
Oxygen is an essential element to con-
duct life processes but some of the meta-
bolic byproducts e.g. reactive oxygen
species (ROS), are toxic for living organ-
isms. Endogenous ROS are produced e.g.
reduction of dioxygen; some exoge-
nous sources of radicals also exist,
including nicotine and ionizing radiation.
Reactive oxygen species include super-
oxide anion, hydroxyl radical, singlet oxy-
gen, hydrogen peroxide and hypochlor-
ous acid.
Carcinogenesis is a multistep process.
The exact reasons for the development
of cancer are still unknown. Many fac-
tors contribute to the development of
carcinogenesis, one of which is oxidative
stress. Oxidative stress is defined as an
imbalance between oxidizing agents
(pro-oxidants) and antioxidants, agents
that protect biomolecules against injury
by pro-oxidants. When reactive oxygen
species are overproduced it can damage
nucleic acids, proteins and lipids. ROS are
considered as a significant class of car-
cinogens participating in cancer initia-
tion, promotion and progression.
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Oxygen is an essential element to conduct life processes, but its high chem-
ical reactivity is a reason why some of its metabolic by products are toxic for
living organisms. These include reactive oxygen species (ROS) and free rad-
icals [1, 2]. Free radicals are atoms or molecules that can exist independent-
ly, yet they have one or more unpaired electrons [3]. Free radicals strive to have
their electrons paired, that is to get rid of a surplus electron or to bind anoth-
er one. Therefore they are highly reactive [4]. Reactive oxygen species (ROS)
include superoxide anion (•O2

–), hydroxyl radical (•OH), singlet oxygen (1O2),
hydrogen peroxide (H2O2) and hypochlorous acid (HOCl). Reactive oxygen species
are produced in endogenous reactions, e.g. in reduction of dioxygen but also
under the influence of exogenous sources such as cigarette smoke or ioniz-
ing radiation [3, 5–9]. Reactive oxygen species are molecules commonly encoun-
tered in living organisms, where they participate in numerous physiological
processes. They are mediators in many important functions of organic cells,
such as regular growth, differentiation, proliferation and apoptosis [10]. They
also play an important role as intra- and extracellular conductors and are the
response of cells to tissue hypoxia [2, 3, 7, 9, 11–14].

Oxidative stress is defined as lack of equilibrium between oxidizing sub-
stances (pro-oxidants) and antioxidants, that is compounds that protect bio-
molecules against harmful effects of pro-oxidants [6]. If the volume of created
ROS exceeds the organism's ability to recycle them, damage occurs to nucle-
ic acids, proteins and lipids which, in turn, results in dysfunction of cells, tis-
sues or organs of the body [2, 15–21].

It was proven that intense oxidative stress contributes to the pathome-
chanism of numerous diseases, including senile cataract, atherosclerosis, dia-
betes and neurodegenerative disease [22–27]. Excessive synthesis of reactive
oxygen species and insufficiency of antioxidant defence mechanisms are also
contributing aetiological factors of neoplastic diseases [2, 6, 9, 28–37]. 

Apart from ROS, cell oxidants also include reactive nitrogen species (RNS),
such as nitric oxide radical (NO•) and peroxynitrite ion (ONOO–), also asso-
ciated with carcinogenesis [7, 13, 38–44]. 

It is said that RNS are factors that take part in initiation, promotion and pro-
gression of carcinogenesis [6, 8, 20, 45–48]. As early as in 1984, Zimmerman
and Cerutti [49] proved that exposure of mouse fibroblasts to reactive species
of oxygen can lead to carcinogenic transformation of cells. Increased levels of
oxidative damage may be a result of: (I) increased production of ROS without
further disruption of the antioxidant system, (II) a stable level of ROS with simul-
taneously a less effective antioxidant system, (III) errors in the system that repairs
oxidative damage in the DNA, or (IV) a combination of the above [6, 13, 44, 50].

The conducted research proves that excessive production of ROS and relat-
ed oxidative stress are features characteristic for neoplastic cells, both in vivo
and in vitro [15, 16, 50–57]. Moreover, the results of the research of Kondo 
et al. [50] showed increased levels of ROS in cases of adenocarcinoma when
compared to cases of colorectal cancer. The main causes of increased levels
of ROS in neoplastic cells, when compared to the normal tissue surrounding
them, is excessive production of ROS related to the 'respiratory (oxidative) burst'
of phagocytes, as well as an increasing volume of ROS in the part of the cir-
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culatory system which surrounds the neoplastic changes [15,
45]. Moreover, increased metabolic activity of neoplastic cells
also intensifies production of superoxide anion radical [58]. 

Reactive oxygen species are considered to be a pro-neo-
plastic factor as they stimulate proliferation, invasiveness, angio-
genesis and metastasis, and inhibit apoptosis [44, 59, 60]. They
are able to stimulate development of a neoplasm in the pro-
motion stage through influencing genes related to apopto-
sis and proliferation. As a result of 'an attack' of free radicals,
the concentration of Ca2+ ions increases within the intra-
cellular area, which results in activation of proto-oncogenes
such as c-fos, c-jun, c-myc or activated protein kinase C (PKC).
That, in turn, intensifies proliferation and speeds up the car-
cinogenesis [2, 6, 61]. High concentrations of ROS and their
derivatives influence activation of transcription factors
including NF-κB, which results in induction of cytokine gene
expression and of growth factors. That leads to intensified
proliferation of cells and occurrence of neoplastic lesions in
otherwise healthy tissue [6, 14, 44, 62]. Reactive oxygen
species also influence activity of proteins involved in the cell
cycle, such as p53 protein [14]. If there is no oxidative stress
or after a period of mild stress, p53 activity is related to the
antioxidant response of the cell through activation of tran-
scription of MnSOD and GPx1 coding genes [63]. High lev-
els of production of reactive oxygen species may also cause
increased activity of p53 protein. However, excessive levels
of ROS may inhibit p53 activity, which is related to the inhi-
bition of apoptosis [44, 64]. Moreover, a relationship between
ROS and invasiveness or occurrence of metastasis was also
proven [65–67]. Oberley et al. [68] observed that human cells
that originated from metastatic changes in the course of
prostate cancer produced more ROS than the original cancer
cells. Moreover, the influence of ROS on the development of
angiogenesis through an increase in production of vascular
endothelial growth factor (VEGF) was also proven [66, 69].

Numerous research studies indicate participation of
ROS, which act within cells, as secondary relays in the intra-
cellular signal cascade. They induce and sustain the onco-
genic phenotype of neoplastic cells. Moreover, there is an
increasing amount of evidence that ROS can induce aging
of cells and their apoptosis or necrosis, as well as being able
to inhibit the process of angiogenesis, therefore being
antineoplastic molecules [2, 6, 44, 70]. 

The biggest participation in the process of carcinogene-
sis, especially in the initiation phase, is attributed to the
hydroxyl radical [13, 20]. The hydroxyl radical can react with
both the deoxyribose molecule and nitrogenous bases
which are elements of the DNA. A reaction between the
hydroxyl radical and the deoxyribose molecule produces both
single and double cracks of the DNA strands [13, 45, 46]. The
results of reactions with nitrogenous bases are their adducts.
One of the most typical DNA adducts which is an oxidative
product of damage done to nucleic acids is 8-hydroxy-2'-
deoxyguanosine (8-OHdG) [36, 50, 71–74]. Presence of
modified bases can trigger mutational changes which, in turn,
may cause inactivation of suppressor genes or activation of
proto-oncogenes [6, 8, 13, 45, 75]. The increased levels of 
8-OHdG and other modified bases in the DNA are also influ-
enced by possible defects in enzymes that repair oxidative
damage in the DNA, which in turn is related to the progression

of age-related, increasing incidence of neoplasms [76–78].
Mice without MTH1 enzyme, which hydrolyzes 8OHdGTP, suf-
fered from an increasing incidence of lung, stomach and liv-
er cancer with the progress of age [76, 77].

The superoxide anion radical can inhibit the functions of
the mitochondrion through inactivation of the Fe-S centre
in the electron transport chain. The ongoing accumulation
of damage and inhibition of the mitochondrial activity
eventually leads to apoptosis of the cell [2]. It is also
assumed that H2O2 plays some role in the process of car-
cinogenesis. Hydrogen peroxide is not a radical itself but can
be easily transformed into one as a result of Fenton's reac-
tion, in which iron and copper ions (Fe2+, Cu2+) participate
[45]. Occurrence of H2O2 in higher concentrations was also
observed in human tumour cells [13, 51].

The effects of the influence of ROS include not only dam-
age done to the genetic material but also damage of the cell
membrane caused most frequently by free radical oxidation
reactions of lipid structures. One of the end products of lipid
peroxidation is malondialdehyde (MDA), which can have
a mutagenic and carcinogenic influence on a cell [2, 30].

Another negative consequence of the presence of ROS
is changes in the spatial structure of proteins resulting in the
occurrence of new cross-sectional bonds. Moreover, they may
cause aggregation and fragmentation of proteins. Additionally,
modifications caused by ROS change proteolytic susceptibility
and antigenicity of proteins. Denaturation of some proteins
was also observed as ROS can oxidize and, subsequently,
break thiol groups and disulfide bridges. Reactive oxygen
species may cause inactivation of proteolytic inhibitors, which
increases activity of proteolytic enzymes against proteins.
What is more, ROS react with proteins and lipids, raising the
risk of DNA damage [2, 12, 42, 44].

A similar relationship can also be found between other
reactive molecules, such as reactive nitrogen species. These
oxidants may appear as a result of inducible nitric oxide syn-
thase (iNOS). The nitric oxide radical (NO•) can react with •O2

–

and create •OH and the peroxynitrite anion (ONOO–), which
influences the process of lipid peroxidation causing cracks
in the DNA and induces transversion-type mutations. They
can also disrupt the respiratory chain in the mitochondrion
and influence the phosphorylation process of proteins, includ-
ing p53 type [6, 8, 13, 14, 34, 39, 79]. Moreover, reactive nitro-
gen species cause inhibition in the activity of caspases, which
is related to delays in apoptosis. Additionally, inhibition of
cytochrome oxidase slows down formation of mitochondr-
ial ATP, impairing the course of proliferation, which in turn
may delay the growth of a tumour [44, 80].

Cells of eukaryote organisms have created defence
mechanisms that limit the level of RNS and damage caused
by their actions. Such defence mechanisms include antiox-
idant enzymes such as superoxide dismutase, glutathione
peroxidase, glutathione S-transferase and catalase. These
enzymes have various isoforms and occur in both intra- and
extracellular areas. Their activity forms an integrated antiox-
idant protection system [2, 6, 7]. As previously mentioned,
an increased level of oxidative damage in tumour cells may
also be a result of a less efficient antioxidant system. An exam-
ple of such inefficiency of the antioxidant protection system
as a factor which contributes to carcinogenesis can be the
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case of mice with turned off CuZnSOD gene, which demon-
strated an increased incidence of liver tumour progressing
with age [81]. Similarly, heterozygous mice that had 50% of
content of the regular mitochondrial MnSOD demonstrat-
ed an increased incidence of neoplasms such as leukaemia,
adenocarcinomas and pituitary adenomas [82]. Chu et al. [83]
carried out a study in which they turned off two out of four
GPx genes of mice (that is GPx1 and GPx2). This caused the
occurrence of colorectal cancer. Moreover, the mice with
decreased activity of catalase proved to be more prone to
occurrence of breast tumours [84].

Numerous epidemiological research cases prove that an
increase in expression of MnSOD in a group of patients with
neoplasms correlates with higher invasiveness and aggres-
siveness of stomach, intestinal, lung and breast cancers 
[67, 85]. Liu et al. [60] proved that MnSOD inhibits the process
of apoptosis in the neoplastic cells of the large intestine. They
also demonstrated that a selenium deficiency leads to
decreased activity of peroxidases and increased risk of the
occurrence of neoplastic lesions [86].

Trosko and Upham [87] suggest that oxidative stress not
only causes damage of the DNA but also influences epige-
netic modification of gene expression that, in turn, is one of
the factors of carcinogenesis. Therefore, the influence that
epigenetically modified gene expression has on distur-
bances in proliferation, differentiation and apoptosis of the
cell is more and more often emphasized.
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