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Abstract
Ovarian cancer poses a major worldwide health issue, marked by high death rates and a deficiency in reliable diag-
nostic methods. The precise and prompt detection of ovarian cancer holds great importance in advancing patient 
outcomes and determining suitable treatment plans. Medical imaging techniques are vital in diagnosing ovarian 
cancer, but achieving accurate diagnoses remains challenging. Deep learning (DL), particularly convolutional neural 
networks (CNNs), has emerged as a promising solution to improve the accuracy of ovarian cancer detection. 

This systematic review explores the role of DL in improving the diagnostic accuracy for ovarian cancer. The method-
ology involved the establishment of research questions, inclusion and exclusion criteria, and a comprehensive search 
strategy across relevant databases. The selected studies focused on DL techniques applied to ovarian cancer diagnosis 
using medical imaging modalities, as well as tumour differentiation and radiomics. Data extraction, analysis, and 
synthesis were performed to summarize the characteristics and findings of the selected studies.

The review emphasizes the potential of DL in enhancing the diagnosis of ovarian cancer by accelerating the diag-
nostic process and offering more precise and efficient solutions. DL models have demonstrated their effectiveness in 
categorizing ovarian tissues and achieving comparable diagnostic performance to that of experienced radiologists. 
The integration of DL into ovarian cancer diagnosis holds the promise of improving patient outcomes, refining treat-
ment approaches, and supporting well-informed decision-making. Nevertheless, additional research and validation 
are necessary to ensure the dependability and applicability of DL models in everyday clinical settings.
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Introduction
Ovarian cancer is a significant global health concern, 
characterized by high mortality rates and a lack of effec-
tive diagnostic tools. The accurate and timely diagnosis of 
ovarian cancer is crucial for improving patient progno-
sis and determining appropriate treatment strategies [1]. 
Medical imaging and tumour visualization are vital steps 
in the diagnosis of ovarian cancer, and accurate diagnosis 

using medical imaging is of paramount importance [2]. 
Medical imaging modalities, such as magnetic resonance 
imaging (MRI), ultrasound, computed tomography (CT), 
and positron emission tomography (PET), are commonly 
used for the diagnosis of ovarian cancer and its staging [3]. 
However, accurate diagnosis of ovarian cancer using com-
mon medical imaging methods can still be challenging, 
implying the need for more accurate and efficient diag-
nostic methods. 
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In recent years, deep learning (DL) has emerged as 
a promising approach to improve the accuracy of ovarian 
cancer diagnosis. DL techniques, particularly convolu-
tional neural networks (CNNs), have exhibited remark-
able potential in various medical imaging applications.  
By leveraging the power of artificial intelligence and ma-
chine learning algorithms, DL algorithms can automati-
cally extract meaningful features from complex medical 
images, aiding in the identification and classification of 
potential pathologies [4,5].

The promise of DL to revolutionize the field of ovarian 
cancer diagnosis lies in its ability to provide accurate and 
efficient solutions. Traditionally, the definitive diagnosis 
of ovarian cancer has relied on histopathological exami-
nation, which is time-consuming, labour-intensive, and 
requires experienced pathologists [6]. Deep learning-
based models have the potential to expedite the diagnos-
tic process by quickly recognizing patterns and features 
in medical images, leading to more efficient and accurate 
diagnoses [7].

Traditional methods like biomarkers, biopsy, and 
imaging tests have been the mainstay for ovarian cancer 
diagnosis, but face limitations including invasiveness, 
limited early detection accuracy, subjectivity, and inter-
observer variability. In contrast, DL leverages advanced 
neural networks to automatically learn abstract features 
from raw medical images and data, enabling more ob-
jective analysis without manually creating features that 
are necessary for other machine learning methods [8].  
DL uses a non-linear network structure to extract features. 
It achieves this by combining low-level features, enabling 
the formation of abstract and complex representations. 
This approach effectively achieves the essential character-
istics of input data, resulting in a distributed representa-
tion [9]. Moreover, certain DL approaches have the ca-
pability to incorporate a multi-modal fusion framework, 
enabling the combination of various modalities. This is 
accomplished by establishing distinct deep feature extrac-
tion networks for each modality [10].

Notably, DL has proven extremely promising in the 
diagnosis of various types of malignancies, including 
lung cancer [11], thyroid cancer [12], and ovarian cancer 
[2,13]. Regarding ovarian cancer, DL models have been 
developed to classify ovarian tissues as malignant, border-
line, benign, or normal based on second-harmonic gen-
eration imaging, achieving high areas under the receiver 
operating characteristic curve [13]. Additionally, a preli
minary study comparing DL and radiologist assessments 
for diagnosing ovarian carcinoma using MRI demonstrat-
ed that DL exhibited non-inferior diagnostic performance 
compared to experienced radiologists [2].

The integration of DL into ovarian cancer diagnosis 
holds immense potential for improving patient outcomes 
[8,14-16]. This transformative technology can assist cli-
nicians in making more informed decisions, ultimately 
leading to improved treatment strategies and better pa-
tient care. However, further research and validation are 
necessary to ensure the reliability and generalizability of 
DL models in routine clinical practice.

The present study presents a systematic review of the 
potential and capabilities of DL in improving diagnostic 
accuracy for ovarian cancer. We will discuss the funda-
mentals of DL and CNNs, highlighting their applications 
in ovarian cancer diagnosis. Furthermore, we will review 
relevant research papers that specifically focus on the use 
of DL methods in ovarian cancer diagnosis. By examining 
the existing literature, we aim to gain insights into the cur-
rent state of DL in this domain and identify potential areas 
for future research and development. Figure 1 shows an 
overview of the general workflow of the selected studies.

Material and methods
The research questions guiding this review were twofold: 
(1) What is the current state of DL in improving the diag-
nostic accuracy of ovarian cancer using medical imaging? 
and (2) How does DL contribute to tumour differentiation 
and radiomics in ovarian cancer diagnosis?
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Figure 1. Overview of the step-by-step process followed in the selected studies, outlining their workflow and procedures
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To identify relevant studies, a set of inclusion and ex-
clusion criteria were established. Inclusion criteria encom-
passed studies published in peer-reviewed journals that 
focused on DL techniques applied specifically to ovarian 
cancer diagnosis. The studies were required to involve 
medical imaging modalities such as MRI, ultrasound, CT, 
and PET. Additionally, studies evaluating DL approaches 
for tumour differentiation and radiomics in ovarian can-
cer diagnosis were included. Exclusion criteria comprised 
studies not available in English language, those not di-
rectly relevant to ovarian cancer or medical imaging, and 
studies that did not utilize DL techniques.

A comprehensive search strategy was devised by identi-
fying relevant databases, including PubMed, IEEE Xplore, 
Scopus, and Web of Science. The search query was devel-
oped using appropriate keywords and Boolean operators, 
such as “ovarian cancer”, “deep learning”, “convolutional 
neural networks”, “medical imaging”, “tomography”, “MRI”, 
“ultrasound”, “CT” ,”PET”, “tumor differentiation”, and  
“radiomics”. The query was refined to ensure accuracy  
and relevance. Filters were applied to limit the results to 
publications within the last 6 years. Titles and abstracts of 
the retrieved articles were thoroughly reviewed to assess 
their relevance to the research questions and adherence 
to the inclusion criteria. Full-text versions of potentially  
relevant articles were obtained for detailed evaluation.

A standardized data extraction form was created to 
systematically capture pertinent information from each 
selected study. Details such as study design, sample size, 
DL techniques employed, medical imaging modalities 
used, evaluation metrics, and outcomes related to ovarian 
cancer diagnosis were extracted. The extracted data were 
meticulously organized to facilitate subsequent analysis and 
synthesis. Data analysis and synthesis involved summariz-
ing the characteristics and findings of the selected studies. 
This was accomplished through the creation of a tabular 
format or narrative synthesis. Common themes, trends, and 
patterns across the studies were identified and analysed to 
address the research questions and objectives of the sys-
tematic review. Tables 1, 2 show the detailed characteristics 
of these included studies. Different studies have employed 
various input types in their chosen networks. Figure 2 illu
strates the relative percentage of modalities used as inputs 
in the selected studies.

In the reviewed papers, different DL networks were 
implemented based on their specific objectives. One 
commonly used architecture is U-Net, which follows an 
encoder-decoder structure with skip connections and 
is commonly employed in medical image segmentation 
tasks. Another widely explored architecture is ResNet, 
known for its ability to train deep networks using re-
sidual blocks, particularly in image classification tasks.  
The general forms of the ResNet and U-Net architectures 
are shown in Figure 3, and their detailed configurations 
and performance metrics are explained in the relevant 
studies within the results section.

Additionally, for tumour detection, YOLOv5 was 
identified as a suitable architecture, known for its real-
time object detection capabilities. YOLOv5 employs 
a single-stage detection approach and has demonstrated 
promising results in detecting and localizing tumours ef-
ficiently. Figure 4 shows the layer composition and order 
in YOLOv5, for efficient tumour detection.

To assess the robustness, performance, and reliability 
of DL networks for ovarian cancer detection and differen-
tiation, several metrics were commonly used. Accuracy, 
which measures the overall correctness of DL network 
predictions, is defined as the ratio of correctly classified 
samples to the total number of samples in the dataset. 
Area under the curve (AUC) is a widely used metric that 
represents the area under the receiver operating charac-
teristic (ROC) curve, indicating the model’s discrimina-
tion power. Recall (also known as sensitivity) quantifies 
the DL network’s ability to correctly identify positive 
instances, calculated as the ratio of true positives to the 
total number of actual positives. Precision determines the 
proportion of correctly predicted positive samples out of 
all predicted positive samples, while specificity measures 
the network’s ability to correctly identify negative instanc-
es. The F1 score combines precision and recall, provid-
ing a balanced evaluation of the network’s performance. 
Higher values for these metrics generally indicate better 
performance.

Results

Deep learning techniques in ovarian cancer diagnosis

Ovarian cancer is the fifth most common cause of cancer 
mortality among women, and early diagnosis is crucial 
for effective treatment. Deep learning techniques, such as 
CNNs, have shown potential in improving ovarian can-
cer diagnosis [10,17]. Deep learning is a subcategory of 
machine learning that uses artificial neural networks to 
learn from large amounts of data. Convolutional neural 
networks are a type of DL algorithm, particularly effective 
in image recognition tasks. They are composed of multiple 
layers of interconnected nodes capable of identifying pat-
terns in images and classifying them accordingly [18]. 

Deep learning techniques have been used to analyse 
histopathological images of ovarian cancer tissue samples. 
Algorithms based on DL have the potential to assist in the 
diagnosis of malignant patterns, predict clinically relevant 
molecular phenotypes and microsatellite instability, and 
identify histological features related to patient prognosis 
and correlated to metastasis. 

One study used a multi-modal evolutionary DL model 
to diagnose ovarian cancer. The model used deep features 
extracted from histopathological images and genetic mo-
dalities to predict the stage of ovarian cancer samples. 
For processing of the gene data and the histopathologi-
cal images, an LSTM network and a CNN model were 
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Table 1. Participant demographics, algorithm, and model validation for the 39 included studies

Author [ref.], year Number of 
patients

Age (mean, 
range) (years)

Algorithm Reference standard

Ghoniem et al. [10], 2021 587 NA Hybrid Deep Learning (CNN – LSTM) Histopathology

Sengupta et al. [17], 2022 NA NA Hybrid Deep Learning (Machine Learning – CNN (Inception Net v3 )) Histopathology

Chen et al. [19], 2022 422 46.4, NA ResNet Histopathology

Zhang et al. [9], 2019 428 NA Hybrid Deep Learning (Machine Learning (uniform local binary pattern) – 
CNN (GoogLeNet))

Histopathology

Ziyambe et al. [8], 2023 NA NA CNN Histopathology

Mohammed et al. [23], 2021 NA NA Stacking ensemble deep learning model (one-dimensional convolutional 
neural network (1D-CNN))

Histopathology

Tanabe et al. [24], 2020 NA NA Artificial intelligence (AI)-based comprehensive serum glycopeptide 
spectra analysis (CSGSA-AI) – CNN (AlexNet)

Histopathology

Huttunen et al. [25], 2018 NA NA CNNs (AlexNet, VGG-16, VGG-19, GoogLeNet) Histopathology

Wu et al. [27], 2018 85 NA CNN (AlexNet) Histopathology

Kilicarslan et al. [33], 2020 253 NA Hybrid Deep Learning (ReliefF – CNN) Histopathology

Zhao et al. [34], 2022 294 NA Dual-Scheme Domain-Selected Network (DS2Net) NA

Gao et al. [14], 2022 107624 ≥ 18 CNN (DenseNet-121) Histopathology

Zhang and Han [35], 2020 NA NA Hybrid Deep Learning (logistic regression classifier (LRC) – CNNs) Histopathology

Shafi and Sharma [37], 2019 NA NA CNN NA

Wang et al. [40], 2022 223 NA YOLO-OCv2 NA

Zhu et al. [41], 2021 100 NA, 22–45 CNN Histopathology

Boyanapalli and Shanthini 
[44], 2023

NA NA Ensemble deep optimized classifier-improved aquila optimization (EDOC-
IAO) (ResNet, VGG-16, LeNet)

NA

Yao and Zhang [46], 2022 224 NA CNN (ResNet50) NA

Sadeghi et al. [47], 2023 37 56.3, 36-83 3D CNN (OCDA-Net) Histopathology – 
radiologist evaluation

Wang et al. [48], 2021 451 47.8, NA CNN (ResNet, EfficientNet) Radiologist evaluation

Wang et al. [49], 2023 201 < 30, 30-50, 
> 50

CNN (U-net++) Histopathology

Maria et al. [50], 2023 NA NA Hybrid Deep Learning (attention U-Net – YOLO v5) Radiologist evaluation

Christiansen et al. [54], 2021 758 NA CNN (VGG16, ResNet50, MobileNet) Histopathology

Jung et al. [15], 2022 1154 NA Convolutional neural network model with a convolutional autoencoder 
(CNNCAE) (DenseNet, Inception-v3, ResNet)

Histopathology

Srilatha et al. [57], 2021 NA NA CNN (U-Net) NA

Saida et al. [2], 2022 465 50, 20-90 CNN (Xception) Histopathology – 
radiologist evaluation

Wang et al. [58], 2021 265 51, 15-79 CNN (VGG16, GoogLeNet, ResNet34, MobileNet, DenseNet) Histopathology

Wei et al. [59], 2023 479 55.61, 19-84 CNN (ResNet-50) Histopathology

Liu et al. [60], 2022 135 47, 10-79 CNN (U-net) Histopathology

Jin et al. [65], 2021 127 56, 23-80 U-net, U-net++, U-net with Resnet, CE-Net Histopathology – 
radiologist evaluation

Jan et al. [66], 2023 149 46.4, 18-80 CNN (3D U-Net) Histopathology – 
radiologist evaluation

Avesani et al. [68], 2022 218 58, 29-86 CNN Histopathology – 
radiologist evaluation

BenTaieb et al. [75], 2017 133 NA Weakly Supervised Learning Framework Histopathology

Wang et al. [6], 2022 NA NA Hybrid Deep Learning (an weakly supervised 
cascaded deep learning – a deep learning based classifier)

Histopathology
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Author [ref.], year Number of 
patients

Age (mean, 
range) (years)

Algorithm Reference standard

Sundari and Brintha [73], 
2022

NA NA
Hybrid Deep Learning (intelligent IE with a deep learning-based ovarian 
tumour diagnosis (IEDL-OVD)) (VGG16 - stacked autoencoder (SAE))

NA

Wang et al. [78], 2018 245 54.17, NA Hybrid Deep Learning (DL-CPH) (the deep learning feature – Cox 
proportional hazard (Cox-PH))

Histopathology

Wang et al. [80], 2022 48 59.1, 23-79 Hybrid Deep Learning (ResNet-101 – weakly supervised tumorlike tissue 
selection model – Inception-v3)

Histopathology

Liu et al. [72], 2023 185 53.33, NA CNN (ResNet34-CBAM) Histopathology

Ho et al. [83], 2022 609 NA Deep Interactive Learning (ResNet-182) Histopathology

Table 2. Indicator and data source for the 39 included studies

Author [ref.], year Number of images  
(training – testing)

Imaging 
modality

Source of data Date range Open access 
data

Ghoniem et al. [10], 2021 1375 (1100 train – 275 test) NA Retrospective study, data from the TCGA-OV NA Yes

Sengupta et al. [17], 
2022

NA (75% train – 25% test) NA
Retrospective study, data from Tata Medical Center 
(TMC), India

NA Yes

Chen et al. [19], 2022 422 (337 train – 85 test) Ultrasound
Retrospective study, data from Ruijin Hospital and 
Shanghai Jiaotong University School of Medicine

2019.01-2019.11 NA

Zhang et al. [9], 2019 3843 (3294 train – 549 test) Ultrasound
Retrospective study, data from database provided 
at [85] and Peking Union Medical College Hospital

NA Yes

Ziyambe et al. [8], 2023
200 (160 train – 40 

validation)
Histopathological Retrospective study, data from the TCGA NA Yes

Mohammed et al. [23], 
2021

304 (217 train – 87 test) NA Retrospective study, data from Pan-Cancer Atlas NA Yes

Tanabe et al. [24], 2020
351 (210 train – 141 

validation)
2D barcode Retrospective study, NA NA NA

Huttunen et al. [25], 
2018

200 (120 train –  
80 validation)

Multiphoton 
microscopy

Retrospective study, NA NA NA

Wu et al. [27], 2018 1848 (NA) Cytological
Retrospective study, data from Hospital of Xinjiang 
Medical University

2003-2016 NA

Kilicarslan et al. [33], 
2020

15154 (9092 train – 6062 
test, 10608 train – 4546 test, 

12123 train – 3031 test)
Gene microarray

Retrospective study, data from public gene 
microarray datasets

NA Yes

Zhao et al. [34], 2022 1639 (1070 train – 569 test) Ultrasound
Retrospective study, data from Beijing Shijitan 
Hospital, Capital Medical University

NA Yes

Gao et al. [14], 2022
592275 (575930 train – 

16345 validation)
Ultrasound

Retrospective study, data from ten hospitals across 
China

2003.09-2019.05 No

Zhang and Han [35], 2020 1500 (NA) Ultrasound Retrospective study, data from stanford.edu/datasets NA Yes

Shafi and Sharma [37], 
2019

250 (NA) MRI
Retrospective study, data from skims (Sher-i-Kashmir 
Institute of Medical Sciences) and Hospital Kashmir

NA NA

Wang et al. [40], 2022 5603 (4830 train – 773 test) CT
Retrospective study, data from the Affiliated 
Hospital of Qingdao University

NA
Yes, 

conditional

Zhu et al. [41], 2021 NA CT
Retrospective study, data from the Affiliated 
Hospital of Xiangnan University

2017.01-2019.01 Yes

Boyanapalli and 
Shanthini [44], 2023

NA (70% train – 30% test) CT Retrospective study, data from the TCGA-OV NA Yes

Yao and Zhang [46], 2022 224 (157 train – 67 test) PET/CT
Retrospective study, data from Shengjing Hospital 
of China Medical University

2013.04-2019.01 Yes

Sadeghi et al. [47], 2023 1224 (1054 train – 170 test) PET/CT Retrospective study, data from Kowsar Hospital, Iran 2019.04-2022.05 No

Table 1. Cont.
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utilized, respectively. Both models were optimized with 
the Ant Lion Optimization (ALO) algorithm, and final-
ly the outputs of the LSTM and CNN were fused using 
weighted linear aggregation to make the final prediction.  

The ReLU activation function, the hyperparameters, and 
the topology of both networks were automatically selected 
by ALO. The multi-modal dataset was divided into train-
ing, validation, and test sets following a ratio of 6 : 2 : 2, 

Author [ref.], year Number of images  
(training – testing)

Imaging 
modality

Source of data Date range Open access 
data

Wang et al. [48], 2021 545 (490 train – 55 test) MRI Retrospective study, from one center in the United 
States

NA NA

Wang et al. [49], 2023 201 (152 train – 49 test) MRI Retrospective study, data from Hospital Fudan 
University

2015.01-2017.12 Yes, 
conditional

Maria et al. [50], 2023 300 (NA) CT Retrospective study, data from RSNA and TCIA NA Yes, 
conditional

Christiansen et al. [54], 
2021

3077 (608 train – 150 test) Ultrasound Retrospective study, data from the Karolinska University 
Hospital and Sodersjukhuset in Stockholm, Sweden

2010-2019 NA

Jung et al. [15] 2022 1613 (NA) Ultrasound Retrospective study, data from the Seoul St. Mary’s 
Hospital

2010.01-2020.03 Yes, 
conditional

Srilatha et al. [57], 2021 150 (NA) Ultrasound Retrospective study, from a standard benchmark 
dataset, available at [86, 87]

NA Yes

Saida et al. [2], 2022 3763 (3663 train – 100 test) MRI Retrospective study, NA 2015.01-2020.12 No

Wang et al. [58], 2021 279 (195 train – 84 validation) Ultrasound Retrospective study, data from Tianjin Medical 
University Cancer Institute and Hospital

2013.03-2016.12 Yes, 
conditional

Wei et al. [59], 2023 479 (297 train – 182 validation) MRI Retrospective study, data from five center 2013.01-2022.12 NA

Liu et al. [60], 2022 135 (96 train – 39 test) CT Retrospective study, data from Nanfang Hospital 2011.12-2018.08 Yes, 
conditional

Jin et al. [65], 2021 469 (376 train – 93 test) Ultrasound Retrospective study, data from Wenzhou Medical 
University and Shanghai First Maternal and Infant 
Hospital

2002.01-2016.12 Yes, 
conditional

Jan et al. [66], 2023 185 (129 train – 56 test) CT Retrospective study, data from the MacKay 
Memorial Hospital

2018.07-2019.12 Yes, 
conditional

Avesani et al. [68], 2022 218 (152 train – 66 test) CT Retrospective study, data from IEO, Milan in Rizzo 
et al. [88], Fondazione Policlinico Gemelli, Rome; 
Policlinico Umberto I, Rome; Ospedale Centrale, 
Bolzano

NA Yes, 
conditional

BenTaieb et al. [75], 2017 133 (68 train – 65 test) Histopathological Retrospective study, data from this dataset, available 
at the following URL: http://tinyurl.com/hn83mvf

NA Yes

Wang et al. [6], 2022 288 (187 train – 101 test) Histopathological Retrospective study, data from the TCIA, and 
another dataset, available at https://doi.
org/10.7937/tcia.985g-ey35

NA Yes

Sundari and Brintha [73], 
2022

216 (151 train – 65 test) NA Retrospective study, data from the American 
National Cancer Institute website

NA No

Wang et al. [78], 2018 8917 (5495 train – 3422 test) CT Retrospective study, data from the West China 
Second University Hospital of Sichuan University 
(WCSUH-SU) and Henan Provincial People’s 
Hospital (HPPH), available at http:// 
www.radiomics.net.cn/post/111

2010.02-2015.09 
(WCSUH-SU) – 

2012.05-2016.10 
(HPPH)

Yes, 
conditional

Wang et al. [80], 2022 720 (472 train – 248 test) Histopathological Retrospective study, data from Tri-Service General 
Hospital, National Defense Medical Center, Taipei, Taiwan

2013.03-2021.01 Yes, 
conditional

Liu et al. [72], 2023 3839 (1909 train – 1930 
validation)

MRI Retrospective study, data from the Affiliated 
Hospital of Chongqing Medical University

2013.01-2019.12 Yes, 
conditional

Ho et al. [83], 2022 609 (488 train – 121 test) Histopathological Retrospective study, data from Memorial Sloan 
Kettering Cancer Center

NA Yes, 
conditional

Table 2. Cont.
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and cross-entropy loss was used for training the model.  
The model demonstrated remarkable performance with 
a precision of 98.76%, recall of 98.74%, accuracy of 98.87%, 
and F1 score of 99.43%. The model was compared to 9 other 
multi-modal hybrid models and was found to be more pre-
cise and accurate in diagnosing ovarian cancer [10].

Another study used a deep hybrid learning pipeline to 
accurately diagnose ovarian cancer based on nuclear mor-
phology. The images were obtained from ovarian cancer 
and normal ovary tissues stained for lamin A/B proteins. 

Extracted features were classified using XGBoost and 
random forest classifiers and fused with predictions from 
morphometric parameters of nuclei analysed separately 
through AdaBoost. A 21-layer CNN architecture was used 
in this study, and key parameters like filters of 5 × 5, 3 × 3,  
and 1 × 1 sizes, and leaky ReLU activation were used in 
the CNN model. To increase training efficiency, con-
trolled data augmentation techniques were applied. The 
deep hybrid learning model was trained for 250 epochs, 
with a learning rate of 0.00025 and a batch size of 32.  

Figure 2. A: Relative percentage of input data types used as network inputs in the study survey. B: Percentage of medical image modalities used as network 
inputs in the selected studies
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Adam optimization and cross-entropy loss were used 
during the training process. The model performance was 
then assessed using the area under the receiver operating 
characteristic curve (AUC) analysis. The model combined 
classical machine learning algorithms with vanilla CNNs 
to achieve a training and validation AUC score of 0.99 and 
a test AUC score of 1.00 [17].

A retrospective study done by Chen et al. aimed to de-
velop DL algorithms to differentiate benign and malignant 
ovarian tumours using greyscale and colour Doppler ultra-
sound images. The ResNet-18 model with ReLU activation 
function was employed to extract features from each image 
type. These features were concatenated and then inputted 
into fully connected layers for classification. The final lay-
er used softmax activation for classification. The perfor-
mance of the DL algorithms was compared to the Ovarian- 
Adnexal Reporting and Data System (O-RADS) and the 
official ultrasound report. The DL algorithms with fea-
ture fusion and decision fusion strategies were developed.  
The DL algorithm with feature fusion achieved an AUC 
of 0.93, comparable to the Ovarian-Adnexal Reporting 
and Data System (O-RADS) and the ultrasound reports.  
DL algorithms demonstrated sensitivities of 92% and spec-
ificities ranging from 80% to 85% for malignancy detec-
tion, concluding that DL algorithms based on multimodal 
US images can effectively differentiate between benign and 
malignant ovarian tumours, showing comparable perfor-
mance to expert assessment and O-RADS [19].

In another study, Zhang et al. developed a machine 
learning-based model to differentiate between benign 
and malignant ovarian masses/tumours. The mentioned 
model utilized Google LeNet and a random forest classi-
fier and was able to achieve high diagnostic accuracy for 
its designed task. A total of 1628 ultrasound images were 
used, and data augmentation was performed by extracting 
9 image patches around the lesion area. The dataset was 
divided into training (70%), validation (10%), and testing 
(20%) sets. For evaluation, 10-fold cross-validation was 
used to calculate performance metrics including accu-

racy, sensitivity, and specificity. The diagnostic accuracy 
was 96%, and the sensitivity and specificity were 96% and 
92%, respectively [9].

Late-stage diagnosis of ovarian cancer can be chal-
lenging due to its vague symptoms and the limitations of 
current diagnostic methods. Ziyambe et al. introduced 
a novel CNN algorithm for accurate and efficient ovar-
ian cancer prediction and diagnosis. The CNN consists 
of 2 conv-ReLU-maxpool blocks, a flattening layer, a fully 
connected layer, and a softmax layer as output classifier. 
The CNN model trained on 200 histopathological images 
augmented to 11,040 images. The optimizer was Adam 
with a learning rate of 0.001. The training was performed 
for 50 epochs with a batch size of 32. This model attained 
a notable accuracy of 94%, correctly identifying 95.12% 
of malignant cases and accurately classifying 93.02% of 
healthy cells. This approach may overcome operator-based 
inaccuracies alongside offering improved accuracy, effi-
ciency, and reliability. Therefore, further research aimed 
at enhancing the performance of this proposed method 
is warranted [8]. 

In a study by Mohammed et al., a stacking ensemble 
DL model based on a one-dimensional convolutional 
neural network (1D-CNN) was proposed for multi-class 
classification sorting of breast, lung, colorectal, thyroid, 
and ovarian cancers in women using RNASeq gene ex-
pression data [20,21]. The model incorporated feature 
selection using the least absolute shrinkage and selection 
operator (LASSO) [22]. Each 1D-CNN base model con-
sisted of a single convolutional layer followed by a max 
pooling layer with a 2 × 2 pooling size. Dense or fully 
connected layers were then implemented before the final 
output layer and the softmax activation was used to clas-
sify cancer types. The data used in the study was divided 
into 70% for training, 10% for validation, and 20% for 
testing purposes. The proposed model showed acceptable 
results with an accuracy of 93.40%, precision of 73.40%, 
F1 score of 81.60%, sensitivity of 92%, and specificity 
of 94.80%. The results demonstrated that the suggested 
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Figure 4. YOLOv5 Network Architecture
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model, with and without LASSO, outperformed other 
classifiers. Additionally, machine learning methods with 
under-sampling showed better performance compared to 
those using oversampling techniques. Statistical analysis 
confirmed the significant differences in accuracy between 
various classifiers. The findings suggest that the suggested 
model can contribute to the early detection and diagnosis 
of these cancers [23].

Tanabe et al. proposed an artificial intelligence (AI)-
based early detection method for ovarian cancer using 
glycopeptide expression patterns. They converted data on 
glycopeptide expression in the sera of patients with ovarian 
cancer and cancer-free patients into 2D barcode informa-
tion that was analysed by a DL model. They used the pre-
trained AlexNet model with 25 layers including 5 convolu-
tional and 3 fully connected layers as the base architecture.  
The last 3 layers were reinitialized and customized for bi-
nary ovarian cancer classification. The dataset was divided, 
with 60% for training and 40% for validation. During train-
ing, a batch size of 5, a maximum of 30 epochs, and an ini-
tial learning rate of 0.0001 were set. Using their DL model, 
they were able to achieve a 95% detection rate based on 
the evaluation of cancer antigen 125 (CA125) and human 
epididymis protein 4 (HE4) levels [24].

In another study, DL analysis of multiphoton micro
scopy images was used to classify healthy and malignant 
tissues in reproductive organs. The dataset utilized in this 
study comprised label-free second harmonic generation 
(SHG) and 2-photon excited fluorescence (TPEF) images 
obtained from murine ovarian and reproductive tract tis-
sues. To create binary classifiers, the authors employed 
4 pretrained convolutional neural networks (AlexNet, 
VGG-16, VGG-19, and GoogLeNet). The proposed DL 
approach achieved a sensitivity of 95% and specificity of 
97% in distinguishing healthy tissues from malignant tis-
sues, showcasing its potential as a non-invasive diagnostic 
tool for ovarian cancer [25].

Computer-aided diagnosis (CADx) can also be used 
to differentiate between different histologic subtypes of 
ovarian cancer (mucous, serous, endometroid, and clear 
cell carcinomas). In a study conducted by Wu Miao et al.  
an AlexNet [26] based deep convolutional neural net-
work (DCNN) with 5 convolutional layers and 2 fully 
connected layers was designed to categorize different 
subtypes of ovarian diseases based on their cytological 
appearance. Cytological images were used as network 
input. They prepared the model by 2 gathering input in-
formation independently; one was unique picture infor-
mation and the other was enlarged picture information 
including picture improvement and picture rotation. 
The testing results were acquired by the technique for 
10-overlap cross-approval, indicating that the exactness 
of older models improved 72.76-78.20% by utilizing en-
larged pictures as preparing information. The created 
conspire was valuable for grouping ovarian tumours 
from cytological pictures [27].

Kiliçarslan et al. proposed a hybrid method of utilizing 
feature ranking and selection (Relief-F) [28] and stacked 
autoencoder [29,30] approaches for measurement de-
crease and support vector machines (SVM) [31,32] and 
CNN for arrangement. The 3 microarray datasets of ovar-
ian, leukaemia, and central nervous system (CNS) were 
utilized. Among the strategies applied to the 3-microarray 
information, the best arrangement precision without mea-
surement decrease was seen with SVM as 96.14% for the 
ovarian dataset, 94.83% for the leukaemia dataset, and 
65% for the CNS dataset. The proposed crossbreed stra
tegy Relief-F + CNN technique beat different methodolo-
gies. It gave, respectively, 98.60%, 99.86%, and 80% order 
exactness for ovarian, leukaemia, and CNS microarray 
information, individually [33].

Medical imaging modalities for ovarian  
cancer diagnosis

Ovarian cancer is a challenging disease to diagnose, and 
medical imaging modalities play an undeniable role in its 
detection. Different imaging modalities are used in ovar-
ian cancer diagnosis, including MRI, ultrasound, CT, and 
PET. Each of these modalities has its strengths and limi-
tations in detecting ovarian cancer. For example, MRI is 
useful in identifying the size and location of ovarian tu-
mours, while CT is better at detecting metastases in the 
abdomen and pelvis. DL approaches have shown great po-
tential in improving the accuracy of ovarian cancer diag
nosis using medical imaging modalities. However, most 
studies on DL for ovarian cancer diagnosis have focused 
on CT and MRI modalities. 

Zhao et al. proposed a multi-modality ovarian tu-
mour ultrasound (MMOTU) dataset, consisting of 2D 
ultrasound images accompanied by contrast-enhanced 
ultrasonography (CEUS) images, with pixel-wise and 
global-wise annotations. The focus is to perform an un-
supervised cross-domain semantic segmentation. To 
overcome the domain shift issue, they introduced the 
dual-scheme domain-selected network (DS2Net), which 
utilizes feature alignment. The proposed DS2Net archi-
tecture is a symmetric encoder-decoder structure that 
employs source and target encoders to extract two-style 
features from the respective images. Additionally, they in-
troduced the Domain-Distinct Selected Module (DDSM) 
and the Domain-Universal Selected Module (DUSM) to 
obtain distinguished and ubiquitous features in each type. 
These features were fused and fed into source and target 
decoders to create final predictions. Adversarial losses 
aligned the feature distributions, while cross-entropy loss 
was used for segmentation. ReLU activations and SGD/
Adam optimizers were employed in this work. To assess 
segmentation accuracy, evaluation metrics such as in-
tersection-over-union (IoU) and mean IoU were used.  
The models were trained for 20,000 to 80,000 iterations 
with a batch size of 1 and an image size of 384 × 384 pixels. 
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Extensive tests and evaluations on the MMOTU dataset 
demonstrated that DS2Net significantly improves perfor-
mance for bidirectional cross-domain adaptation of 2D 
ultrasound and CEUS image segmentation [34].

In another study, Gao et al. aimed to develop a DCNN 
model based on an automated evaluation of ultrasound 
images capable of improving existing methods of ovarian 
cancer diagnosis. The DCNN model utilized a 121-layer 
DenseNet architecture pretrained on ImageNet. The out-
puts were adjusted to classify into malignant or benign 
classes. The network was trained end-to-end using stochas-
tic gradient descent with a momentum of 0.9, weight decay 
of 0.0001, and a batch size of 32. Data augmentation tech-
niques including resize, rotation, flip, crop, colour jitter, and 
normalization were employed. Focal loss was employed as 
the objective function. The resulting DCNN model attained 
an AUC of 0.91 for the internal dataset, 0.87 for the first 
external validation dataset, and 0.83 for the second external 
validation dataset for detecting ovarian cancer. The DCNN 
model outperformed radiologists in detecting ovarian can-
cer in the internal dataset and the first external validation 
dataset. DCNN-assisted diagnosis improved overall accu-
racy and sensitivity compared to assessment by radiologists 
alone. The diagnostic accuracy of DCNN-assisted evalua-
tion for 6 radiologists was significantly higher compared to 
non-assisted evaluation, reaching a total accuracy of 87.6%. 
Overall, DCNN-enabled ultrasound performed better than 
the average level of radiologists and matched the expertise 
of experienced sonologists. It also improved the accuracy 
of radiologists [14].

Zhang and Han proposed a machine learning algo-
rithm based on a CNN to detect ovarian cancer based on 
ultrasound images. They created a simple classification 
network based on US images to detect ovarian cancer. 
The network consisted of multiple CNNs followed by 
a U-Net architecture. The CNNs extracted features from 
the ultrasound images, which were then passed to the 
U-Net for segmentation and classification. The CNNs 
comprised convolutional layers for feature extraction, 
pooling layers for downsampling, and fully connected 
layers. The U-Net is a typical encoder-decoder with skip 
connections between the downsampling and upsampling 
layers. During the training process, a cross-entropy loss 
function was employed. Sigmoid activations were used 
in the convolutional layers, while softmax activation was 
employed in the output layer for classification. They test-
ed the performance of their model, named the Machine 
Learning-based Convolutional Neural Network-Logistic 
Regression (ML-CNN-LR) classifier which abstracts ob-
stetric tumour images, based on 2 factors. The precision 
ratio and recall rate reached 96.50% and 99.10%, respec-
tively [35].

Regarding ultrasounds, Zhang et al. used colour ultra-
sound images obtained from ovarian masses to predict the 
probability of early-stage ovarian cancer. Their DL model 
achieved an overall accuracy of 96% [9]. 

Shafi and Sharma developed an optimization algo-
rithm named artificial-based colony optimization (ABC-
CNN), which identifies the stage of cancer using MRI im-
ages. ABC is an optimization algorithm used for feature 
selection. Characteristics are extracted using kernel PCA 
algorithms [36] and then classified by the CNN after be-
ing trained and tested on MRI images obtained from pa-
tients with known cancer stages. Their dataset contained  
250 MRI images, with 50 images each for normal, stage 
1, 2, 3, and 4 cancers. The dataset. Images were pre-pro-
cessed by converting to greyscale and applying filters.  
The highest accuracy achieved was 98.90% [37].

The challenging problem of detecting ovarian tumours 
on pelvic CT scans using DL is addressed in this study. Wang 
et al. collected CT images of ovarian cancer patients and 
developed a new end-to-end network called YOLO-OCv2 
(ovarian cancer), based on YOLOv5 [38]. The model em-
ploys CSPDarknet53 as the encoder backbone and uses 
deformable convolutions to capture geometric deforma-
tions, a coordinate attention mechanism to enhance ob-
ject representation, and a decoupled prediction head. For 
the multitask model, a segmentation head including an 
ASPP module is added and connected after the PANet 
feature fusion layers. The networks were trained for  
100 epochs using SGD optimizer with initial learning rate 
of 0.01, momentum of 0.937, and weight decay of 0.0005 
on an NVIDIA GPU. The datasets contains 5100 pelvic 
CT images of 223 ovarian cancer patients, split into train-
ing and test sets. The final model achieved the F1 score 
of 89.85%, mean average precision (mAP) of 74.85% for 
classification, mean pixel accuracy (MPA) of 92.71%, and 
mean intersection over union (MIoU) of 89.63% for seg-
mentation. The model incorporates improvements over 
the previous YOLO-OC [39] model and includes a multi
task model for detection and segmentation tasks [40]. 

Another study focused on using a CNN algorithm 
for segmenting ovarian tumours in CT images. The CNN 
algorithm was applied to perform image segmentation. 
Their CNN model includes convolutional layers for fea-
ture extraction, max pooling for downsampling, and fully 
connected layers. During the training phase, CT scans 
of 100 patients with ovarian tumours were used, and the 
ground truth labels were obtained through manual seg-
mentation performed by doctors. The backpropagation 
algorithm was used for iterative training to minimize 
errors between predictions and true labels. Accuracy 
was evaluated through cross-validation on the dataset.  
The results showed consistent segmentation outcomes 
across 3 iterations, with no significant differences in the 
measured values. The accuracy of the CNN algorithm was 
97%, 95%, and 97%, the precision was 98%, 96%, and 98%, 
and the recall was 96%, 94%, and 96%, respectively, for the 
3 measurements, and the 3 F1 scores were 97%, 94%, and 
97%, respectively. The CNN algorithm demonstrated high 
accuracy, precision, recall, and F1 scores, surpassing other 
segmentation algorithms such as SE-Res Block U-shaped 
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CNN and density peak clustering. Overall, the CNN algo-
rithm proved to be effective in segmenting CT images and 
could provide reliable guidance for the clinical analysis 
and diagnosis of ovarian tumours, enhancing their evalu-
ation and facilitating more effective decision-making [41].

Boyanapalli and Shanthini introduced the ensemble 
deep optimized classifier-improved Aquila optimization 
(EDOC-IAO) classifier. The proposed EDOC-IAO clas-
sifier aimed to overcome the limitations commonly seen 
in DL methods for early detection of ovarian cancer in 
CT images. It utilizes a modified Wiener filter [42] for 
preprocessing, an optimized ensemble classifier (ResNet, 
VGG-16, and LeNet), and the Aquila optimization  
algorithm [43] to improve accuracy and reduce over
fitting. Fusion is achieved using average weighted fusion 
(AWF). The classifier achieved a high accuracy of 96.53% 
on the cancer genome atlas ovarian (TCGA-OV) dataset,  
outperforming other methods for ovarian cancer detec-
tion [44].

Yao and Zhang developed a model for predicting the 
malignant vs. benign status of lymph nodes in untreat-
ed ovarian cancer patients using PET images. The study 
included 224 patients with ovarian cancer who under-
went PET/CT imaging at a single centre. Image segmen-
tation was performed on the PET images to divide the 
tumour regions of interest into subregions. They utilized 
ResNet50 classic architecture without any modification. 
The model utilizes wavelet transform [45] for feature ex-
traction and image segmentation for parameter evalu-
ation. The model is intended to provide additional in-
formation to clinicians and assist in making decisions 
for first-visit patients. The information was extracted 
using both image segmentation and wavelet transform. 
The model was built using a residual neural network and 
SVM. Results showed that the model achieved high ac-
curacy, AUC, sensitivity, and specificity on the training 
set (accuracy: 88.54%, AUC: 0.94, sensitivity: 98.65%, 
specificity: 79.52%) and the test set (accuracy: 91.04%, 
AUC: 0.92, sensitivity: 81.25%, specificity: 100%). In 
conclusion, the study displays the effectiveness of wave-
let transform and the residual neural network in predict-
ing lymph node metastasis in ovarian cancer patients, 
providing valuable insights for patient staging and treat-
ment decisions [46].

Also, our study presented the use of 3D CNN for the 
classification and staging of OC patients using FDG PET/
CT examinations. A total of 1224 image sets from OC 
patients who underwent whole-body FDG PET/CT were 
investigated and divided into independent training (75%), 
validation (10%), and testing (15%) subsets. The proposed 
models, OCDAc-Net and OCDAs-Net, achieved high 
overall accuracies of 92% and 94% for diagnostic classifica-
tion and staging, respectively. We introduced the “nResid-
ual” block, which is a variation of the Residual block used 
in this study. It contains an additional layer on its skip con-
nection, providing an extended structure for feature extra

ction and learning. Both the Residual and nResidual blocks 
contribute to the overall architecture of the OCDA-Net 
and OCDAs-Net models. The models show potential as 
tools for recurrence/post-therapy surveillance in ovarian 
cancer [47].

Deep learning for ovarian tumour differentiation

Deep learning has been increasingly used in medical  
imaging for tumour differentiation, including for ovarian 
tumours. DL algorithms have shown promising results 
in accurately differentiating between non-malignant and 
malignant ovarian tumours using various imaging mo-
dalities.

Several studies have evaluated the performance of DL 
approaches for tumour differentiation in ovarian cancer. 
For instance, one study developed a DL algorithm that dif-
ferentiates non-malignant from malignant ovarian lesions 
by applying a CNN on routine MRI. The study found that 
the DL model had higher accuracy and specificity than 
radiologists in assessing the nature of ovarian lesions, with 
test accuracy of 87%, specificity of 92%, and sensitivity 
of 75% [48]. Another study aimed to differentiate bor-
derline and malignant ovarian tumours based on routine 
MRI imaging using a DL model. A total of 201 patients 
with pathologically confirmed borderline and malignant 
ovarian tumours were enrolled from a hospital. Both  
T1- and T2-weighted MR images were reviewed. A U-Net++ 
model was trained to automatically segment ovarian le-
sion regions on MR images, and an SE-ResNet-34 model 
was used for classification. The segmentation-classifica-
tion framework was designed where the segmented re-
gions were input to a classification model based on CNN 
to categorize lesions. The study used a DL framework 
model on a broad dataset of tumour volumes and found 
that the model was able to identify and categorize ovarian 
lesions with high accuracy. The DL model computerized 
network could differentiate borderline from malignant le-
sions with a significantly higher AUC of 0.87, accuracy of 
83.70%, sensitivity of 70%, and specificity of 87.50% based 
on T2-weighted images [49].

Deep learning is gaining popularity in healthcare, 
particularly in the detection of ovarian cancer. A hybrid 
DL approach using YOLOv5 and attention U-Net models 
has been proposed to accurately detect and segment 
cancerous ovarian tumours in CT images. YOLO v5 is 
used for object detection, while Attention U-Net is em-
ployed for the segmentation task. The datasets used are 
from RSNA and TCIA, comprising 300 CT images that 
have been annotated by a radiologist. These images are 
resized to 256 × 256, denoised using wavelet transforms, 
and augmented to create a dataset of 1800 images for 
training phase. The models are trained end-to-end on 
this dataset, with hyperparameters such as a learning 
rate of 0.1 optimized through trial and error. The loss 
function used is mean squared error for YOLO v5 and 
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binary cross entropy for Attention U-Net. Clinical data 
has been used to verify the model’s performance, which 
has shown high accuracy and dice scores. The YOLOv5 
model accurately locates ovarian tumours with 98% ac-
curacy, while the attention U-Net model accurately seg-
ments the detected tumours with 99.20% accuracy. This 
computer-aided diagnosis system can assist radiologists in 
diagnosing ovarian cancer [50].

Christiansen et al. aimed to build a deep neural net-
work and evaluate its capability in distinguishing benign 
and malignant ovarian lesions using computerized ul-
trasound image analysis and comparing it to (experts’) 
subjective assessment [51]. A dataset of ultrasound im-
ages acquired from women with known ovarian tumours 
was categorized based on International Ovarian Tumour 
Analysis (IOTA) [52,53] criteria by expert ultrasound 
examiners. Transfer learning was applied to 3 pre-trained 
DNNs, and an ensemble model was created to assess the 
likelihood of malignancy. Two models were developed: 
Ovry-Dx1 (benign or malignant) and Ovry-Dx2 (benign, 
indecisive, or malignant). Diagnostic performance was 
compared to SA in the test set. Ovry-Dx1 showed similar 
specificity to SA (86.70% vs. 88%) at a sensitivity of 96%. 
Ovry-Dx2 achieved a sensitivity of 97.10% and specific-
ity of 93.70%, designating 12.70% of lesions as indecisive. 
Combining Ovry-Dx2 with SA in indecisive cases did not 
significantly alter overall sensitivity (96%) and specificity 
(89.30%) compared to using SA in all cases. Ultrasound 
image analysis using DNNs demonstrated diagnostic ac-
curacy comparable to human expert examiners in predict-
ing ovarian malignancy [54].

This study aimed to develop a CNN with a convo-
lutional autoencoder (CNN-CAE) model for the accu-
rate classification of ovarian tumours using ultrasound 
images. A standardized dataset of 1613 ultrasound 
images from 1154 patients are divided into 5 folds for 
cross-validation. Ultrasound images were processed 
and augmented. A CNN with convolutional, max pool-
ing and dense layers, adopting a U-Net architecture with 
skip connections, was trained to classify images into  
5 classes: normal, cystadenoma, mature cystic teratoma, 
endometrioma, and malignant. The CNN-CAE was op-
timized using techniques like stochastic gradient descent 
to minimize the cross-entropy loss between predictions 
and true labels. The CNN-CAE removes unnecessary 
information and classifies ovarian masses/tumours into  
5 classes. Evaluation metrics include accuracy, sensitivity, 
specificity, and AUC. Results were verified using gradi-
ent‑weighted class activation mapping (Grad-CAM) [55]. 
The CNN-CAE achieved high accuracy, sensitivity, and 
AUC in normal versus ovarian tumour classification 
(97.20%, 97.20%, and 0.99, respectively) and distinguish-
ing malignant tumours (90.12%, 86.67%, and 0.94, re-
spectively). The CNN-CAE model serves as a robust and 
feasible diagnostic tool for accurately classifying ovarian 
tumours by removing unnecessary data on ultrasound 

images. It holds valuable potential for clinical applica-
tions [15].

Srilatha et al. proposed a CNN-based segmentation 
model with the combination of GLCM [56] contourlet 
transformation and CNN feature extraction method.  
The proposed method contains 4 steps including prepro-
cessing, segmentation, feature extraction, and lastly opti-
mization or classification. These steps were performed on 
ovarian ultrasound images. The CNN architecture con-
sisted of multiple convolutional layers with kernel sizes 
ranging from 3 × 3 to 7 × 7, and max pooling layers with 
pool sizes of 2 × 2. The dataset consisted of 150 ovarian 
ultrasound images, of which 80 were benign and 70 were 
malignant. The images were divided into training and test 
sets. The model achieved accuracy, precision, sensitivity, 
specificity, and F-score values of 98.11%, 98.89%, 98.75%, 
97.06%, and 97.08%, respectively [57].

Another retrospective study by Saida et al. compared 
the diagnostic performance of DL with radiologists’ in-
terpretations for differentiating ovarian carcinomas from 
benign lesions using MRI. T2-weighted imaging (T2WI), 
diffusion-weighted imaging (DWI), apparent diffusion co-
efficient (ADC) map, and fat-saturated contrast-enhanced 
T1-weighted imaging (CE-T1WI) were analysed. A CNN 
was trained on images from patients diagnosed with ma-
lignant and non-malignant lesions and evaluated on sepa-
rate test sets. Images from 194 patients with pathologically 
confirmed ovarian carcinomas or borderline tumours and 
271 patients with non-malignant lesions who underwent 
MRI were included. Only slices containing the tumour or 
normal ovaries were extracted and resized to 240 × 240 
pixels for the study. The CNN showed sensitivity (77-85%), 
specificity (77-92%), accuracy (81-87%), and AUC (0.83-
0.89) for each sequence, achieving performance equiva-
lent to the radiologists. The ADC map sequence demon-
strated the highest diagnostic performance (specificity 
= 85%, sensitivity = 77%, accuracy = 81%, AUC = 0.89). 
Deep learning models, particularly when analysing the 
ADC map, provided a diagnostic performance compa-
rable to experienced radiologists for ovarian carcinoma 
diagnosis on MRI. These findings highlight the potential 
of DL in improving the accuracy of ovarian tumour dif-
ferentiation [2].

Another study intended to assess the capability of 
a DCNN in distinguishing between benign, borderline, 
and malignant serous ovarian tumours (SOTs) using 
ultrasound images. Five different DCNN architectures 
were trained and tested to perform 2- and 3-class clas-
sification on the given images. The datasets consisted of  
279 pathology-confirmed SOT ultrasound images from 
265 patients. The images were randomly assigned to the 
training (70%) or validation (30%) sets. Data augmenta-
tion techniques such as random cropping, flipping, and 
resizing were applied to avoid overfitting. The DCNNs 
were trained for 500 epochs using the Adam optimizer 
with an initial learning rate of 0.0003 and batch size of 32. 
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Dropout and L2 regularization were used to prevent over-
fitting. Transfer learning by fine-tuning the pre-trained 
ImageNet weights was also explored and compared to 
training from scratch. Model performance was evalu-
ated by its accuracy, sensitivity, specificity, and AUC.  
The ResNet-34 model attained the best general perfor-
mance, with an AUC of 0.96 for distinguishing benign 
from non-benign tumours and an AUC of 0.91 for pre-
dicting malignancy and borderline tumours. The model 
demonstrated an overall accuracy of 75% for categorizing 
the 3 SOT categories and a sensitivity of 89% for malig-
nant tumours, outperforming senior sonologists. DCNN 
analysis of US images shows promise as a complementary 
diagnostic tool for effectively differentiating between be-
nign, borderline, and malignant SOTs, providing valuable 
clinical information [58].

Deep learning and radiomics for ovarian  
cancer diagnosis

Deep learning and radiomics are 2 emerging fields in 
medical imaging that have shown great potential in im-
proving the diagnostic accuracy of ovarian cancer. Radio
mics refers to the extraction of quantitative characteristics 
from medical images, which can be used to characterize 
the tumour phenotype and predict patient outcomes. On 
the other hand, DL is a subset of machine learning that 
uses artificial neural networks to learn complex patterns 
in data. By integrating radiomics and DL, researchers have 
been able to develop models that can accurately diagnose 
ovarian cancer and predict patient outcomes.

One study investigated the performance of T2-weighted 
MRI-based DL and radiomics methods for assessing 
peritoneal metastases in patients suffering from epithe-
lial ovarian cancer (EOC). The study used ResNet-50 as 
the architecture of its DL algorithm, and the largest or-
thogonal slices of the tumour area, radiomics features, 
and clinical characteristics were used to construct the DL,  
radiomics, and clinical models, respectively. The ensemble 
model was then created by combining the 3 mentioned 
models using decision fusion. The DL model inputs were 
resized to 224 × 224 voxels, and data augmentation tech-
niques such as brightness/contrast variation, flipping, and 
rotation were applied to augment the data. The training 
process utilized the Adam optimizer with a learning rate 
of 5e-5, a batch size of 64, and a weight decay of 0.01 for 
50 epochs. Additionally, one-cycle learning rate sched-
uling and early stopping techniques were employed.  
The ensemble model had the best AUCs (0.84, 0.85, 0.87) 
among all validation sets, outperforming the DL model, 
radiomics model, and clinical model alone [59].

Ovarian tumours, especially malignant ones, have an 
overall poor prognosis, making early diagnosis crucial 
for treatment and patient prognosis. Another study used 
radiomics and DL features extracted from CT images to 
establish a classification model for ovarian tumours. This 

study used a 4-step feature selection algorithm to find 
the optimal combination of features and then developed 
a classification model by combining those selected features 
and SVM. For DL feature extraction, the study designed 
a binary classification CNN model. The network archi-
tecture consisted of modified encoders of U-net added 
with residual connections, SE-blocks, and fully connected 
layers. The classification model, which combined radio
mics features with DL features, demonstrated better clas-
sification performance with respect to the radiomics fea-
tures model alone in both the training and test cohort – in 
the training cohort (AUC 0.92 vs. 0.88, accuracy 89.70% 
vs. 79.93%), and in the test cohort (AUC 0.90 vs. 0.84, accu
racy 82.96% vs. 72.59%) [60].

Jin et al. proposed segmentation algorithms based on 
U-Net models and evaluated their impact on radiomics 
features from ultrasound images for ovarian cancer diag
nosis. A total of 469 ultrasound images from 127 patients 
were collected and randomly divided into training (353 
images), validation (23 images), and test (93 images) 
sets. U-net [61], U-Net++ [62], U-Net with Resnet [63], 
and CE-Net [64] models were used for automatic seg-
mentation. Radiomic features were extracted using 
PyRadiomics. Accuracy was assessed using the Jaccard 
similarity coefficient (JSC), dice similarity coefficient 
(DSC), and average surface distance (ASD), while reliabil-
ity was evaluated using Pearson correlation and intraclass 
correlation coefficients (ICC). CE-Net and U-net with 
Resnet outperformed U-Net and U-Net++ in accuracy, 
achieving DSC, JSC, and ASD of 0.87, 0.79, and 8.54, and 
0.86, 0.78, and 10.00, respectively. CE-Net showed the best 
radiomics reliability with high Pearson correlation and 
ICC values. U-Net-based automatic segmentation accu-
rately delineated target volumes on US images for ovarian 
cancer. Radiomics features from automatic segmentation 
demonstrated good reproducibility and reliability, sug-
gesting their potential for improved ovarian cancer diag-
nosis [65].

In a study by Jan et al., an artificial intelligence model 
combining radiomics and DL criteria obtained from CT 
images was developed to differentiate between benign 
and malignant ovarian masses. Various arrangements of 
feature sets were used to build 5 models, and machine-
learning classifiers were used for tumour classification. 
A total of 185 ovarian tumours from 149 patients were 
included and divided into training and testing sets. 
Radiomics features including histogram, grey-level co-
occurrence matrix (GLCM), wavelet, and Laplacian of 
Gaussian (LoG) features were extracted. In addition, a 3D 
U-Net convolutional neural network (CNN) was used as 
a feature extractor from the tumour images. The U-Net 
consisted of an encoder to extract 224 DL features rep-
resenting the tumour, and a decoder to reconstruct the 
original image. The U-Net was trained using an Adam op-
timizer with a half mean squared error loss function over 
25 epochs with a batch size of 1. The best performance 
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was recorded from an ensemble model that combined 
radiomics, DL, and clinical features, achieving an accu-
racy of 82%, specificity of 89%, and sensitivity of 68%. 
The model outperformed junior radiologists in terms of 
accuracy and specificity and showed comparable sensitiv-
ity. The model also improved the performance of junior 
radiologists when used as an assistive tool, approaching 
the performance of senior radiologists. The CT-based AI 
model has the potential to improve ovarian tumour as-
sessment and treatment [66].

Finally, Avesani et al. used multicentric datasets of 
high-grade serous carcinomas to introduce a model ca-
pable of predicting early relapses and breast cancer gene 
(BRCA) [67] mutation in affected patients. The study 
utilized pre-operative contrast-enhanced CT scans of the 
abdomen and pelvis collected from 4 medical centres, to-
talling 218 patients with high-grade serous ovarian can-
cer. Manual segmentations of the primary tumour (gross 
tumour volume) were performed on each CT scan. They 
developed radiomic models using only handcrafted ra-
diomic features as well as clinical-radiomic models com-
bining radiomic features and relevant clinical variables. 
Different machine learning algorithms were employed, in-
cluding penalized logistic regression, random forest, sup-
port vector machine (SVM), and XGBoost. Hyperparam-
eter tuning was performed using 5-fold cross-validation. 
They also employed a 2D convolutional neural network 
(CNN) for tumour classification. The CNN was trained 
for 200 epochs with early stopping at 50 epochs of no im-
provement. Adam optimization and binary cross-entropy 
loss were used. The proposed model was able to achieve 
a test AUC of 0.48 for BRCA mutation and 0.50 for relapse 
prediction. The proposed model predicts handcrafted and 
deep radiomic features and used the CNN model and give 
better mutation prediction accuracy [68]. 

Challenges and opportunities of deep learning  
in cancer diagnosis

Deep learning has the potential to improve the preci-
sion and efficacy of ovarian cancer diagnosis, but there 
are also challenges and limitations to consider. One of 
the challenges of DL in ovarian cancer diagnosis is the 
need for large amounts of high-quality data to train the 
models effectively. The quality of the data is essential to 
ensure that the models can generalize to new cases ac-
curately [69]. Utilizing a small dataset during the train-
ing phase can result in overfitting [6]. Additionally, DL 
models may be affected by batch effects when applied to 
small datasets. In selected studies, there are factors that 
cause biases that should be addressed. Most of the studies 
were performed using a limited dataset or single centres 
that cater to a specific patient demography. Additionally, 
the data were assessed by a single expert radiologist. To 
overcome these biases, the authors recommend obtaining 
data from multiple institutions in the future to introduce 

more diversity [17,19]. Furthermore, there could be po-
tential biases in the sample selection process, particularly 
in the selection of cancerous and non-cancerous samples. 
The authors suggest that revealing clinical details to the 
person performing tests can ensure unbiased validation 
in the future [17]. To ensure a comprehensive evalua-
tion of their reliability, it is essential to test the system on 
larger datasets that encompass various centres, staining 
techniques, and participant groups [70]. Another chal-
lenge is the interpretability of the models. DL models are 
often considered “black boxes” because it is challenging to 
understand how they arrive at their conclusions. This can 
make it difficult to identify and address errors or biases in 
the models [71]. Another noteworthy point to mention is 
that in some DL models, the direct correlation between 
the features extracted by DL and the actual progression of 
cancer has not been addressed [72]. Most DL approaches 
have not been utilized for real-time applications in ovar-
ian cancer diagnosis. However, in the future, these ap-
proaches have the potential to be employed for real-time 
diagnostic purposes in ovarian cancer [73]. 

Despite the challenges, there are several opportunities 
for further research and development in DL-based diag-
nostic approaches for ovarian cancer. One opportunity is 
the use of DL to analyse histopathological images. A re-
cent study proposed a novel CNN algorithm for predict-
ing and diagnosing ovarian malignancies with remarkable 
accuracy [8]. Another opportunity is the use of DL to 
analyse other types of data, such as genomic data. DL has 
shown great potential in analysing genomic data for can-
cer diagnosis and prognosis [70]. Additionally, DL can be 
used to develop personalized diagnostic approaches that 
take into account individual patient characteristics [69].

BenTaieb et al. developed a pathological diagnosis 
model for ovarian cancer using a histopathological image 
dataset. Accurate sub-classification of ovarian cancer is 
crucial for treatment and prognosis. However, patholo-
gists often encounter an inconsistency rate of 13% in clas-
sifying ovarian cancer cell types [74]. The final model, 
based on convolution operations and DL image process-
ing, addresses this issue. It considers differentiated tissue 
areas as potential variables, disregards nonessential tissue 
parts, and combines multiple magnified information for 
accurate diagnosis. The model achieved an average multi-
class classification accuracy of 90%. This approach effec-
tively handles intraclass variation in pathological image 
classification [75].

Despite advancements in surgery and chemotherapy 
for ovarian cancer, recurrence and drug resistance re-
main major challenges. Identifying new predictive meth-
ods for effective treatment is urgently needed. In another 
study performed by Wang et al., weakly supervised DL 
approaches were implemented to assess the therapeutic 
effect of bevacizumab in patients suffering from ovar-
ian cancer based on histopathologic whole slide images.  
The model achieved high accuracy, 88.20%; precision, 
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92.10%; recall, 91.20%; F-measure, 91.70%, outperform-
ing state-of-the-art DL approaches. An independent test-
ing set also yielded promising results. The proposed meth-
od can guide treatment decisions by identifying patients 
who may not respond to further treatments and those 
with a positive therapeutic response. Statistical analysis 
using the Cox Proportional Hazards Model [76] showed 
a significantly higher risk of cancer recurrence for patients 
predicted to be ineffective compared to those predicted to 
be effective. Deep learning offers opportunities for pre-
dicting therapeutic responses in ovarian cancer patients. 
The proposed method shows promise in assisting treat-
ment decisions and identifying patients at high risk of 
cancer recurrence [6].

In another study, Sundari and Brintha designed image 
enhancement with a deep learning-based ovarian tumour 
diagnosis (IEDL-OVD) method, which was due to this im-
proved image quality, then improve optimization through 
the black widow optimization algorithm (BWOA) [77], and 
used some feature extraction and classification techniques 
to maximize the precision and recall rate. The IEDL-OVD 
model has obtained an increased precision and recall of 
73.50% and 61.20%, respectively [73].

Based on a study conducted by Wang et al., artificial 
intelligence can be used to detect and identify multiple 
prognostic and therapeutic criteria in patients with EOC 
based on their preoperative medical imaging. In their 
study, they proposed prognostic biomarkers based on 
preoperative CT images that can predict the 3-year re-
currence probability with decent accuracy (AUC = 0.83, 
0.77, and 0.82, in the primary and 2 validation models, 
respectively). However, larger prospective studies and ret-
rospective validating trials are needed before these can be 
used in routine clinical practice [78].

In this study, Wang et al. aimed to develop an auto-
mated precision oncology framework to find and select 
EOC and peritoneal serous papillary carcinoma (PSPC) 
patients who would benefit from bevacizumab treatment. 
They collected immunohistochemical tissue samples 
from EOC and PSPC patients treated with bevacizumab 
and developed DL models for potential biomarkers. The 
model combined with inflammasome absent in melanoma 
(AIM2) achieved high accuracy, recall, F-measure, and 
AUC of 92%, 97%, 93%, and 0.97 in the first experiment, 
respectively. In the second experiment using cross-valida-
tion, the model showed high accuracy, precision, recall, 
F-measure, and AUC of 86%, 90%, 85%, 87%, and 0.91, 
respectively. Kaplan-Meier [79] analysis and Cox pro-
portional hazards model confirmed the model’s ability to 
distinguish patients with positive therapeutic effects from 
those with disease progression after treatment [80].

Liu et al. developed a deep learning-based signature 
using preoperative MRI to predict recurrence risk in 
patients suffering from advanced grade IV serous carci-
noma. A hybrid model combining clinical and DL fea-
tures showed higher consistency and AUC compared to 

the DL and clinical feature models for 2 validation sets 
(AUC = 0.98, 0.96 vs. 0.70, 0.67, and 0.50, 0.50). The hy-
brid model accurately predicted the recurrence risk and 
3-year recurrence likelihood, and Kaplan-Meier analysis 
confirmed its ability to distinguish high and low recur-
rence risk groups. Based on their study, DL using multi-
sequence MRI serves as a low-cost and non-invasive prog-
nostic biomarker for the prediction of high-grade serous 
ovarian carcinoma (HGSOC) recurrence. The proposed 
hybrid model eliminates the need for follow-up biomarker 
assessment by utilizing MRI data [72].

Haematoxylin and eosin (H & E) staining is routinely 
used to prepare samples for histopathologic assessment. 
Due to the time-consuming nature of manual annotation 
for cancer segmentation, DL can be used to automate 
this labour-extensive process. In that regard. Ho et al. 
proposed an interactive DL method [81], using a pre-
trained segmentation model from another type of can-
cer (breast cancer) [82], to reduce the burden of manual 
annotation. Images were first given to the pre-trained 
model, and mislabelled regions were interactively cor-
rected for training and finetuning the model. The final 
model achieved an intersection-over-union (IOU) of 
0.74, recall of 86%, and precision of 84%. The proposed 
approach was able to achieve accurate ovarian cancer 
segmentation with minimal manual annotation time. 
High-grade serous ovarian cancer patches were used to 
train the model. In conclusion, deep interactive learning 
offers a solution to reduce manual annotation time in 
cancer diagnosis, enhancing efficiency and the potential 
for classification of cancer subtypes [83].

Discussion 
The use of DL methods, particularly CNNs has demon-
strated significant potential in improving the diagnostic 
accuracy of ovarian cancer. Studies have reported high 
accuracy, sensitivity, and specificity of these techniques 
in distinguishing between benign and malignant ovarian 
tumours [2,9,17]. In fact, DL models trained on various 
medical imaging modalities have outperformed traditional 
methods and even surpassed the performance of expert ra-
diologists in detecting ovarian cancer [2,84]. The success-
ful implementation of DL algorithms on histopathological 
images and clinical imaging modalities, such as ultrasound, 
CT, MRI, and PET images, has shown promising results 
in identifying cancerous cells and tumours, predicting the 
stage of the disease, and performing tumour segmentation. 
These advancements in DL have the potential to significant-
ly impact early detection and diagnosis of ovarian cancer, 
leading to improved patient outcomes and more effective 
decision-making in clinical practice. 

Despite the promising results, there are still several 
areas in the field of DL for ovarian cancer diagnosis that 
require further research and exploration. A comparative 
analysis with traditional diagnostic methods or other 
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prevalent DL models within the field remains absent. 
Such a comparative assessment would provide a com-
prehensive understanding of the efficacy and limitations 
of DL models in contrast to conventional approaches. 
It would also offer insights into the relative advantages 
and challenges posed by DL techniques, enabling a more 
nuanced interpretation of their potential clinical impact 
and feasibility in real-world scenarios. 

Factors such as interpretability, data heterogeneity, 
and model generalizability across diverse populations and 
healthcare settings warrant detailed examination. Further-
more, elucidating the challenges in integrating clinical data, 
genetic information, and multi-modal imaging for more ro-
bust predictive models is essential. Addressing these limita-
tions can guide researchers toward overcoming barriers and 
refining DL methodologies for improved clinical applica-
bility. Acknowledging these limitations can contribute to 
a more nuanced understanding of the scope and applicabil-
ity of DL models in real-world clinical settings. 

It is recommended that larger-scale studies be con-
ducted using diverse and representative datasets to vali-
date the performance of DL models across different popu-
lations [10]. Additionally, exploring the potential of DL 
in other imaging modalities, such as PET and molecu-
lar imaging, could lead to further improvements in the 
detection and diagnosis of ovarian cancer [3]. Combin-
ing multiple modalities or hybrid models should also be 
investigated to leverage the complementary strengths of 
different imaging techniques in diagnosing ovarian can-
cer effectively. Standardized protocols and benchmarks 
should be developed to assess the performance of DL 
models in ovarian cancer diagnosis, ensuring consistent 
and reliable results [10]. The generalizability and transfer-
ability of DL models across different healthcare settings 
and institutions should also be assessed. Integrating clini-
cal data, genetic information, and other relevant factors 
into DL models could enhance their predictive capabili-
ties and personalized medicine approaches. Furthermore, 

addressing the interpretability and explainability of DL 
models is crucial to gain trust and acceptance from clini-
cians and patients.

Conclusions
The use of DL methods, particularly CNNs, has shown 
great promise in enhancing the diagnostic accuracy of 
ovarian cancer. These techniques have demonstrated high 
accuracy, sensitivity, and specificity in distinguishing 
between benign and malignant ovarian tumours, sur-
passing the performance of traditional methods and ex-
pert radiologists. By applying DL algorithms to various 
medical imaging modalities, such as ultrasound, CT, 
MRI, and PET images, significant progress has been 
made in identifying cancerous cells, predicting disease 
stages, and performing tumour segmentation. Neverthe-
less, there are still important research directions to pur-
sue in the field of DL for ovarian cancer diagnosis. Cost-
effectiveness analyses should be conducted to evaluate 
the economic impact of implementing DL techniques 
in routine clinical practice for ovarian cancer diagnosis 
[50,69]. By addressing these research areas, further ad-
vancements can be made in leveraging DL techniques 
to enhance the accuracy, efficiency, and reliability of 
ovarian cancer diagnosis. This will eventually lead to 
better patient prognosis and more informed healthcare 
decision-making.
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