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Abstract

Malaria remains one of the most common human infections worldwide. In endemic areas, malaria 
is a leading cause of morbidity and mortality and it imposes significant socioeconomic burdens on 
the people affected. Monocytes are part of the immune system controlling parasite burden and pro-
tecting the host against malaria infection. Monocytes play their protective roles against malaria via 
phagocytosis, cytokine production and antigen presentation. Though monocytes are crucial for clearance 
of malaria infection, they have also been shown to cause adverse clinical outcomes. In this review, we 
discuss recent findings regarding the role of monocytes in malaria via mechanisms such as parasite 
detection and clearance, pro-inflammatory activities, and activation of other immune components.  
We also highlight the role of different monocyte subsets, and other myeloid cells that are involved in 
malaria infection. However, more investigations are required in order to explore the exact roles of these 
monocytes in malaria infection. 
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Introduction
Malaria is one of the most common mosquito-borne 

disease worldwide. In 2020, an estimated 241 million cas-
es of malaria were reported worldwide with the number 
of deaths being approximately 627,000 people [1]. Almost 
60% of malaria deaths worldwide occur in the poorest 20% 
of the population. It also imposes a major financial and 
social burden on many regions of the world. Monocytes 
are part of the immune system controlling parasite burden 
and protecting the host against malaria infection [2]. They 
play their protective roles against malaria via phagocytosis, 
cytokine production and antigen presentation [3]. 

The function of monocytes
Monocytes are a type of white blood cell derived from 

myeloid progenitors which play a crucial role in the innate 
immune system. Monocytes have two important roles in 
the immune system. First, they regenerate resident mac-
rophages and dendritic cells under normal conditions, and 
secondly, they travel to infection sites in the tissues and 
differentiate into macrophages and dendritic cells to induce 
an immune response to inflammation signals. Monocytes 
kill pathogens as well as facilitating the healing and repair 
process [4]. They are a key component of the innate im-
mune system serving three main immunological functions: 
phagocytosis, antigen presentation and inflammatory cyto-
kine production [5]. 

Monocytes can phagocytose pathogens by binding to 
them directly through pattern-recognition receptors, or by 
using intermediary opsonizing proteins such as antibodies 
or complement, which coat the pathogen. Monocytes may 
also use antibody-dependent cell-mediated cytotoxicity to 
destroy infected host cells. Monocytes function as phago-
cytes and antigen-presenting cells in the peripheral blood 
to ingest and remove microorganisms, foreign material, 
and dead or damaged cells. 

Microbial pattern-recognition receptors recognize 
pathogen-associated molecular patterns (PAMP) and ac-
tivate monocytes to kill invading parasites. An example 
of pattern-recognition receptors is the mammalian Toll-
like receptor (TLR), which recognizes a variety of micro-
bial pathogens and their products [6]. Monocytes express 
more TLRs than neutrophils. When specific ligands bind, 
TLRs activate nuclear factor kappa-light-chain-enhancer 
of activated B cells (NF-κB) and stimulate the production 
of proinflammatory cytokine from monocytes through 
a pathway involving the adaptor protein MyD88 [7]. 

Monocytes produce cytokines, which attract more cells 
and proteins to the infected region, resulting in an acti-
vated immune response. In response to parasite ingestion, 
monocytes secrete both pro-inflammatory and anti-inflam-
matory cytokines as well as growth factors, which results 
in parasite removal and minimization of inflammation [8]. 
Monocytes secrete pro-inflammatory cytokines such as 
interleukin 1 (IL-1) and tumor necrosis factor α (TNF-α), 
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which can activate other leukocytes and endothelial cells 
to a pro-adhesion, pro-migratory condition and induce se-
cretion of vasoactive substances [9]. 

Lymph node-trafficking monocytes are weak antigen 
presenters and instead serve as antigen transporters, deliv-
ering antigens to draining lymph nodes. Other studies, on 
the other hand, suggest that monocytes process and present 
antigen similarly to classical dendritic cells (cDCs) [10].  
It is likely that the methodological differences are the rea-
son for the variation of results. Both in vivo and ex vivo 
studies have demonstrated that monocytes play a signif-
icant role in the presentation of antigens to T cells and 
the induction of particular T cell subsets.

Monocyte subsets
Monocytes in humans are heterogeneous. They consist 

of three subsets based on expression of CD14 and CD16. 
Circulating human monocytes consist of the CD14++CD16– 
classical monocytes, CD14++CD16+ intermediate mono-
cytes and CD14+CD16++ non-classical monocytes. 
Classical monocytes are the most predominant subset, 
accounting for around 80% of the total circulating mono-
cyte population [11]. The remaining 20% of monocytes are 
the non-classical monocytes and intermediate monocytes. 
These subsets vary in their differentiation properties, mi-
gratory capabilities, and cytokine production. However, 
some factors such as gender, ethnicity, age and diet may 
alter the proportion of monocyte subsets in individuals. 

Classical monocytes 
The classical monocyte is characterized by high ex-

pression of CD14. Classical monocytes were found to be 
primed for phagocytosis, innate sensing and migration. 
Classical monocytes, also known as inflammatory mono-
cytes, have a more pro-inflammatory nature, with the abil-
ity to infiltrate tissues and produce soluble inflammatory 
cytokines and differentiate into DCs and inflammatory 
macrophages, linking between the innate and adaptive im-
mune responses. Classical monocytes express many pattern 
recognition receptors (PRRs) and are involved in removing 
microorganisms and dying cells through phagocytosis [12]. 

Classical monocytes react strongly to bacterial products 
through TLR4 and infiltrate inflammatory sites in response 
to the chemokine CCL2. These monocytes proliferate in 
the bone marrow in response to infection or injury. For ex-
ample, during bacterial infection, these monocytes migrate 
to the infection site, phagocytose pathogens, and produce 
a variety of chemokines that attract other immune cells, and 
present antigens through MHC class II. These monocytes 
may leave the blood vessels and survey the tissue micro-
environment without further differentiation before exiting 
through the lymphatics [13]. CD14+ classical monocytes 
express high levels of chemokine receptors such as CCR1, 

CCR2, CCR5, CXCR1, and CXCR2, indicating their abil-
ity to migrate to signals arising from injured or inflamed 
tissues [14], but they are also distinguished by their ability 
to secrete pro-inflammatory molecules such as IL-6, IL-8, 
CCL2, CCL3, and CCL5 [15]. Classical monocytes are 
able to differentiate into monocyte-derived macrophages 
and DCs and they play an important role in regulating in-
flammation and tissue recovery [16]. 

Non-classical monocytes 
Non-classical endothelial patrolling monocytes are 

CD14+CD16++  in humans. The non-classical mono-
cyte shows low expression of CD14 and additional  
co-expression of CD16. They have high fractalkine recep-
tor (CX3CR1) expression but they also migrate in response 
to a variety of chemokines [17]. Non-classical monocytes 
are involved in endothelium intraluminal monitoring, com-
plement and Fc γ-mediated phagocytosis of damaged endo-
thelium, and neutrophil recruitment to the injury site. These 
monocytes are able to detect and respond to circulating nu-
cleic acids and viruses via TLR7 signaling, and trigger an 
innate immune response by secreting cytokines and chemo-
kines [18]. However, the exact role of the non-classical 
monocytes is still debatable. They have antigen-process-
ing abilities [19], but they differ from classical monocytes 
in that they are involved in wound healing proces- 
ses [20]. Moreover, they have antagonizing functions to-
wards classical monocytes and promote neutrophil adhe-
sion at the endothelial interface via the secretion of TNF-α 
[21] but they do not produce pro-inflammatory cytokines 
at the same levels as the classical monocytes.

Intermediate monocytes 
Intermediate monocytes CD14+CD16+ in humans have 

also been identified, but their specific function is still un-
known. The intermediate monocyte has high expression 
of CD14 and low expression of CD16. These intermediate 
monocytes were found to have similar ROS production 
and phagocytosis ability as the classical monocytes, but 
have lower cell surface adhesion and express a higher 
level of class II molecule and IL-12 [22]. Intermediate 
monocytes may be a transitional stage of maturation 
from classical to non-classical monocytes, and they react 
strongly to viral and bacterial ligands. Intermediate mono-
cytes were the only subset of monocytes that expressed 
CCR5, making them suitable for antigen presentation, cy-
tokine secretion, apoptosis regulation, and differentiation 
[23]. Their ability to present antigens and activate T cells 
is indicated by their gene expression signature. Based on 
transcriptome studies, intermediate monocytes express 
more MHC II and are more similar to classical monocytes 
than non-classical monocytes. Intermediate monocytes 
also have proinflammatory functions by secreting large 
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quantities of IL-1β, IL-6, IL-12, TNF-α and CCL3 when 
stimulated by TLR [24]. However, their exact function in 
immunity is still unknown, as another study revealed that 
they are the primary producers of IL-10 in response to 
TLR stimulation [25]. 

The monocyte subsets show significant variability in 
surface marker expression and functions; however, the ex-
act role of different monocyte subsets in malaria infec-
tion is still unclear. The intermediate and non-classical 
monocytes have previously been shown to play a signif-
icant role in parasitic infection. Classical monocytes have 
a more pro-inflammatory physiology due to their ability 
to produce soluble mediators and differentiate into mono-
cyte-derived DCs to link innate and adaptive immune re-
sponses. Meanwhile, intermediate monocytes are involved 
in antigen presentation, whereas non-classical monocytes 
play a crucial role in anti-viral reactions [10]. 

Based on their maturation status, monocytes can be 
differentiated into different subsets which vary in their 
cytokine secretion and ability to phagocytose merozoites, 
or infected RBCs (iRBCs). For example, the intermediate 
monocyte subset appeared to be the monocyte subtype best 
suited for phagocytosis of P. vivax-infected cells in vitro 
when compared to the more mature non‑classical subset. 
In P. falciparum infection [26], the expression of CD16/
FcγRIIIa on these two subsets is associated with TNF-α 
production. In severe malarial anemia (SMA) in children, 
circulating red blood cells are known to be IgG-coated. 
IgG-coated red cells formed during P. falciparum infec-
tion might engage CD16/FcγRIIIa on monocytes, acceler-
ating the destruction by erythrophagocytosis. Thus a neg-
ative correlation of the CD16/FcγRIIIa expression level 
with hemoglobin levels was observed in the more mature 

non‑classical subset, indicating its role in erythrophago-
cytosis [27]. While there are still large gaps in our under-
standing of the roles of these monocyte subsets in malaria, 
they may have enhanced antiparasitic activity. 

In regards to the secretion of inflammatory cytokines, 
the classical, intermediate, and non-classical monocyte 
subsets differ in their production of IL-1β, IL-6, and 
TNF-α (Fig. 1). Boyette et al. reported that the classical 
monocytes are the best cytokine producers and non-clas-
sical monocytes are poor cytokine producers. The level 
of TNF-α produced by intermediate monocytes was equiv-
alent to that produced by classical monocytes. The classi-
cal monocyte subset secreted more IL-1β than the other 
subsets. Accordingly, the classical subset secreted more 
IL-6 than the non-classical and intermediate subsets [28]. 

The role of monocytes in malaria 
The malaria parasite interacts with the innate immune 

system during its life cycle, with the monocytes and macro-
phages playing major roles in tissue-specific inflammatory 
responses. During an acute malaria infection, monocytes 
are recruited in large numbers from the bone marrow. When 
monocytes migrate into tissues, these monocytes differen-
tiate into macrophages or DCs, which improve the phago-
cytic and antigen presentation capabilities. Monocytes mi-
grate through the bloodstream between the bone marrow 
and the target organs. Once activated, monocytes help to 
decrease the parasite burden by phagocytosis, cytokine pro-
duction, and antigen presentation [29]. Table 1 summarizes 
the role of monocytes in different malaria cases. 

Monocytes can be activated directly or indirectly when 
various parasite components activate other host immune 

Fig. 1. The role of monocytes in malaria infection. A) Phagocytosis. Monocytes phagocytose 
iRBCs and merozoites through opsonic or non-opsonic phagocytosis. B) Antibody-dependent 
cellular inhibition (ADCI). Monocytes interact with antibody-opsonized merozoites through 
FcγRs. C) Cytokine production. Parasite-associated components activate monocytes via TLRs
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factors. When merozoites invade RBCs, significant chang-
es occur to the surface of the iRBC, including the addition 
of parasite proteins such as Plasmodium falciparum eryth-
rocyte membrane protein 1 (PfEMP1) [30] that interact 
with monocyte surface receptors [31]. iRBCs also result 
in complement activation, leading to the deposition of C3b 
fragments on the iRBC surface and communication with 
monocyte/macrophage complement receptors. Antibodies 
specific for iRBC surface antigens can be used to recog-
nize iRBCs through monocyte and macrophages Fcγ re-
ceptors (FcγRs). Merozoites are released from the iRBCs 
when iRBCs rupture; they are then attacked by antibodies 
and activate monocytes/macrophages through FcγR inter-
actions [32]. Monocytes also have surface and intracellular 
Toll-like receptors (TLRs), which help recognize pathogen- 
associated molecular patterns (PAMPs). PAMPs that can di-
rectly activate TLRs expressed by monocytes/macrophages 
including glycosylphosphatidylinositol (GPI) anchors, Plas-
modium DNA, RNA and hemozoin crystals [33]. 

Phagocytosis 
Monocytes are unable to phagocytose RBCs infected 

with mature gametocytes [34], but their ability to phagocy-
tose merozoites and asexual iRBCs is crucial for parasitemia 
regulation. A previous phagocytic assay performed in vitro 
revealed that intermediate CD14++ CD16+ monocytes were 
the most effective subset for phagocytosis of Plasmodium vi-

vax iRBCs and complement opsonized P. falciparum iRBCs. 
In malaria-infected individuals, monocytes are recruited for 
merozoite phagocytosis by opsonizing antibodies against 
MSP1 [35], while cytophilic immunoglobulins (IgG1 and 
IgG3) against MSP2 and MSP3 activate monocytes [36]. 

Monocytes play an important role in the host’s pro-
tection against P. falciparum infection, including non-op-
sonic and opsonic phagocytosis of iRBC (Fig. 1). During 
the early phase of malaria infection, monocytes bind 
and engulf iRBC via the CD36 receptor by non-opsonic 
phagocytosis. The adherence of iRBCs to CD36 is facil-
itated by PfEMP-1. Proteolytic degradation of PfEMP-1 
from iRBCs decreased the phagocytic activity, suggesting 
the key role of CD36-mediated adhesion in non-opsonic 
phagocytosis of iRBCs whereby pharmacological inhibi-
tion of CD36-dependent signaling reduces iRBCs uptake, 
though there is a possibility that additional receptors are 
also involved. Monocytic CD36 uses both the ERK and 
p38 MAPK signaling cascades to actively participate 
in the non-opsonic phagocytosis of iRBCs. However, 
opsonic phagocytosis leads to more iRBC uptake than 
the non-opsonic process. Opsonic phagocytosis involves 
the interaction between opsonin and specific receptors. 
When the complement system is activated, C3b and C4b 
act as opsonin which target antigens for phagocytosis.  
The complement-bound parasite antigens bind with com-
plement receptors on monocytes, and they are subsequent-
ly phagocytosed by monocytes [37]. Furthermore, specific 

Table 1. The role of monocytes in different malaria cases

Malaria condition The role of monocytes References

Acute P. falciparum 
malaria

Monocytes increase secretion of the proinflammatory cytokines TNF-α, IP-10 (CXCL10), 
IFN-γ, and decrease phagocytosis of iRBCs

[11]

Acute P. vivax infection Inflammatory and classical monocytes secrete inflammatory mediators, TNF-α, IL-6, and IL-8 [32]

Severe malaria Inflammatory monocyte subset increases with higher levels of proinflammatory cytokines 
(IFN-α, IFN-γ, TNF-α) and chemokines (CCL2, CCL3, CCL4, CXCL10)

[32]

Placental malaria Opsonic phagocytosis of iRBCs by monocytes helps to eliminate iRBCs. Production 
of proinflammatory mediators (e.g. IL-1β) by monocytes can destroy the structure and impair 
the functions of the syncytiotrophoblast. Monocyte accumulation in placenta malaria causes 

reduced levels of insulin-like growth factor-1, a positive regulator of fetal growth. 
In addition, excessive monocyte activation may disrupt placental angiogenesis

[11, 32, 47]

Severe malarial anemia Monocytes increased phagocytic activity, leading to accelerated destruction of infected and 
uninfected erythrocytes. Activation of monocytes by iRBCs led to excessive production 

of proinflammatory mediators in response to the uptake of erythropoietin, such as TNF-α 
and nitric oxide, which are associated with suppression of erythropoiesis in the bone marrow. 

Monocytes loaded with hemozoin suppress erythropoiesis in the bone marrow by inducing 
apoptosis of the erythroid progenitors via IFN-γ 

[32, 47, 54, 55]

Cerebral malaria Monocytes can be activated by platelet factor-4 (PF4) to produce reactive oxygen species that 
subsequently promote endothelial cell apoptosis. Monocytes promote a procoagulant cascade, 

resulting in increased expression of adhesion molecules and secretion of cytokines such as IL-2, 
IL-6, IL-8, IL-10, TNF-α, and IFN-γ, which initiate dysregulated hemostasis in cerebral malaria

[47, 54]

Acute lung injury/acute 
respiratory distress 
syndrome (ALI/ARDS)

Activation of monocytes results in the secretion of pro-inflammatory cytokines such as IL-1β 
and IL-18. These cytokines upregulate adhesion molecules in lung endothelial cells to promote 

both iRBCs and monocyte sequestration, which lead to increased vascular permeability and 
cause local injury via inflammatory mediators

[47]
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antibodies which function as opsonins are produced to fa-
cilitate phagocytosis by binding to FcγRs such as FcγRI 
(CD64), FcγRII (CD32), and FcγRIIIa (CD16). Binding of 
antibodies to pathogen results in complement deposition 
and Fc-receptor-mediated phagocytosis. Since various im-
mune cells express different subsets of FcγRs, the efficacy 
of antibody binding to FcγRs varies depending on the iso-
type and the immune cell to which the antibody binds. The 
high-affinity receptor FcγRI can bind monomeric forms 
of IgG1, IgG3, and IgG4. FcγRII and FcγRIIIa are low-af-
finity receptors that only interact with IgG in complexed 
or aggregated form. The FcγRIIa subtype is expressed on 
neutrophils and monocytes and it initiates phagocytosis, 
ADCC and cellular activation [38]. Monocyte phago-
cytic activity is increased by Plasmodium-specific IgGs, 
which corresponds with protection and lowers the chance 
of developing symptomatic malaria. Monocytes could be 
recruited by opsonizing antibodies for merozoite phagocy-
tosis against merozoite surface proteins (MSP)-1, where-
as cytophilic immunoglobulins (IgG1 and IgG3) against 
MSP2 and MSP3 effectively activate monocytes [39]. 
Human antimalarial antibodies are naturally acquired in 
the body to prevent merozoite invasion of red blood cells 
during blood-stage malaria infections through a process 
known as antibody-mediated complement-dependent 
inhibition (ADCI). C1q fixation has been found to be 
the main mediator of ADCI inhibition, and the main tar-
gets are MSP-1 and MSP-2 [40]. When the parasites bind 
to monocytes, the receptor–parasite complex is phagocy-
tosed by an actin-dependent mechanism. The phagosome 
fuses with lysosomes to form phagolysosome and the par-
asite components are degraded by acidic proteases. 

Hemozoin is released during schizont rupture and 
immediately phagocytosed by monocytes, macrophages, 
and DCs [41]. The phagocytosis of hemozoin induces 
monocytes to undergo oxidative burst and downregula-
tion of MHC class II, intercellular adhesion molecule 1 
(ICAM-1), and CD11c expression [42]. Additionally, in 
co-culture experiments by Kumsiri et al., iRBC or hemo-
zoin has been reported to induce production of B cell acti-
vation factor (BAFF) by monocytes, which may promote 
antibody production [43]. According to Bobade et al., in 
vitro phagocytosis of hemozoin by monocytes increases 
the production of IL-10, chemokine ligand 1 (CCL1), 
CCL17 and the expression of mannose binding lectin re-
ceptor (CD206) [41]. 

Antibody-dependent cellular inhibition 
Merozoite surface antigens which are released during 

schizont rupture induce monocyte-mediated antibody-de-
pendent cellular inhibition (ADCI) of Plasmodium falci-
parum provided merozoites are opsonized with cytophilic 
antibodies (IgG1 and IgG3) subtypes [44]. After being 

exposed to opsonized merozoites in vitro, monocytes 
release soluble mediators that inhibit parasite growth in 
iRBCs [45]. The interaction of IgG-merozoite complex-
es with monocyte FcγRs is needed for ADCI as shown in 
an in vitro functional assay. An earlier finding was that 
blocking FcγRI does not affect ADCI, but blocking either 
FcγRII or FcγRIII could terminate ADCI [46]. The minor 
CD16+ monocyte subset is needed to enhance ADCI. More 
research is needed to determine how monocytes can be 
differentially activated from macrophages in their ability to 
initiate ADCI and which inflammatory mediators released 
by monocytes suppress the growth of the parasite [47]. 

Cytokine production
In response to Plasmodium infection, monocytes se-

crete pro-inflammatory cytokines, which helps to inhib-
it parasite growth and infection clearance, but excessive 
production contributes to pathogenesis. Glycosylphospha-
tidylinositols (GPIs) are abundantly expressed on the par-
asite surface monocytes. These malarial GPIs stimulate 
a pro-inflammatory response by increasing the secretion 
of TNF-α, IL-1β, IL-6, IL-12, and nitric oxide (NO). 
Monocytes have been shown to produce large amounts 
of IL-12 and IL-18 that prevent progression to severe ma-
laria during early infection. IL-18 and IL-12 work togeth-
er to activate interferon γ (IFN-γ), which is necessary for 
the activation of monocyte proinflammatory function in 
order to facilitate parasite clearance [48]. Upon in vitro 
exposure to P. falciparum, production of GM-CSF, MIP-
1β, or IL-34 cytokines initiates the immunity mechanism 
with lower parasite loads (premunition) by opsonic phago-
cytosis and cytokine secretions by monocytes [49]. Ex-
posure of these cytokines, specifically TNF-α and IFN-γ, 
regulates iRBC uptake and endothelial cell activation by 
increasing the expression of ICAM-1 and other adhesion 
molecules by endothelial cells [50]. 

During blood-stage infection with P. falciparum, the in-
flammatory monocytes increase the expression of activa-
tion markers HLA-DR and CD86, which are involved in  
T cell priming [51]. Stanisic et al. demonstrated that mono-
cytes in children with severe malaria secreted more TNF-α, 
MIP-1β, and MIP-1α, which are involved in monocyte ac-
tivation and recruitment than healthy children or children 
with uncomplicated malaria [52]. The severity of the infec-
tion is thought to be influenced by the balance of pro-in-
flammatory and anti-inflammatory cytokines, chemokines, 
growth factors, and effector molecules (Table 2). It has been 
shown that several cytokines such as IL-1β, IL-6, IL-8, 
and TNF-α are increased in late-onset severe infection [53]. 
However, the exact function of these cytokines remains 
unclear and further investigation is required.
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Other myeloid cells involved during 
malaria infection

Macrophages 

Mature macrophages are derived from monocytes, 
stem cells, or from the cell division of pre-existing mac-
rophages [56]. Macrophages lack granules but are dense-
ly packed with lysosomes. Macrophages are involved in 
the clearance of iRBC and control of parasitemia, where-
by deficiency of monocytes and macrophages has been 
shown to accelerate parasite growth and anemia [57]. 
Infected RBCs can be phagocytosed by macrophages via 
two different mechanisms. The first mechanism does not 
involve opsonizing antibodies. Macrophages bind to anti-
gens of the parasites that are expressed on iRBCs through 
surface receptors after being activated by proinflammato-
ry cytokines such as TNF-α and IFN-γ. For instance, in 
human malaria, the scavenger receptor CD36 binds to the  
P. falciparum erythrocyte membrane protein-1 (PfEMP-1). 
Macrophages are also necessary for parasite clearance 
during adaptive immunity when the second mechanism, 
antibody-dependent phagocytosis, takes over [58]. In ma-
laria-immune individuals, antibody-opsonized iRBCs and 
merozoites are phagocytosed by macrophages via FcγRs 
[59]. Other than spleen resident macrophages, CD11bhigh-

Ly6C+ monocytes have been reported to actively partici-
pate in the control of acute parasitemia in murine.

Dendritic cells 

Dendritic cells are antigen-presenting cells that engulf 
pathogens, playing a crucial role in both innate and adap-
tive immune responses. This is mainly attributable to their 
presence at pathogen entrance points, their specific ability 
to sample, uptake, process, and present antigens, and their 

ability to integrate and react to signals from microbial and 
other immune cells. Dendritic cells consist of plasmacyt-
oid [CD123+ CD11c–, (pDC)] and myeloid/conventional 
[CD123– CD11c+, (cDC)] [60]. Though pDCs are most 
often associated with viral infection defense, they express 
high levels of TLR7 and TLR9 and can be a major source 
of type 1 IFNs in other infections [61]. On the other hand, 
following parasite infection, monocytes are infiltrated and 
differentiate into MoDC [62]. 

Dendritic cells express a wide range of PRR on their 
surface, such as TLRs, which enables them to commu-
nicate with diverse microbial molecules. During blood 
stage malaria, DCs in the spleen monitor the blood flow-
ing through the marginal sinus, and once activated, they 
can migrate to the white pulp, where they initiate acquired 
immune responses. A previous study demonstrated that 
monocyte-derived DCs could communicate with P. falci-
parum iRBCs by binding of CD36 to PfEMP-1 [63]. 

After being stimulated, DCs migrate to draining lymph 
nodes, where they present antigen via MHC class I or II 
complexes, followed by costimulatory signals such as 
CD40, CD80, and CD86 to CD4+ and CD8+ T cells. The 
antigen-MHC I or MHC II complexes are recognized by  
naïve CD4+ and CD8+ T cells, which proliferate and differen-
tiate into effector cells. Human DCs effectively phagocytose  
P. falciparum-infected RBCs in vitro; however, the acti-
vation depends on the dose. A high iRBC : dendritic cell 
(iRBC : DC) ratio suppresses maturation by inducing 
apoptosis and blocking LPS stimulation [64]. At a 3 : 1 
iRBC : DC ratio, there is an increase in the expression lev-
el of maturation markers such as HLA-DR, CD80, CD86 
and CD40, as well as chemokines including CCL2, CXCL9 
and CXCL10 [65]. At a 1 : 3 ratio of iRBCs, DCs induce 
an antigen specific T helper 1 (Th1) cell response, leading 
to T cell proliferation and secretion of IFN-γ, IL-10 and 

Parameter Classical monocytes 
(CD14++CD16–)

Intermediate monocytes 
(CD14++CD16+)

Non-classical monocytes 
(CD14+CD16++)

Frequency ~85% 5% 10%

Surface markers CCR2 CCR2, CX3CR1 CX3CR1

Roles Infection control and 
inflammatory regulation

Pro-inflammatory activity Tissue repair and removal 
of damaged cells

Cytokine production Pro-inflammatory
(IL-1, IL-10)

Anti- and pro-inflammatory 
(TNF-α, IL-10)

Pro-inflammatory 
(TNF-α, IL-1β)

CD14 CD14

CD14

CD14++CD16–

CD16
CD14

CD14

CD14

CD14++CD16+

CD16 CD16

CD14

CD14+CD16++

Table 2. Characteristics of monocyte subsets. The table shows comparisons between monocyte subsets in terms of their 
frequency in blood, surface markers, their roles and cytokine production
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TNF-α. This also increases the production of type 1 IFN, 
CXCL9 and CXCL10, which play a role in the induction 
of type I regulatory T cells (T

r
1). Type 1 IFNs have been 

shown to suppress the production of parasitic-specific CD4+ 
T cell IFN-γ and enhance Th1 or T

r
1 cells, despite the fact 

that they induce an antiviral immune response. Type 1 IFNs 
also inhibit the production of IL-6, which impairs the ability 
of blood monocytes to induce inflammatory reactions [66].

During early malaria infection, parasites induce DCs to 
produce TNF-α and IL-12, which then activate IFN-γ. As 
the disease progresses, DCs produce less IL-12 and start 
to produce IL-10. At the later stage of infection, activated 
DCs are resistant to TLR stimulation, reducing their ability 
to phagocytose antigens and priming T cells [67]. A previ-
ous study reported that a high dose of P. falciparum iRBCs 
induces apoptosis in monocyte-derived human DCs while 
low doses trigger them to induce CD4+ T cell proliferation. 
Therefore it has been suggested that CD8+ cDCs, which 
are the major producers of IL-12, may be vital in early 
infection to activate Th1 responses, whereas CD8-cDCs 
may play a major role during the acute phase to switch 
from Th1 to Th2 immune responses [68]. 

Importance of trained immunity  
in malaria

The “trained immunity” phenotype relates to a prime 
condition that increases reactivity of monocyte and mac-
rophages to a secondary challenge after the first stimulus. 
This phenotype involves epigenetic modifications, meta-
bolic remodeling or cytokine production. TLRs and other 
pattern recognition receptors are believed to help mono-
cytes in developing a Plasmodium-specific memory. 

In humans, exposure of radiation-attenuated sporozoite 
elicits both antibody and T cell responses against sporo-
zoite and blood-stage antigens and this protection has been 
associated with pluripotent effector memory T cells that 
produce IFN-γ, TNF-α and IL-2 that are targeted against 
liver rather than blood-stage antigens [69]. Jacob and col-
leagues found that following a secondary TLR ligand ex-
posure, the malarial parasite and its crystal hemozoin may 
evoke trained immunity as indicated by inflammatory gene 
expression. Despite the fact that these two stimuli have 
comparable effects on the inflammatory transcriptome, 
the differential regulation of iRBC- and hemozoin-induced 
training by known trained immunity inhibitors suggests 
that the two stimuli have different training mechanisms.

Monocytes that have been “trained” or primed produce 
more proinflammatory cytokines when they are challenged 
to a secondary stimulus [70]. Recent studies have demon-
strated a priming effect during P. falciparum infection on 
the innate immune system. McCall et al. reported stimu-
lated TLR4 and TLR2/TLR1 responses during sub-patent 
blood-stage infection, which later normalized following 
curative treatment using an experimental human malaria 

model [71]. Furthermore, Franklin et al. showed that PB-
MCs from Brazilian adults with uncomplicated falciparum 
malaria had primed innate responses to numerous TLR li-
gands, including TLR4 and TLR2, and stronger proinflam-
matory cytokine responses than those seen in the experi-
mental malaria volunteers who experienced reversed TLR 
responses after treatment [72]. Repeated clinical malaria 
infections may have a training effect on monocytes that 
lasts for several weeks. Increased extracellular heme and 
proinflammatory cytokines, such as IP-10, associated with 
mouse malaria models and human P. falciparum infections 
have also been reported to increase expression of TLRs, 
such as TLR4, on the surface of monocyte and macro-
phages and circulating endothelial progenitor cells [73].

Concluding remarks
Malaria remains a significant global health concern. 

Monocytes respond to malaria in many different ways, 
such as by phagocytosis, cytokine secretions and antigen 
presentation, which can be either protective or pathologic. 
With substantial phenotypic and functional variations 
among monocyte subsets, the mechanism of immune re-
sponses induced by monocytes remains complicated, and 
the interaction of the different possible responses is a key 
factor in deciding disease outcome. In future, it is neces-
sary to focus on investigating how these monocytes are 
regulated differently depending on the disease severity and 
different Plasmodium species, the mechanisms involved in 
recognition of malaria and effects of disease on monocyte 
function. The knowledge obtained can be useful in the de-
velopment of antimalarial therapy by modulating the func-
tion of monocytes in malaria, giving a new opportunity to 
develop novel therapeutic strategies.
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