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A b s t r a c t

Sirtuins (SIRT1 to -7) are unique histone deacetylases (HDACs) whose activity depends on NAD+, thus making them 
capable of sensing the cellular metabolic status. Sirtuins orchestrate the stress response and damage repair, and 
are able to modulate the course of ageing and neurodegenerative diseases. Despite their classification as HDACs, 
sirtuins deacetylate a vast number of targets in many cellular compartments, and some display additional enzymatic 
activities including mono(ADP-ribosyl)ation. SIRTs interact with multiple signalling proteins, transcription factors 
and enzymes including p53, FOXOs (forkhead box subgroup O), PPARs (peroxisome proliferator-activated receptors), 
NF-κB, and DNA-PK (DNA-dependent protein kinase). Sirtuins also interact extensively with the family of poly(ADP- 
ribose) polymerases (PARPs), a crucial and widespread class of NAD+-consuming post-translational protein modifiers. 
PARPs share a significant number of roles with sirtuins: these enzymes modulate DNA repair, gene expression, and 
the activities of signalling pathways. 
We focus on the expanding cross-talk between sirtuins, transcription factors and PARPs, which is a highly promising 
therapeutic target in a number of age-related neurodegenerative disorders, including the most devastating: Alzhei-
mer’s and Parkinson’s diseases.
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Introduction 

Sirtuins belong to the broad category of his-
tone deacetylases (HDACs), enzymes that modu-
late signalling proteins, enzymes and transcription 
factors (TFs) via removal of lysine acetylation. Acy-
lations (including Lys acetylation) are an increasing-
ly recognized, evolutionarily conserved category of 
post-translational protein modifications; the action 

of HDACs thus allows highly controlled spatiotem-
poral regulation of protein activity, interactions and 
localization. Crucial aspects of cellular homoeostasis 
depend on acylations including the prevention and 
mitigation of stress and the removal of the resulting 
damage. There are over 45 HDAC enzymes identified 
in eukaryotes, divided into 4 groups (classes) accord-
ing to their homology to yeast HDACs [38]. Class I 
enzymes (HDAC1 to -3 and HDAC8) show the stron-
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gest similarity to yeast Rpd3 (reduced potassium 
dependency 3), while class II enzymes are related to 
yeast HDA1 and fall into two sub-classes according to 
the same structural criterion: IIa (HDAC4 to -7 and -9)  
and IIb (HDAC6, -10). The seven known mammalian 
class III enzymes are termed sirtuins (SIRT1 to -7;  
the name stems from a  yeast homologue dubbed 
silent information regulator 2) (Table I). Sirtuins are 
the only HDACs to use NAD+ for the reaction; these 
enzymes localize to various cellular compartments 
(Table I) [132,207,234] including cytosol (SIRT1, -2), 
mitochondria (SIRT3-5), and nucleus (SIRT1, -6 and -7, 

plus cell cycle-dependent transient re-location of 
SIRT2). Class IV includes only one enzyme, HDAC11. 

The unique dependence on NAD+ availability 
makes sirtuins excellent sensors of metabolic con-
dition of the cell. Sirtuins transfer the acetyl group 
removed from a protein to the ADP-ribose moiety of 
NAD+; this causes the NAD+ molecule to break down 
to nicotinamide and O-acetyl-ADP-ribose (OAADPR), 
which are SIRT auto-inhibitory compounds. More-
over, OAADPR undergoes rather extensive metabo-
lism and may serve as a signalling molecule capable 
of modulating gene silencing, ion channel opening, 

Table I. Mammalian sirtuin sub-cellular localisation and activities. According to [20,234], modified

 Predicted MW Primary subcell. 
localization 

Activity Key targets 

SIRT1 80.41;  
76.0 kDa1

233 499 747

Nucleus Deacetylase p53, FOXO1, 3 & 4, PARP-1; 
APE1; DNA-PK; RARβ, 

PGC1α, PPARγ, NFκB, IGF1, 
histone H1, H3, H4 

SIRT2 43.2;  
39.5 kDa2 

65 340 389

Cytoplasm Deacetylase Histone H4, α-tubulin 

SIRT3 28.8 kDa; 36.6 kDa3 ; 43.6 kDa14 

126 382 399

Mitochondria Deacetylase, 
ADP-ribosyltransferase 

Acetyl-coA 
synthetase, glutamate 
dehydrogenase, Ku70, 

isocitrate dehydrogenase 

SIRT4 35kDa15 to 47.3 kDa4 

45 314

Mitochondria ADP-ribosyltransferase Glutamate 
dehydrogenase 

SIRT5 33.8 kDa5 

41 309 310

Mitochondria, 
cytosol11 

Deacetylase, 
demalonylase, 
desuccinylase10 

Cytochrome c; carbamoyl 
phosphate synthetase 1; 

urate oxidase 

SIRT6 39.1 kDa6 

35 247     355

Nucleus12, 
synaptosomes13 

Deacetylase, 
ADP-ribosyltransferase 

Histone H3; PARP-1; 
DNA-PK 

SIRT7 44.9 kDa7 

35 331 400

Nucleus Deacetylase9 RNA Pol I complex; 
RNA Pol II complex; 

histone H39; chromatin 
remodelling proteins8 

1Mouse; two alternative splicing variants predicted in silico; Measured MW ~120 kDa [230]. 
2Human; two alternative splicing variants predicted [231]. 
3Mouse; two alternative splicing variants predicted [232]. 
4Mouse [233]. 
5Human [234]; http://www.uniprot.org/uniprot/Q9NXA8#Q9NXA8
6Human [235]. 
7Human [236]. 
8[237]. 
9[238]. 
10[6]. 
11[239]. 
12[7]. 
13[240].
14[241]. 
15[242].
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and the function of macro-domain histone proteins 
[197]. Nicotinamide in turn is also used to re-syn-
thesize NAD+, and this aspect has additional impor-
tance for SIRT activity. However, despite the signif-
icant sequence homology between sirtuins, not all 
of them are deacetylases, and some display other 
enzymatic activities (Table I). SIRT5 has been found 
to remove succinyl and malonyl groups from lysines 
in proteins [47]. SIRT3 and SIRT6 can ADP-ribosylate 
proteins [113,182] in addition to their deacetyl-
ase function [53,90]. Moreover, SIRT4 displays pro-
tein mono(ADP-ribosyl)transferase activity and no 
detectable deacetylation capability [5,71]. 

Despite the somewhat misleading ‘histone de- 
 acetylase’ term, sirtuins also (un)modify a vast spec-
trum of non-histone proteins. The targets of SIRT1, 
which is by far the best characterized sirtuin, include 
histones, a  broad range of stress signalling proteins, 
and transcription factors (TFs) (Table I). SIRT1 is mainly 
involved in the regulation of the stress response and 
macromolecular repair (through its influence on p53 
[64], heat shock factor HSF1 [114], forkhead box sub-
group O – FOXO proteins [25], peroxisome prolifera-
tor-activated receptor – PPAR family [159], Ku70 [85]), 
anti-inflammatory response (via NF-κB [136,230]), 
exerts a pro-survival influence (through IIS – insulin/
IGF-I signalling [210]), and modulates the generation 
of mitochondria [66]. Long-term experimental SIRT1 
activation in vivo is able to retard the onset of age- 
related metabolic stress and mortality [136]. Its roles 
in neuronal plasticity/learning and memory phenom-
ena have also been demonstrated [59]. 

The extensive links of sirtuins with stress sig-
nalling, cellular metabolism rates and energy status 
parallel their cross-talk with the family of poly(ADP- 
ribose) polymerases (PARPs). PARP-1, the oldest 
known and best described member of the family, is 
a 113 kDa protein (in humans) involved in the reg-
ulation of chromatin structure, DNA repair, gene 
expression, and cell death. Its moderate activation is 
necessary for cellular survival under stress [60]. How-
ever, PARP-1 overactivation by glutamate-evoked NO 
(nitric oxide) production mediates neuronal death 
in a  number of pathological conditions [2,43,188]. 
The complexity of the enzyme’s engagement in the 
modulation of the cell survival/death equilibrium 
is additionally reflected by the large changes of its 
stress response capacity with age [189]. Moreover, 
the activity of PARPs can be influenced by glutama-
tergic, cholinergic and possibly other neurotransmis-

sion systems [3,63,142], although the significance of 
this dependency is not fully understood. 

An array of interactions has been identified 
between PARPs and sirtuins, adding to the multiple 
already described levels of sirtuin regulation (Fig. 1),  
with increasingly recognized significance for the 
stress response, metabolic regulation and survival/
death decisions. 

The multiple levels of sirtuin regulation 

SIRT1 to -7 are expressed in the brain and undergo 
regulation in response to a number of stimuli leading 
to high regional and developmental variation [169,209] 
which is modified in the course of ageing [23] and 
numerous diseases. The transcriptional and post-tran-
scriptional regulation of sirtuins (Fig. 1A-C) occurs at 
all levels from mRNA expression to post-translational 
modifications and protein-protein binding. 
–  A  reciprocal relationship links sirtuins with TFs 

from the FOXO family. Although the majority of 
findings point to the influence of sirtuin on FOXOs 
(described below), there are results indicating 
that FOXOs are able to modulate sirtuin signal-
ling (Fig. 1A, C). The SIRT-1 gene contains several 
functional FOXO-responsive elements [219]. The 
signalling between sirtuins and FOXOs extensive-
ly cross-talks with the p53 pathway (Fig. 1A, C,  
Fig. 3A, B). The SIRT1 promoter contains p53-bind-
ing sites; p53 interacts there with FOXO3a, medi-
ating the induction of SIRT1 expression by caloric 
restriction (CR) [144]. In the regulation of glucose 
metabolism, SIRT6 is important for the p53-depen-
dent nuclear sequestration of FOXO1 [235]. p53 
potentially could also impact sirtuins through its 
links with microRNAs, especially with the miR-34 
family [171]. 

–  A feedback mechanism links SIRT1 with the activity 
of E2F1 (E2 promoter binding factor), which senses 
stress conditions (oxidative/stress, CR) [206]: E2F1 
activates SIRT1 gene transcription, while SIRT1 
exerts feedback inhibition on its TF activity. E2F1 
also suppresses Sirt6 expression, relieving the sir-
tuin’s negative influence on glycolysis in cancer 
cells [217]. 

–  Oxidative stress activates SIRT1 expression via 
APE1 (apurinic/apyrimidinic endonuclease-1), a DNA 
repair endonuclease that possesses much less 
understood secondary activity as a gene expression 
regulator [7]. 
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AP-1 – activator protein-1, APE1 – apurinic/apyrimidinic endonuclease-1, AROS – active regulator of SIRT1, CKII – casein kinase II, CR – caloric restric-
tion, Cdk1 – cyclin-dependent kinase 1, DBC-1 – deleted in breast cancer-1, E2F1 – E2 promoter binding factor 1, FOXO – forkhead box subgroup O, HuRs 
– Hu RNA-binding proteins, Jnk – Jun N-terminal kinase, MST1 – mammalian sterile 20-like kinase 1, NF-κB – nuclear factor κB, PPAR – peroxisome 
proliferator-activated receptor 

*Only selected aspects of p53-dependent modulation are shown; p53 binds a number of sites in the SIRT1 gene, with varying influence on its RNA 
synthesis and splicing.

Fig. 1. The multiple levels of sirtuin regulation. A) SIRT1, B) SIRT3, SIRT5, C) SIRT6. 

A

B

C
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Apart from transcriptional regulation, sirtuin 
expression has been described to undergo modula-
tion by RNA-binding proteins and non-coding regu-
latory RNAs. 
–  The stress-modulated HuR proteins (Hu antigen R, 

the name derived from the role in the paraneoplas-
tic neurological Hu syndrome) stabilise Sirt1 mRNA 
[30] and can influence its alternative splicing [238]. 

–  Sirt1 mRNA is down-regulated by an antisense long 
non-coding RNA [214]. 

–  A number of microRNAs also reduce Sirt1 expres-
sion [175], notably in the context of metabolic 
disturbances, i.e. in the course of obesity-induced 
changes in fat storage, regulation of mitochondri-
al numbers, and oxidative energetic metabolism 
[57]. Persistent down-regulation of Sirt1 is also 
observed in ageing. Like in obesity [57], it is caused 
by elevated miRNA-34a [106,184], a proposed brain 
ageing marker [108] which is capable of modulat-
ing cellular senescence [9,83]. A  similar effect on 
senescence has been noted for other microRNAs 
that target Sirt1: miRNA-22 [81,241] and miRNA-217 
[129]. Sirt-1 reduction by up-regulated miRNA (miR-
181) also occurs in the hippocampus of a mouse  
AD model (3×Tg) [170]. Sirtuin regulation by micro-
RNAs might be in fact a widespread phenomenon in 
inflammatory and thus possibly neurodegenerative 
conditions: links exist between miRNA-34a, -132, 
-138, -217, -373- and -520c-mediated Sirt1 reduc-
tion with NF-κB signalling (at least in the periph-
ery) [49,115,191,220,231], and a reciprocal impact 
of NF-κB on Sirt1 expression via miRNA has been 
noted [94]. Some of the Sirt1-regulating miRNAs 
also respond to oxidative stress, further supporting 
their potential involvement in neurodegenerative 
insults [34]. 
 Apart from Sirt1, also Sirt6 undergoes regulation 
by microRNAs. Although the results are much less 
numerous, they also suggest links with aging/
senescence and metabolic regulation [37]. Notably, 
potential feedback regulation between Sirt6 and 
miRNA-766 modifies the former’s role in aging. 
SIRT6 undergoes reduction by miR-766; with 
increasing donor age, the re-programming poten-
tial of human fibroblasts and the SIRT6 levels fall 
while miRNA-766 increases. The SIRT6 3’-untrans-
lated region binds miRNA-766 and the microR-
NA reduces both SIRT6 expression and fibroblast 
re-programming potential. In turn, SIRT6 reduction 
could be linked to the increased acetylation of 

histones observed during ageing in the gene cod-
ing for miR-766 [180]. Besides direct suppression, 
microRNAs can also impact sirtuins indirectly via 
down-regulation of NAD+ biosynthesis [36], or by 
affecting IIS components [89], and can mediate IIS’ 
modulation of sirtuins [176]. 

Beyond the translational level SIRT1 protein binds 
AROS (active regulator of SIRT1), a protein capable 
of differentiating its impact upon sirtuin activity 
depending on the cell status. In response to geno-
toxic insults in cancer cells AROS supports the inhib-
itory influence of SIRT1 on p53 [99], while in normal 
cells the interaction is weak and incapable of mod-
ifying SIRT1 activity [102]. SIRT1 also interacts with 
DBC-1 (deleted in breast cancer-1), which inhibits its 
enzymatic activity and anti-apoptotic influence, also 
in a manner dependent on cell phenotype (normal 
vs. transformed) [10]. 

SIRT1 protein also undergoes a number of cova-
lent modifications. 
–  Its nuclear translocation and activation in con-

ditions of oxidative stress is mediated by JNK1 
(Jun N-terminal kinase 1)-catalysed phosphory-
lation [143]. Inhibition of DNA damage-induced, 
p53-dependent apoptosis by SIRT1 occurs after 
its phosphorylation by CKII (casein kinase II) 
[93]. The pro-survival SIRT1 activation also 
takes place in response to its phosphorylation 
by DYRK1 and DYRK3 (dual specificity tyrosine 
phosphorylation regulated kinases) [68]. How-
ever, DNA damage may also lead to SIRT1 inhibi-
tion, which is done by MST1 (mammalian sterile 
20-like kinase 1) [232]. 

–  Lysine SUMOylation (small ubiquitin-like modifier) 
is an activating event important for SIRT1 activity 
towards p53; de-SUMOylation of SIRT1 overrides 
its anti-apoptotic activity in stress conditions [227]. 

–  Activating S-glutathionylation of SIRT1 by the redox- 
modulated enzyme glutaredoxin 2 may be critical to 
the sirtuin’s role in vascular development [24]. 

Besides these specific mechanisms of regula-
tion, the activity of sirtuins has also been shown to 
be post-translationally de-stabilized and inhibited 
by products of oxidative damage to lipids such as 
4-hydroxynonenal [27,56]. 

A number of further protein-protein interactions 
and post-translational sirtuin modifications are des-
cribed below. They form part of the multiple feedback 
regulatory loops connecting sirtuins with their signal-
ling targets. 
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Transcriptional and post-transcriptional 
regulators as sirtuin targets 

Sirtuins post-translationally regulate vast num-
bers of proteins including histones, TFs and co-acti-
vators, and enzymes (Table I, Fig. 2). Deacetylation 
restores the affinity of inactivated core histones 
to DNA, thus allowing general gene silencing [82] 
(Fig. 2). This mechanisms may constitute one of 
the ways sirtuins reduce overall metabolic rates 
[145] and improve neuron survival. However, bind-
ing to specific promoters (e.g. via interactions with 
sequence-specific proteins there) allows sirtuins to 
modify histones and affect chromatin structure also 
in a localized manner [21]. 

Interactions with transcription factors is a major 
mechanism of sirtuins’ influence on metabolism and 
cell fate. The links between TFs of the FOXO family 
and sirtuins are extensive (Figs. 2 and 3) [219]. Sirtu-
ins modulate FOXOs directly; moreover, sirtuins also 
add another level of FOXO regulation via modulation 
of the IIS pathway: 
–  SIRT1 deacetylates FOXO1 (Fig. 2) with varying 

effects on its activity: FOXO1 deacetylation increases 
its TF activity on SIRT1 and some other genes [219] 
while suppressing it in other situations (possibly 
due to different protein complex composition/pro-

moter sequence) [228]. SIRT1 also modulates FOXO1 
through enhancement of its nuclear presence [55] 
and probably changes its target gene spectrum [62]. 
 SIRT2 in turn facilitates DNA binding by FOXOs 
[207]; deacetylation by SIRT2 inhibits the Akt-medi-
ated nuclear sequestration of FOXO1 [88] (Fig. 3C).  
This enhances the inhibitory influence FOXO1 
exerts on PPARγ, thus mediating the changes in 
adipose metabolism induced by nutrient depriva-
tion or exposure to low temperature [208]. FOXO3 
and FOXO4 are also deacetylated by SIRT1 and 2; 
this exerts a  complex influence on their down-
stream mediators including superoxide dismutase, 
p27kip1, and GADD45 (growth arrest and DNA dam-
age 45) and target processes such as stress resis-
tance cell cycle and death [25,78,101,173,207]. 
 SIRT3 is a  necessary partner in the mitochondri-
al gene expression control by FOXO3a. CR (caloric 
restriction) causes FOXO3a to accumulate in mito-
chondria, where it interacts with SIRT3 and with 
RNA polymerase to activate gene expression, which 
boosts mitochondrial respiration [155].

–  FOXOs also are modulated indirectly via insulin(-like) 
signalling (IIS)/Akt. The outcome varies depending 
on the different sirtuins involved and cell lines used. 

*PPARγ inhibition by SIRT1 exerts a much less clearly understood immunomodulatory role. 

Fig. 2. SIRT1 signalling targets with potential impact on neurodegenerative processes. According to [234], 
modified. BER, base excision (DNA) repair; DNA-PK, DNA-dependent protein kinase; inh., inhibition; NER, 
nucleotide excision repair; NHEJ, non-homologous end-joining (DNA repair); XPA, xeroderma pigmentosum 
group A; XPC, xeroderma pigmentosum group A; YY1, yin yang 1. 
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A

B

CR – caloric restriction, Diff. – cellular differentiation, inh. – inhibition, reg. – regulation, ROS – reactive oxygen species

Fig. 3. Signalling network of SIRT2 to -7. A) Interactions of sirtuins with p53 and its co-activator p300.  
B) Sirtuins, NF-κB and its co-activator p300. C) FOXO transcription factors and sirtuins. 

C
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SIRT1 enhances IIS signalling – it occurs through at 
least two ways: 

–  deacetylation of p53 leads to reduction of its 
protein levels, relieving IIS inhibition by the 
IGF-binding protein-3 [215]; 

–  SIRT1 can also directly deacetylate Akt, restor-
ing its ability to bind phosphoinositides and 
become activated by phosphoinositide-depen-
dent protein kinase 1 [192]). 

 These dependencies have already been confirmed 
to impact metabolic deregulation, cardiac dysfunc-
tions and tumour formation, and might result in 
inhibition of the IIS target FOXO1 [67]. 
 In addition to SIRT1, also SIRT2 can physically 
interact with Akt; the sirtuins may be exchanged 
depending on the activation state of the IIS 
pathways. SIRT2 is necessary for full activation 
of Akt in response to insulin/growth factor sig-
nalling, while a deficient Akt response is noted 
in metabolic disturbances including insulin resis-
tance [164]. Together with the above-mentioned 
results it suggests an image of extremely tight-
ly regulated, multi-level influence of SIRT2 on 
FOXO-mediated events. 
 Besides direct interactions with FOXO3a, SIRT3 
also has a potential indirect impact on FOXOs by 
moderating Akt overactivation by ROS [158]. 
 SIRT6 has been shown to suppress IIS signal-
ling-modulated genes [194], resulting in reduced 
FOXO1 expression [193]. SIRT6 also mediates 
p53-induced nuclear sequestration of FOXO1 in the 
regulation of energy metabolism [235]. 

The FOXOs’ extensive interactions with various  
stress signalling and protein turnover pathways allow 
them to mediate a broad spectrum of homeostatic 
responses. Their role in the longevity/neuroprotec-
tive effects of IIS (insulin/insulin-like signalling)- 
dependent modulation of stress resistance is of par-
ticular importance. FOXOs’ links may be crucial for 
the pathomechanism of a  number of (mostly age- 
related) diseases associated with disturbed somatic 
maintenance, including AD, leading to suggestions 
that they could constitute targetable integrating fac-
tors influencing various neurodegenerative mecha-
nisms [125]. 

The highly conserved tumour suppressor p53 
and its paralogues (p63, p73) have long been 
known to take part in the DNA damage response, 
especially cell cycle arrest, cellular senescence, and 
death. These TFs are also capable of direct modula-

tion of DNA repair genes and proteins [146]. More-
over, the p53 family could also be linked to ageing 
at the organism level [146,160]. Other emerging 
roles of p53 in glucose and lipid metabolism, ROS 
signalling and oxidative stress [64] suggest a  sig-
nificant functional overlap with SIRT pathways. 
p53 undergoes extensive post-translational modi-
fications of several types; this makes it sensitive 
inter alia to inhibition and destabilisation via sirtu-
in-catalysed deacetylation (Figs. 2 and 3B). More-
over, SIRT1 binds and inhibits p53 promoter [52]; 
SIRT1’s interactions with the senescence modulator 
miRNA-34a also allow a post-transcriptional influ-
ence on p53 [77,229], while both SIRT1 and p53 can 
be miRNA-34a’s targets as well [229]. SIRT1 expres-
sion increases in the conditions of H2O2-induced 
oxidative stress, and sirtuin activation inhibits 
p53-dependent apoptosis [240]. Down-regulation 
of SIRT1’s influence on p53 mediates responses to 
several stressors in other cell types [204,224] and 
to a range of age/hyperglycaemia-related vascular 
endothelial pathologies [107,233]. Similar mech-
anisms of age-related, glucose-elicited damage 
might also be involved in neurodegenerative dis-
orders along with generalized oxidative/nitrosative 
stress. Indeed, it is suggested that a significant part 
of SIRT1’s neuroprotective signalling could be medi-
ated through p53 [234], including SIRT1’s roles in 
AD and PD [39,98,151]. Sirtuin-mediated changes  
in p53 stability and TF activity also occur in an 
experimental model of hippocampal neuronal plas-
ticity [112]. 

Less characterised sirtuin family members have 
also been noted to signal through p53 (Fig. 3B). 
Administration of a  SIRT2 inhibitor resulted in 
increased p53 acetylation [226]. The influence of 
SIRT2 on p53 appears to be complex; it can either 
block its trans-activating influence on gene expres-
sion (via direct deacetylation) [87], or enhance its 
degradation [18], sometimes only when working in 
concert with SIRT1 [153]. SIRT3 is able to modulate 
p53 degradation mediated by MDM2 (mouse double 
minute 2 homolog), and the influence p53’s role as 
a metabolic regulator [237]. SIRT6 also takes part in 
p53’s modulation of energy metabolism via nuclear 
sequestration of FOXO1 [235]. A  recently identified 
cytoplasmic pool of SIRT7 binds p53 in a  complex 
with TPPII (tripeptidyl-peptidase II, also capable of 
modulating NF-κB) [141]. 
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Moreover, sirtuins also interact with an import-
ant partner of p53 and NF-κB, p300 (Figs. 2 and 3B). 
p300 is a  transcriptional co-activator able to block 
the interaction of histones with DNA through their 
acetylation. However, p300 is also able to reduce p53 
stability via its negative regulator MDM2, in a man-
ner that appears to depend on the type of upstream 
signals or on cell type [109]. SIRT1 can inhibit the 
acetylating activity of p300 [22], which might exert 
a  pro-survival influence in AD [48]. However, the 
influence of SIRT2 on p300 appears to be opposite 
to that of SIRT1 [18], as mentioned above in the con-
text of p53 degradation. In turn, p300 inhibits SIRT2 
through acetylation, attenuating its negative influ-
ence on p53 [73]. 

The NF-κB pathway has been proposed to be 
a  nearly universal booster of the innate immunity 
and pro-inflammatory responses that largely coun-
teracts the FOXO system [173]. NF-κB activity often 
significantly contributes to neuronal damage in AD, 
ischaemia, and other disorders; the blockage of 
NF-κB-dependent gene transactivation by sirtuin sig-
nalling offers neuroprotection in amyloid β (Aβ) tox-
icity [32]. Moreover, the regulatory activities of NF-κB 
are altered during ageing [76], while NF-κB is capable 
of modulation of ageing/senescence largely via its 
sirtuin interactions [96]. Despite varying intracellular 
localisations and interactions repertoires, most sirtu-
ins modulate NF-κB, often in a negative manner. 
–  SIRT1 inhibits NF-κB (Fig. 2) through: 

–  deacetylation of the RelA subunit of NF-κB (this 
RelA modification is dependent on p300 or 
PCAF – the p300/CBP-associated factor) [230]; 

–  interactions with NF-κB’s transcriptional co- 
repressor TLE1 (transducin-like enhancer pro-
tein 1) [61]. 

–  SIRT2 is also able to inhibit the TF via deacetyla-
tion of p65 (Lys 310) (Fig. 3C); [117]. However, its 
known positive influence on p300 [18] suggests 
that the regulatory interactions between these 
proteins might be significantly more complex than 
currently known. 

–  SIRT3, itself a transcriptional target of NF-κB [116], 
mediates the inhibitory effect of metformin on 
NF-κB in a cellular model of oxidative stress and 
insulin resistance [185]. In contrast, in a different 
cell line SIRT3 has been found to activate H2O2-in-
duced, NF-κB-dependent expression of, inter alia, 
superoxide dismutase [31], strongly suggesting 

that the interaction is promoter-specific and/or 
modified by further interactions. 

–  SIRT4 blocks the degradation of IκB (inhibitor of 
κB) [33] and reduces the nuclear translocation of 
NF-κB and resulting pro-oxidative and pro-inflam-
matory phenotype [196]. 

–  SIRT6 binds RelA and is able to repress NF-κB tar-
get promoters that become activated during aging 
[96], and can delay cellular senescence [218]. How-
ever, the effect has not been observed in some 
other models/conditions [65], possibly due to the 
dynamic and interdependent character of the inter-
action with NF-κB [97]. 

–  Besides these, the sirtuin target FoxO3a interacts 
with NF-κB [111] and with its PI-3K (phosphoinos-
itide 3-kinase)/Akt-dependent upstream activator 
IKKβ (IκB kinase β) [154], which suggests addition-
al paths of influence. 

Sirtuins thus simultaneously impact the pro-in-
flammatory and potentially deleterious actions of 
NF-κB and activate FOXO somatic maintenance sig-
nalling [173]. The effect may modulate the stress 
resistance signals of IIS, which is able to regulate 
both FOXOs and NF-κB [70]. 

The family of hypoxia-inducible factors (HIFs) 
modulates, inter alia, energy metabolism and the 
stress response depending on oxygen concentra-
tion. SIRT1 inhibits HIF1 [110] but activates HIF2 
(Fig. 2) [45], while SIRT6 may be a co-repressor for 
HIF-1α [242]. The significance of this discrepancy 
has not been extensively tested, but invertebrate 
data suggest engagement of HIFs in the modula-
tion of ageing rates. Moreover, HIFs’ transactivation 
targets include genes with known neuroprotective 
products, although it has been suggested that these 
TFs might play either protective or detrimental roles 
[54,86,140, 223].

The sirtuin interaction partners peroxisome pro-
liferator-activated receptors (PPARα, PPARβ/δ, PPARγ) 
are a class of nuclear receptors, TFs whose intracellu-
lar localization and activity are regulated by ligand 
binding. PPAR roles include metabolic regulation in 
response to environmental cues, proliferation con-
trol, and cardiovascular homoeostasis; they modu-
late oxidative stress, inflammation, or insulin resis-
tance. PPARs can antagonize neurodegeneration in 
AD/PD/cerebral ischaemia/brain trauma [139,161]. 
They may also be of therapeutic interest in the met-
abolic syndrome [58]. PPARs also modulate inflam-
mation that partially mediates these pathologies 
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[58,139,161,165]. PPARs may also constitute plausi-
ble targets in diabetes and diabetes-linked neurop-
athy. 

SIRT1 is involved in a  two-directional interac-
tion with PPARα. SIRT1 binds PPARα on its DNA 
response elements. The binding is tightly regulated 
depending on the DNA sequence [150]. The resulting 
deacetylation enhances PPARα activity [167] (Fig. 2). 
SIRT1 also facilitates the protein-protein interaction 
between PPARα and NF-κB (p65) [159]. Sirt1 and 
PPARα genes are regulated in a coordinate manner 
by the ageing-linked miRNA-22 [69] and miRNA-34a 
[44], while SIRT1 is able to modulate miRNA-34a  
in concert with p53 [77]. This suggests a precisely 
regulated feedback mechanism, but the potentially 
significant topic has not been explored much fur-
ther. The widely used natural sirtuin activator res-
veratrol has been shown to bind and activate PPARα 
directly [195]. SIRT1 also reverses the p300-depen-
dent acetylation of PPARγ [72] and seems to inhib-
it its transactivation function [156]. PPARα, PPARγ,  
and PPARδ agonists were able to increase SIRT1 
expression [35,100,213]; PPARα activation also 
blocked SIRT1 export from the nucleus [213]. The 
Sirt5 gene promoter contains potential PPARα- 
responsive sequences, and the PPARα agonist is able 
to increase its expression [26]. Besides SIRT1, also 
SIRT6 displays links with the signalling network of 
PPARs [225]. 

Not surprisingly, the interactions between sirtu-
in and PPAR pathways profoundly modulate energy 
metabolism [26] and appear to have an impact on 
a  number of pathophysiological conditions (Fig. 2). 
SIRT1 is involved in a  potential senescence-related 
feedback interaction with PPARγ [72]. PPARγ is widely 
present in the brain (neurons and microglia), lowers 
local levels of iNOS (inducible nitric oxide synthase) 
and COX-2 (cyclooxygenase-2), and might constitute 
an effective target in the treatment of ischaemia [42]. 
Moreover, the impact of metabolic stress on SIRT1-
PPARγ signalling has been suggested to modulate 
β-secretase and thus the rate of amyloid β produc-
tion in AD [211]. Additionally, differential expression 
of Sirt1 and PPARγ has been noted in Aβ-treated glia, 
which would fit the above-mentioned antagonistic 
regulation of Sirt1 by PPARγ; it has been proposed 
to mediate the neuroprotective reaction of astrocytes 
elicited by in vitro Aβ treatment [4]. Outside the brain, 
PPARα is one of the effectors of SIRT1’s cardioprotec-
tive actions [159], although in some circumstances 

the SIRT1-PPARα interaction may actually promote 
heart hypertrophy [149]. 

PPARγ co-activator 1α (PGC-1α) is an important 
player in the PPAR network, capable of modulating 
respiration/oxidative stress resistance [183] and 
neuronal survival. Its ASN-induced [221] disturbanc-
es may be implicated in the pathogenesis of Parkin-
son’s disease [40], and PGC-1α has been proposed 
as a therapeutic target in PD [239]. 

PGC-1α regulates mitochondrial biogenesis by 
working together with SIRT1 [8]. SIRT1 reverses the 
p300-mediated acetylation of PGC-1α in a  unique 
nuclear-mitochondrial cross-talk [8]. Additionally, 
SIRT1 binds the PGC-1α promoter and takes part in 
its positive regulation loop [6]. An interesting inter-
action takes place between PGC-1α and SIRT6: the 
sirtuin deacetylates and activates the acetyltransfer-
ase GCN5 (general control non-repressed protein 5), 
which leads to increased acetylation of PGC-1α and 
inhibition of its transcriptional co-activator func-
tion [46]. PGC-1 has been proposed to mediate the 
protective SIRT1/PPAR-dependent action of Aβ-chal-
lenged astrocytes towards neurons (the increase of 
neuronal biogenesis of mitochondria and survival in 
the co-culture with astroglia) [4]. 

AP-1 (activator protein-1) is a  dimeric TF con-
sisting of proteins from Fos and Jun families, with 
a wide variety of roles in development, cell prolifera-
tion, survival and migration, and ROS (reactive oxy-
gen species)/low oxygen signalling [133,181]. AP-1 
has been implicated in the control of brain plasticity 
and damage [162], including a hypothesized central 
role in AD/PD [166], and of numerous peripheral 
functions. 

SIRT1 exerts a  varied, context-specific influence 
on the transactivation of genes by AP-1 to modulate 
processes ranging from cyclooxygenase expression 
to pathogen replication [168,236]. The Sirt3 gene con-
tains an AP-1 binding site [15] in its longevity-correlat-
ing intronic enhancer [16]. As alleles displaying the 
lowest activity of this enhancer are notably absent 
from the oldest old group, the interaction may have 
strong significance for the modulation of human 
lifespan [16]. SIRT6 (which has also been associat-
ed with lifespan modulation via IIS [92]) binds c-Jun, 
undergoes recruitment to its target promoters and 
reduces their activity via histone deacetylation [193]. 
c-Fos is able to induce transcription of the Sirt6 
gene; the sirtuin in turn represses survivin via NF-κB.  
The significance of apoptotic resistance regulation 
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by AP-1–SIRT6 signalling in the survival of pre-neo-
plastic lesions is further strengthened by the obser-
vation that both display specific expression patterns 
in pathological tissue samples [134]. 

Further elucidation should cast more light on 
sirtuin–AP-1 cross-talk, which could have significant 
consequences for, inter alia, brain development, 
homeostasis, learning and memory, and neurodegen-
erative conditions [162]. 

While microRNAs are an emerging mechanism 
of sirtuins’ gene regulation, relatively little is known 
about the possible specific impact of sirtuins on 
miRNA metabolism (see above, PPAR section). 

Sirtuins and DNA repair 

The interaction with stress-related TFs may have 
vast significance for the regulation of DNA repair by 
sirtuins. Additionally, some TFs (such as FOXO3a, 
p53, NF-κB, E2F1, Sp1 – specificity protein-1, or 
some nuclear receptors) have also been implicated 
in the repair process itself, possibly via relaxation of 
chromatin structure, though the matter still needs 
some clarification [124,201]. However, sirtuins are 
able to directly influence proteins involved in the 
repair of macromolecular damage. 

–  Apurinic/apyrimidinic endonuclease 1 (APE1) is 
one of the crucial factors involved in the base 
excision repair (BER) pathway which removes the 
ubiquitous products of free radical-related dam-
age from DNA. APE1 has been shown to be inacti-
vated by acetylation at multiple sites [222]. SIRT1 
binds APE1 and deacetylates two of its lysines. 
This stimulates APE1 to bind its partner XRCC1 
(X-ray cross-complementing-1) and increases its 
activity in the BER complex. The net effect of sir-
tuin-mediated stimulation of APE1 is an improve-
ment of the efficiency of this crucial repair mech-
anism, as measured by reduced levels of abasic 
sites in DNA [222]. 

–  SIRT1 is also known to facilitate the activity of 
nucleotide excision repair (NER), a mechanism that 
removes a wide spectrum of DNA lesions/adducts 
and has demonstrated crucial significance in can-
cer prevention. SIRT1 deacetylates two lysines of 
the core NER protein XPA (xeroderma pigmento-
sum group A); this reaction is necessary for the full 
efficiency of UV damage removal [50]. SIRT1 also 
relieves the repression of the XPC gene coding for 
a protein that recognizes DNA lesion and recruits 
other NER components [135]. 

Table II. Mammalian PARP enzymes. According to [79,205], modified

Old name New unified name Activity – measured Activity – postulated 

PARP1 ARTD1 PARylation

PARP2 ARTD2 PARylation

PARP3 ARTD3 Mono(ADP-ribosyl)ation PARylation

vPARP/PARP4 ARTD4 Mono(ADP-ribosyl)ation PARylation

Tankyrase-1/PARP5a ARTD5 PARylation

Tankyrase-2/PARP5b/PARP6 ARTD6 PARylation

PARP6 ARTD17 Mono(ADP-ribosyl)ation

PARP7 ARTD14 Mono(ADP-ribosyl)ation

PARP8 ARTD16 Mono(ADP-ribosyl)ation

PARP9 ARTD9 Not detected

PARP10 ARTD10 Mono(ADP-ribosyl)ation

PARP11 ARTD11 Mono(ADP-ribosyl)ation

PARP12 ARTD12 Mono(ADP-ribosyl)ation

PARP13 ARTD13 Not detected Mono(ADP-ribosyl)ation (mouse) 

PARP14 ARTD8 Mono(ADP-ribosyl)ation

PARP15 ARTD7 Mono(ADP-ribosyl)ation

PARP16 ARTD15 Mono(ADP-ribosyl)ation
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–  DNA-dependent protein kinase (DNA-PK) is in volved 
in non-homologous end-joining (NHEJ) repair, which 
neutralises double-strand breaks, a  highly muta-
genic and lethal type of DNA lesion. DNA-PK is also  
an anti-apoptotic signalling protein. The Ku70 sub-
unit of DNA-PK undergoes inhibitory acetylation on 
at least 8 lysines by, inter alia, PCAF (p300/CBP-as-
sociated factor), a  histone acetyltransferase that 
also collaborates in DNA damage signalling with 
p53 [179]. SIRT1 associates with and deacetylates 
Ku70, thus activating DNA-PK in both its roles 
[41,85]. SIRT6 also appears to be involved in DNA 
maintenance [21] and modulates the binding of 
DNA-PK to regions of DNA double-strand breaks, 
thus facilitating the removal of these deleterious 
lesions [127]. 

–  SIRT6 was observed to be an important factor in 
telomere maintenance through deacetylation of 
histone H3. Moreover, SIRT6 appears to stabilize 
the association of Werner protein with telomeric 
chromatin, further contributing to the regulation 
of its architecture [131].

Sirtuins and PARPs 

Sirtuins interact in a  complex way with the ver-
satile family of Poly(ADP-ribose) polymerases (PARPs) 
(Table II, Fig. 4). The roles of various PARPs include 
DNA repair (modulated chiefly by PARP-1 to -3), reg-
ulation of gene transcription (PARP-1, -2, and struc-
turally different macroPARPs: PARP-9, -14, -15) [128], 

RNA processing in the nucleus and cytoplasm (PARP-1, 
-7, -10, -12 to -15, tankyrase-1) [19], cellular RNA trans-
port (probable role of vault PARP and PARP-10) [1], 
cellular transport of proteins (mainly PARP-16) [1], 
and telomere maintenance (somewhat ambiguously 
including PARP-1, tankyrase-1 and possibly tankyrase-2) 
[174,177]. 

The family’s founding member PARP-1 detects 
DNA damage (single- and double-strand breaks, 
abnormal spatial structures) and post-translational-
ly modifies histones to locally de-condensate chro-
matin, thus facilitating access for the repair machin-
ery [190]. It also directly recruits and modulates 
DNA repair proteins involved in BER, NER, NHEJ, and 
homologous recombination DNA repair pathways, 
and numerous signalling proteins [188]. Besides reg-
ulating chromatin accessibility [199], PARPs can act 
more specifically, as activators/co-activators or (co-)
repressors for numerous TFs. PARP-1 modulation of 
transcription factors impacts both gene regulation 
and the recently identified role of TFs in DNA repair 
[84,124]. 

The extensive network of interactions between 
PARP-1 and the p53 pathway cross-talks with other 
post-translational modifiers [216], possibly including 
sirtuins [138], with vast significance for most pre-
viously identified PARP functions [74]. The co-op-
eration between PARP-1 and numerous TFs also 
includes NF-κB and is important for neurodegenera-
tion in Alzheimer’s disease [95], for brain ischaemia 
[80], etc. 

Mt metab. – mitochondrial metabolic regulation, mech. stress – mechanical stress, NAM – nicotinamide

Fig. 4. Interactions between sirtuins and poly(ADP-ribose) polymerases. 
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Despite the pro-survival physiological significance 
of PARP-1, its excessive activation by DNA damage 
induced by ROS/RNS (reactive nitrogen species) 
[187], Aβ, or mutagens [189] has long been associated 
with cell death. The long-postulated theory of passive 
cellular demise via stress-induced energy imbalance 
suggested that PARP over-activation by intense DNA 
damage would lead to massive PARylation, depleting 
cellular stores of NAD+ and consequently ATP (which 
is used to re-synthesize it). However, more recent 
works have suggested that in post-mitotic cells nucle-
ar NAD+ depletion itself could be more significant, 
inhibiting some crucial enzymes that utilise the nucle-
otide as a substrate [157]. PARP-1’s KM towards NAD+ 
should be low enough to make it relatively insensi-
tive to the changes of NAD+ concentration and to 
allow continued activation despite ongoing metabol-
ic disruption. In contrast, the nuclear SIRT1 displays 
KM closer to the reported intracellular NAD+ levels 
and thus should be significantly influenced by such 
pathophysiological changes [28,157]. Indeed, cell 
death caused by PARP over-activation was rescued 
by various interventions that boosted NAD+ levels 
and occurred only in the presence of the intact SIRT1 
orthologue Sir2α [157]. Increased activity of SIRT1 in 
PARP-1–/– mice was also noted [12]. The PARP–sirtuin 
substrate competition has already been confirmed 
to impact SIRT1 downstream events linked to the 
regulation of cell death/survival [157] or mitochon-
drial metabolism [12]. Disruption of the SIRT1-PGC-1α 
axis by (over)activated PARP-1 has been suggested 
to be of significance for the pathomechanism of sev-
eral DNA repair disorders accompanied by neurode-
generation where mitochondrial abnormalities may 
play significant roles [51,178,200]. SIRT1 inhibition via 
NAD+ depletion might also mediate other neurode-
generative insults such as the death of hippocampal 
cells in culture in a model of acute epileptic neuron 
loss [212]. 

Sirtuins other than SIRT1 also display KM that 
would suggest dependency on PARP-induced NAD+ 
fluctuations. However, the phenomenon of inac-
tivation by PARP-mediated substrate competition 
appears to be restricted to SIRT1. The (in)sensitivity 
of various sirtuins to competition with PARP-1 might 
stem from several factors, including their intracellu-
lar localisation and their ability or not to pre-bind 
NAD+ and thus escape the NAD+ depletion [28]. 
Moreover, in some situations sirtuin inhibition by 

oxidative stress may be direct and not mediated by 
the competition with PARPs for the substrate [27]. 

Yet other mechanisms of cross-talk might exist, 
as both PARP-1 [147,148] and SIRT1 [17] interact 
with YY1 (yin yang 1). YY1 is an important regula-
tor of miRNAs and protein-coding genes related to 
neuronal plasticity [59] and degeneration [104] as 
well as DNA repair [147]. A  potentially significant 
topic for sirtuin regulation is the observed impact 
of PARP-1 on both upstream modulators and sig-
nalling targets of sirtuins. PARP-1 appears to be 
critically involved in the modulation of Akt activity 
[91,186]; however, despite its importance for, inter 
alia, neurodegeneration [130], or ischemic damage 
[105] the mechanism of this interaction has not 
been explored further. PARP-1 also directly binds 
and PARylates FOXO1, leading to suppression of 
FOXO1-dependent genes [172]. 

The more favourable KM of PARP-1 should allow 
it to out-perform SIRT1 in the competition for NAD+ 
in all situations [12]. However, both enzymes are 
able to block each other’s activity by releasing the 
inhibitory by-product nicotinamide [103]. SIRT1 has 
also been able to mitigate the rapid PARP-1 activa-
tion in oxidative (H2O2-induced) stress while SIRT1 
knock-out has led to enhanced apoptotic signalling 
and cell loss in these conditions [103]. The results 
obtained by Rajamohan suggest that depending on 
the conditions the difference in KM could be negligi-
ble: the value for PARP-1 activated by pERK or the 
histone acetyltransferase PCAF (p300/CBP-associ-
ated factor) is just 10% to 20% lower than that of 
SIRT1 [163]. 

The activation of PARP-1 by PCAF in stress condi-
tions occurs via acetylation [163], making it a good 
substrate for SIRT1. SIRT1 has been shown to inter-
act with and de-acetylate PARP-1 [163], reversing 
its enzymatic stimulation and reducing it to nearly 
undetectable levels. Surprisingly, acetylation boost-
ed only the basal activity of PARP-1 and not its maxi-
mum, DNA damage-induced activity. However, remov-
al of this modification inhibited PARP’s (mechanical 
stress-related) activation, thus potentially offering 
some cytoprotective potential [163]. Although the 
physical interaction between SIRT1 and PARP 1 is  
dependent on NAD+ availability and gradually dimin-
ishes with its increasing concentration, SIRT1 pre-
bound to NAD+ is still able to bind PARP-1 physically 
(and possibly deactivate it) despite the lack of sub-
strate. This suggests a potential mechanism for pre-
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serving SIRT1 activity despite NAD+ depletion [163]. 
Most work on SIRT1-mediated PARP-1 inhibition 
has been done on cell lines of non-neuronal origin. 
However, it has been shown that the influence of 
SIRT1 on PARP-1 can indeed be of significance in 
oxidative stress conditions, thus raising hopes for 
using it as a potential target in neurodegeneration. 
The absence of SIRT1 sensitized the cells via PARP 
to H2O2-induced death [103], while over-expression 
of SIRT1 in HeLa cells reduced PARP-mediated, DNA 
damage-induced death in a mode dependent on its 
deacetylase function [163]. 

SIRT1 is capable of modulating not only PARP-1 
protein but also its gene expression. SIRT1 over-ex-
pression in cardiomyocytes has been shown to 
reduce PARP-1 gene promoter activity and PARP-1 
mRNA, which translated into lower protein levels; 
deacetylase activity was necessary for the effect. 
SIRT1 did not appear to influence the degradation of 
PARP-1 protein, as shown in experiments with prote-
asomal and lysosomal inhibitors [163]. 

Other PARPs (Figs. 1B and 4; Table II), whose 
activities typically fall well below those of PARP-1, 
are able to modulate sirtuins in ways independent 
of NAD+ fluctuations. [11]. PARP-2 is a direct nega-
tive regulator of the SIRT1 promoter, and its impact 
on the SIRT1 gene has direct consequences for ener-
getic metabolism and mitochondrial function (Fig. 4) 
[137]. PARP-7, or tetrachlorodibenzo-p-dioxin-induc-
ible poly(ADP-ribose) polymerase (TiPARP), appears 
to have the ability to inhibit SIRT3 activity (but not 
mRNA expression) in conditions of oxidative stress 
(Fig. 4); this leads to reduced expression of super-
oxide dismutase-2 and might further exacerbate the 
damage [75]. 

It is not clear if the acetylated residues present in 
PARPs other than PARP-1 could be targeted by sirtu-
ins or if these isoforms are able to significantly affect 
SIRT activities. 

The influence of SIRT2 to -7 on PARPs is not ful-
ly determined. A  rather unusual interaction takes 
place between SIRT6 and PARP-1 [126]. SIRT6 
resides largely in the heterochromatin; it is recruit-
ed to double-strand break sites and its expression 
is enhanced in response to DNA damage. Its stimu-
latory effect on DNA repair was visible both under 
resting and stress conditions evoked by paraquat 
(producing superoxide), neocarzinostatin (a single- 
and double-strand break inducer) or H2O2. SIRT6 
physically binds PARP-1 in a  manner enhanced 

by the damage and mono(ADP ribosyl)ates it on 
Lys521. PARP-1 enzymatic activity is stimulated by 
this interaction and mediates the positive effect of 
SIRT6 on the efficiency of NHEJ and homologous 
recombination repair (Fig. 4); [126]. Although SIRT6 
did not influence the acetylation level of PARP1, 
both SIRT6 enzymatic activities have been found 
to take part in the regulation of DNA repair [126].  
The opposite influence of SIRT1 and -6 on PARP activ-
ity prompted Cantó et al. to suggest that these pro-
teins could constitute a signalling switch in the DNA 
repair network [28]. In an example scenario, ATM 
(ataxia-telangiectasia mutated), which senses DNA 
damage, would phosphorylate DBC-1 protein, facil-
itating its inhibitory influence on SIRT1. This would 
remove the inhibition of PARP-1, thus leaving only 
the positive influence of SIRT6 and allowing PARP-1 
to efficiently perform its protective function [28].

The described unique characteristics of sirtuins 
correspond to their broad links to signalling path-
ways and enzymes involved in cellular maintenance 
and the stress/damage response. Some sirtuins 
localise to mitochondria and modulate their bio-
genesis as well as the function of the respiratory 
machinery. Moreover, sirtuins are capable of influ-
encing anti-oxidative proteins and the unfolded pro-
tein response there, as well as the mitochondrial cell 
death signalling. A growing body of evidence links 
sirtuins to aging and neurodegenerative diseases, 
making these HDACs highly promising research and 
therapeutic targets. 
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