH)

2
D

3 
[23]. These results suggest that 

vitamin D receptor (VDR) agonists, alone or in combi-
nation with other immunomodulators, could up-regulate 
LILRB4 and contribute to DC tolerance. Some members 
of the interferon family also upregulate LILRB4 expres-
sion. Inui et al. found interleukin (IL)-2 to be an effective 
inducer of B4+CD38+ cells, and IFN-α is the main induc-
er of B4+CD38+ cells. The IFN-α pathway is involved in 
the pathogenesis of systemic lupus erythematosus (SLE) 
and IFN-α induces LILRB4 expression through plasma-
cytoid dendritic cells (PDC) and monocytoid dendritic 
cells (MDCs) [24]. After interferon treatment for 48 h, 
ILT3 expression was increased on freshly isolated puri-
fied monocytes and on immature myeloid dendritic cells 
derived from blood monocytes of multiple sclerosis (MS) 
patients and controls [25]. When ILT3 was blocked by anti- 
ILT3 antibodies, mitogen-driven proliferation of CD4+  
T cells was increased several times in IFN-β treated relaps-
ing-remitting MS (RRMS) patients and healthy controls, 
which may be involved in the inhibition of T cell activation  
in vivo. Immunosuppressants can also up-regulate LILRB4 
expression in kidney transplant patients with chronic al-

Table 1. Regulators of LILRB4 expression

Regulators Cell distribution Effect

1,25(OH)
2
D

3
 [20] Regulatory T cells Upregulation

Interferon β [25] Monocyte Upregulation

Interleukin 2 [24] B4+CD38+ cells Upregulation

Interferon α [24] B4+CD38+ cells Upregulation

Rapamycin [26] CD8+CD28+ T cell Upregulation

Cyclosporin A [27] NKL cell Upregulation

Resveratrol [28] Dendritic cells Upregulation

Human leukocyte antigen G [29] NK cells, T cells Upregulation

Aspirin [30] Dendritic cells Upregulation

Tryptophan [31] Dendritic cells Downregulation

Interleukin 10 [32] Human vascular endothelial cell Upregulation

Fig. 1. Upstream and downstream structure diagram 
of LILRB4
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logeneic nephropathy [26]. The infiltration of renal tubule 
interstitium and the level of ILT3 in endothelial cells were 
significantly increased, leading to reduction of CD40 in 
BDCA2+ cells by rapamycin and increase of Treg number, 
as well as expansion of the CD8+CD28+ T cell population. 
It was found that the RNA and protein levels of ILT3 and 
ILT4 in NKL cells increased 12, 24 and 36 h after cyclo-
sporin A (CsA) treatment, and the killing activity of NKL 
cells towards tumor cells decreased significantly after CsA 
injection (15 mg/l) for 36 h. Thus, CsA up-regulated the ex-
pression of ILT3 and ILT4 in NKL cells, and affected its 
killing effect on tumor cells with different human leukocyte 
antigen G (HLA-G) expression and NKL cell proliferation 
[27]. Svajger et al. found that resveratrol could induce ILT3 
expression, resulting in differentiation of dendritic cells 
(DCs) derived from human peripheral blood mononuclear 
cells (PBMCs) [28]. HLA-G exerts its inhibitory functions 
via interaction with ILT2, ILT4, and KIR2DL4, which are 
differentially expressed by NK, T, and antigen-present-
ing cells. ILT2, ILT3, ILT4, and KIR2DL4 expression is 
up-regulated by HLA-G in antigen-presenting cells, NK 
cells, and T cells, which may not need antigenic costimula-
tion, possibly before the immune response [29]. In addition 
to immunosuppressants, some anti-inflammatory drugs can 
also regulate LILRB4 expression. Buckland et al. found that 
aspirin can induce the production of tolerant DCs, which 
may be related to the significant expression of ILT-3. As-
pirin inhibits nuclear factor κB (NF-κB) translocation to 
the nucleus and induces antigen-specific Foxp3 positive 
regulatory T cells. Another nonsteroidal anti-inflammatory 
drug, niflumic acid (NFA), also upregulates ILT3 expres-
sion and participates in the development of immune toler-
ance in human monocyte derived DCs [30]. Brenk et al. 
[31] isocytes from peripheral blood of healthy subjects and 
cultured them under normal (30 μM) and low (5 μM) Trp 
(DCs+Trp and DCslow-TRP) conditions. The expression of ILT3 
and ILT4 increased significantly in the DCslow-TRP group. 
The addition of anti-ILT3 mab partially restored the stim-
ulation activity of DCslow-Trp on T cells, but had no effect on 
the stimulation of DC+Trp on T cells. These findings suggest 
that DCs with low tryptophan can induce high expression 
of inhibitory receptors ILT3 and ILT4, and increase inhib-
itory CD4, CD25 and Foxp3T cells in an ILT3-dependent 
manner, and weaken the stimulation ability of CD4+ T cells, 
thus leading to the immune tolerance of DCs. Interleukin 10 
could inhibit endothelial dependent T cell costimulation  
by up-regulating ILT3/4 in human vascular endothelial cells 
[32]. In summary, LILRB4 has a variety of ligands, the dis-
covery of which will provide a new therapeutic target for 
LILRB4 related diseases.

LILRB4/SHP-1 or SHP-2
LILRB4 has three ITIMs. The ITIMs of LILRB4 can 

recruit src homology 2 (SH2) domain-containing phos-

phatase 1 (SHP-1) and SHP-2 from the cytosol, leading 
to the activation of SHPs and the subsequent inhibition 
of various downstream signaling pathways [33]. Li et al. 
reported that ILT3 promotes tumor motility and angio-
genesis via recruitment of SHP2/SHIP1 and subsequent 
activation of the ERK1/2 signaling pathway [34]. By in-
teraction with its ligand ApoE, ILT3 induced tumor cell 
migration and invasion as well as tumor angiogenesis via 
activation of the SHP-2/SHIP1-ERK1/2 signaling pathway, 
which subsequently promoted EMT and the expression 
of VEGF-A, leading to non-small cell lung cancer (NSCLC) 
metastasis. Truong et al. demonstrated that the chicken 
LILRB4-5 genes activate the JAK/STAT signaling path-
way, which plays a key role in multiple cytokine-induced 
responses [35]. In addition, LILRB4 can recruit SHP1 to 
inhibit TRAF6 ubiquitination and subsequently inactivate 
NF-κB and MAPK cascades [36]. Blocking TRAF6 ubiq-
uitination to inactivate downstream MAPK and NF-κB sig-
naling largely explained the inhibitory effect of LILRB4 
on nonalcoholic fatty liver disease (NAFLD) progression. 
NF-κB plays a key role in the cellular inflammatory re-
sponse and immune response. LILRB4 regulated NF-κB 
by recruiting SHP-1 or SHP-2 in turn affects atheroscle-
rosis and myocardial hypertrophy [37, 38]. In leukemia, 
inhibition of NF-κB signaling reversed T cell suppression 
and reduced AML cell infiltration in a LILRB4-dependent 
manner. Urokinase-type plasminogen activator receptor 
(UPAR), an NF-κB target, is known to promote cancer 
invasion, metastasis, survival and angiogenesis [39].  
The urokinase-type plasminogen activator (uPA) system 
is a biomarker and therapeutic target in human malignan-
cies. It was found that ARG1 is a key downstream effec-
tor of LILRB4/NF-κB/uPAR signaling. LILRB4/SHP-2/
NF-κB/uPAR-ARG1 could suppress immune activity and 
supports leukemia migration [40].

Relationship with disease
As an immune checkpoint, LILRB4 is of great signifi-

cance in the treatment of autoimmune diseases [41]. Jensen 
et al. revealed that ILT3 loss of function polymorphism 
was associated with the increase of inflammatory cytokine 
level in SLE [42]. In addition to SLE, LILRB4 is also as-
sociated with a variety of immune diseases, such as Kawa-
saki disease [43] and allergic diseases [18]. LILRB4 is also 
closely related to diseases of other systems. By inhibiting 
NF-κB signaling pathway, LILRB4 can attenuate cardiac 
hypertrophy and atherosclerosis [44-46]. The maturation 
and migration of pulmonary DCs to lymph nodes in re-
sponse to Ag and the innate immune stimulus is associat-
ed with upregulation of LILRB4. LILRB4 could attenuate 
the ability of DCs to elicit pathologic Th2 pulmonary in-
flammation [47]. Myeloid-derived suppressor cells (MDSC) 
accumulate in the tumor microenvironment (TME); they 
are engaged in tumor-associated immunosuppression, and 
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govern tumor growth and metastasis. It was shown that  
LILRB4 can facilitate tumor invasion and migration by 
controlling MDSC and preventing the release of miRNAs 
from the miR-1 family, hence facilitating MDSC-mediat-
ed tumor metastasis [48]. ILT3 expressed on M-MDSCs 
can induce immunosuppression in cancer, and antagonism 
of ILT3 may be useful to reverse the immunosuppressive 
function of M-MDSCs and enhance the efficacy of immune 
checkpoint inhibitors [49]. Sharma et al. also revealed that  
LILRB4 strongly suppresses tumor immunity in TME 
[50]. The above evidence indicates that LILRB4 may be 
an effective target for cancer treatment. LILRB4 may also 
be a potential drug for the treatment of autoimmunity and 
graft rejection [51]. For example, LILRB4 is an effective 
immunomodulator for inhibiting allograft rejection in islet 
allograft [52]. Furthermore, it is presumed that LILRB4 also 
participates in regulating central nervous system immune 
surveillance. Recombinant human ILT3.Fc protein can 
bind to murine immune cells and further inhibit the release 
of proinflammatory cytokines, which suggests the feasibil-
ity of ILT3 in treatment of multiple sclerosis [53].

Conclusion and perspectives
LILRB4 was first found on the immune cell membrane 

and gradually came into people’s vision. Current studies 
prove that LILRB4 not only acts on tumors and immune 
diseases, but also diseases of multiple systems, which indi-
cates that LILRB4 has great potential in disease treatment. 
The understanding of the LILRB4 extracellular ligand and 
downstream signal pathway can deepen the understanding 
of LILRB4 in physiology and pathology, and help LILRB4 
become a new biomarker of disease. However, it is still 
necessary to study LILRB4 further, especially at the cellu-
lar and molecular levels.
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