
Mesenchymal stem cells (MSCs) are 
attractive seed cells for immunother-
apy, tissue engineering and regenera-
tive medicine due to their self-renew-
al and multidirectional differentiation 
abilities, diverse immunoregulatory 
functions and ease of isolation from 
a  wide range of tissues. MSCs exert 
their immunoregulatory effect on im-
mune cells via cell-to-cell contact and 
paracrine mechanisms. In turn, MSCs 
can also be modulated by immune 
cells. Macrophages are constantly 
present in the mucosa of the intesti-
nal tract of mammals and play an im-
portant role in the development and 
progression of inflammatory bowel 
disease (IBD), a chronic and recurrent 
inflammatory disease of the gastro-
intestinal tract characterized by id-
iopathic mucosal inflammation. The 
increased morbidity and mortality of 
IBD have made it a  disease hard to 
cure in the clinic. MSCs have emerged 
as an important tool for IBD therapy 
due to their abilities to differentiate 
into enterocyte-like cells and regulate 
inflammatory cells, especially macro-
phages. In this review, we discuss the 
recent advances in the interaction be-
tween MSCs and macrophages in dis-
eases, with an emphasis on IBD. We 
propose that an optimized MSC-based 
therapy would provide a  novel strat-
egy for the treatment of IBD and the 
prevention of IBD-associated colorec-
tal cancer (CRC).
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Introduction

In the past decades, stem cell therapies have been emerging as a poten-
tial tool to treat diseases. According to the literature, Tavassoli et al. first 
reported that autologous fragments of rodent bone marrow were able to 
generate heterotopic marrow and bone upon transplantation in 1968 [1]. The 
group of Friedenstein successfully identified and cultured a subpopulation 
of stromal cells from bone marrow, which had a high replicative potential 
and could form colonies of fibroblastic cells in vitro, displaying the ability of 
colony forming unit-fibroblast (CFU-F), which could form ectopic bone mar-
row comprising trabecular bone, chondrocytes, adipocytes, and hematopoi-
esis-supporting stroma [2, 3]. These stromal cells were termed osteogenic 
stem cells or bone marrow stromal stem cells [4, 5]. In 1991, Caplan AI named 
the CFU-F identified by Friedenstein et al. as MSCs based on the fact that 
they could behave as unique progenitors for all connective tissues of me-
sodermal origin [6]. In 2006, the International Society for Cellular Therapy 
(ISCT) established the unified and minimal criteria to define MSCs [7]. To 
date, great efforts have been made to study the nature, phenotype, function, 
and regulation of MSC in health and diseases.

Mesenchymal stem cells are a heterogeneous population of fibroblast-like, 
plastic-adherent cells with the potential to self-renew and differentiate into 
distinct types of cell lineages such as osteoblasts, chondrocytes, adipocytes, 
tenocytes, myotubes, neural cells, and hematopoietic-supporting stroma, ei-
ther in vitro or in vivo [8–10]. Mesenchymal stem cells can be isolated from 
various tissues such as bone marrow, umbilical cord, and adipose [11]. In the 
early 2000s, it was reported that MSCs display an immunomodulatory effect 
on lymphocytes [12, 13]. Mesenchymal stem cells have also been shown to 
regulate the proliferation, differentiation and immune function of myeloid 
cells ranging from monocytes [14], dendritic cells (DCs) [15], macrophages 
[16, 17], and myeloid-derived suppressor cells (MDSCs) [18], to granulocytes 
[19]. In recent years, MSCs have been tested in a variety of diseases such as 
myocardial infarction [20, 21], acute renal failure [22], acute liver injury [23], 
collagen-induced arthritis (CIA) [24], graft-versus-host disease (GVHD) [25], 
and IBD [26]. 

Inflammatory bowel disease, including Crohn’s disease (CD) and ulcer-
ative colitis (UC), is a  chronic, recurrent inflammatory disease of the gas-
trointestinal tract and is characterized by idiopathic mucosal inflammation. 
The incidence and prevalence of IBD are generally higher in the western 
countries than in Asia, but are rapidly increasing in Asia [27]. Furthermore, 
IBD is associated with increased mortality risk as IBD is known to be linked 
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to the development of colorectal cancer (colitis-associat-
ed colorectal cancer, CAC) [28]. However, there is still no 
effective method to cure IBD. Recent studies suggest that 
MSCs are an important therapeutic tool in IBD. MSCs can 
migrate into intestinal injured tissue and differentiate into 
enterocyte-like cells [29, 30]. In addition, MSCs can release 
growth factors and cytokines to inhibit intestinal inflam-
mation, regulate immune responses and promote entero-
cyte proliferation to repair the injured tissue [31]. In this 
review, we discuss the emerging role of MSCs in the treat-
ment of IBD and IBD-associated colorectal cancer.

The immunoregulatory function of mesenchymal 
stem cells

In 1986, Juneja et al. reported that MSCs interacted with 
the transformed cells UTMB-460 (a  monoclonal human 
B-lymphoblastic cell line) in vitro and played a critical role 
in the establishment of the UTMB-460 cell line, which is 
the first study about the effect of MSCs on immune cells 
[32]. Since then, the immunoregulatory functions of MSC 
have been gradually revealed by the researchers. MSCs are 
found to inhibit the proliferation of T cells, B cells, and nat-
ural killer (NK) cells [33–35]; alter the cytokine secretion 
profile of dendritic cells (DCs), naive and effector T cells 
(T helper 1 [T(H)1] and T(H)2), and NK cells [35–37]; sup-
press the migration, maturation and antigen presentation 
of DCs [38]; restrain the induction of cytotoxic response of 
T cells and NK cells to alloantigens [35, 39]; and modulate 
the M1/M2 balance of macrophages [40]. The mechanisms 
involved in the immunomodulatory roles of MSC include 
cell-to-cell contact, secretion of regulatory cytokines and 
other factors, the expression of inhibitory membrane mol-
ecules, and induction of cell anergy and apoptosis [41, 42]. 

Mesenchymal stem cell-mediated 
immunoregulation on macrophages via 
cell-to-cell contact

Cells are known to communicate via secreted molecules 
and by cell surface molecules, which are deciphered by 
the target cell upon receptor binding, or by direct cell-to-
cell contact, mediated by specialized molecules [43]. Mes-
enchymal stem cells have an immunoregulatory effect on 
macrophages through direct cell-to-cell contact. Siniscalco 
et al. demonstrated that MSCs homing to the spinal cord 
induced the switch of macrophages to an M2 phenotype 
with anti-inflammatory functions. The intravenously inject-
ed MSCs could reduce the protein and mRNA levels of IL-1β 
and IL-17 and up-regulated the expression of IL-10 protein, 
which suppresses the proliferation and activation of T cells 
in the spinal cord of SNI mice [44]. The mechanism for the 
modulation of macrophages by MSCs to shift from pro-in-
flammatory to anti-inflammatory phenotype still remains 
unknown. The administration of MSCs exerts long-term 
therapeutic efficacy, suggesting that the immunomodula-
tory properties of MSCs contribute to tissue repair and re-
generation. Gur-Wahnon et al. reported that MSCs suppress 
antigen-presenting cell (APC) maturation by a novel mech-
anism involving cell-cell interaction rather than the classical 
mechanism of induction by cytokines [45, 46]. 

Indeed, although MSCs could home to the site of dam-
aged tissue, they have poor survival ability and transitory 
persistence in the inflammatory area. MSCs are multipo-
tent stem cells that can modulate immune cells such as 
regulatory T cells to improve immune dysfunction, so these 
cells are mainly used for the treatment of immune disor-
ders, such as IBD. Intraperitoneal injections of MSCs can 
markedly reduce intestinal inflammation [47]. In IBD, the 
mechanism for the regulation of macrophages by MSCs is 
complicated and various, and mainly involves cell-to-cell 
contact and paracrine effects. MSCs have the capacity for 
migration to colon tissues and inhibition of colitis and the 
potential for suppression of the development of CAC.

Mesenchymal stem cell-mediated 
immunoregulation of macrophages via paracrine 
actions

Mesenchymal stem cells transplantation maintains the 
survival of monocytes, alters the macrophage phenotype 
from M1 to M2 in the damaged tissue or organ, such as 
spleen and bone marrow, and exerts therapeutic effects 
on inflammatory disease remission via the paracrine ef-
fect. Mesenchymal stem cells have poor survival abili-
ty and transitory persistence in the inflammatory area. 
Mesenchymal stem cell transplantation into the injured 
tissues might be involved in paracrine action by secretion 
of soluble factors [48]. Paracrine is a kind of cellular com-
munication in which a cell produces a molecule to induce 
changes in the adjacent cells, altering the behavior or dif-
ferentiation of those cells. Jin et al. found that deregulation 
of inflammatory soluble factors such as IL-1α, IL-6, and IL-8 
via angiopoietin-1 (Ang-1) could be treated as a potential 
soluble factor in the co-culture of MSCs with LPS-treated 
alveolar macrophages. These results indicated that MSCs 
exerted paracrine actions by increasing the proportion of 
anti-inflammatory macrophages (M2) and stimulating the 
production of anti-inflammatory factors in the damaged 
tissue [49]. The mechanism by which MSCs promote reg-
ulatory T cell production is explored as the primary reason 
for MSC cellular therapy. Induction of MSCs to regulatory  
T cell generation through TGF-β1 secreted by MSCs is de-
pendent on the paracrine production of CCL-18 between 
MSCs and monocytes or macrophages [50]. 

Mesenchymal stem cell administration induces 
B220+CD11b+ monocytes/macrophages and attenuates 
corneal allograft and experimental autoimmune uveitis 
(EAU) [51]. Principle mechanisms of tissue repair of MSCs 
are based primarily on their paracrine effect through ex-
pressing soluble factors. Actually, different kinds of MSC 
paracrine actions are applied to alleviate inflammation 
such as trophic, immunomodulatory, anti-scarring, and 
chemoattractant. Recently, Ti et al. reported that the 
therapeutic efficiency of LPS-preprocessing MSC-induced 
exosomes was valuable to wound healing and chronic 
inflammation, which indicated that MSCs might secrete 
an amount of exosomes to enhance the trophic effect 
through a paracrine action [52]. Almeida et al. also showed 
that MSCs expressed a high level of trophic factors to im-
prove the function of the injured spinal cord [53]. Trans-
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plantation of membrane-derived MSCs remarkably dereg-
ulated glomerular monocytes/macrophages infiltration 
and expression of glomerular inflammatory factors such 
as TNF-α, monocyte chemoattractant protein 1 (MCP-1), 
type I collagen, and TGF-β, contributing to the acute renal 
injury healing [54].

Mesenchymal stem cells co-cultured with macrophages 
secrete more immunomodulatory factors and express 
fewer pro-inflammatory factors such as prostaglandin E2 
(PGE2) and indoleamine 2,3-dioxygenase (IDO), which can 
be further enhanced by interferon γ (IFN-γ) or tumor necro-
sis factor α (TNF-α) [55]. The immunomodulatory function 
of MSCs can also be mediated through several signaling 
pathways. Activation of Toll-like receptors (TLRs), CSF-2 
and CSF-3 could modulate the TLR-2/6-induced MT1-MMP/
JAK/STAT3 signaling pathway targeted with neovascular-
ization, resulting in an immunomodulatory effect of MSCs 
[56]. Mesenchymal stem cells can exert an immunomod-
ulatory effect on macrophages via cell-to-cell contact and 
paracrine actions, and macrophages also modulate MSCs 
to a certain extent.

Macrophage-mesenchymal stem cell relations

Cell-to-cell contact and paracrine actions by MSCs are 
recognized as the primary mechanisms in immunomodu-
lation so plenty of evidence has been obtained in order 
to review the effects of MSC-mediated immunomodula-
tion on monocytes/macrophages. However, the mutual 
relation between MSCs and monocytes/macrophages has 
gradually gained recognition in recent research studies. 
Monocytes/macrophages also can regulate MSCs to repair 
damaged tissue and exert their anti-inflammatory func-
tion. Gong et al. reported that M2 macrophages co-cul-
tured with MSCs could promote the expression of ALP, 
osteogenic markers, and bone mineralization to sustain 
bone and expedite bone repair [57]. Macrophages, but not 
M1 macrophages, can promote MSC osteoblast differen-

tiation [58]. Sesia et al. also reported that in the collagen 
scaffolds, MSCs co-cultured with macrophages (M2 polar-
ization), which stem from monocytes, existed a stronger 
clonogenic and chondrogenic competence contributing to 
cartilage formation [59]. Such similar interaction also oc-
curs in cardiac disease. Macrophage depletion destroyed 
the infarct healing and repair in the early therapy, but M2 
macrophages (F4/80(+) CD206(+)) incubated with or with-
out MSCs had a positive effect on infarct size and left ven-
tricular remodeling [60]. LPS-treated macrophages co-cul-
tured with MSCs expressed less TNF-α and IL-1 and more 
IL-10 in the atherosclerotic plaque [61]. 

Although the above evidence supports the hypothesis 
that macrophages have the capacity to regulate MSC im-
munomodulation, the specific mechanism of macrophages 
acting on MSCs is still vague. However, the following exam-
ple may provide some insight. In a mouse asthma model, 
M2 macrophages devoured MSCs while M1 macrophages 
did not exhibit the phenomenon, indicating that lung mac-
rophages devoured MSCs to remit the allergic asthma [62]. 
MSC-derived cell-to-cell contact and paracrine actions are 
of vital importance to suppress inflammation and protect 
and repair damaged tissues, but the role of macrophages 
in MSC action should not be underestimated in research 
work of the correlativity between MSCs and macrophages.

Mesenchymal stem cells regulate macrophages 
to treat inflammatory bowel disease 

Mesenchymal stem cells-mediated immunoregulation of 
macrophages via paracrine actions has been demonstrat-
ed in various inflammatory diseases, such as bone repair, 
wound healing, myocardial infarction, acute kidney injury, 
atherosclerosis, and IBD. We searched the PubMed data-
base using the terms “MSC and macrophage”. There are 
a  total of 530 documents published since 1976 and they 
have increased rapidly in recent years (Fig. 1). Activated 

Fig. 1. Distribution of MSC regulation on macrophages in different diseases 
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MSCs stimulate alternatively macrophage activity to boost 
wound tensile strength in senior mice [63]. In the infarction 
location, pro-inflammatory macrophages were gradually 
transformed to anti-inflammatory macrophages via the in-
creased expression of IL-10 mediated by MSCs to ameliorate 
acute myocardial infarction [64]. Fernandes et al. reported 
that osteoclasts and macrophages can promote the process 
of bone formation whereby MSCs stimulate macrophages 
(M2) dependent on gp130 or oncostatin M [58].

Inflammatory bowel disease is a type of idiopathic in-
testinal tract disease involving the ileum, rectum and 
colon, while various anti-inflammatory and immunosup-
pressive therapy, such as corticosteroids, immunosup-
pressive agents and biological agents, do not have a long-
term clinical curative effect on IBD, especially refractory 
IBD [65]. Cell therapy research on MSCs associated with 
IBD has emerged continuously in recent years because 
of MSC immunosuppressive capability [66]. Although 
MSCs can home to the damaged intestinal mucosa, the 
short duration in the resting place requires repeated treat-
ment during each phase of clinical treatment [67]. More 
functions of MSCs for the treatment of IBD are obtained 
through paracrine soluble molecules and regulating T cell 
number and function [68-70]. MSCs can also boost the 
production of Treg cells in the intestinal inflammatory re-
gion, thereby reducing the antigenic effect of the antigen 
and debasing the inflammatory factor and enhancing im-
mune cell apoptosis [71]. 

The salutary effect of MSC on IBD is also dependent on 
the dose and the mode of MSC infusion. In in vivo experi-
ments, the dose of MSC administration is usually 105~106 
MSCs/mouse [72] and in pre-clinical trials, the amount of 
administration is usually about 106~107/KG, and the ther-
apeutic effect may increase with the dose to some extent, 
but the side effects caused by different doses are still not 
fully described [73]. For perianal fistulizing CD, in both  
in vivo and pre-clinical trials, the curative effect of perianal 
injection and intraperitoneal injection of MSC is better 
than intravenous MSC, as judged through the colon length, 
weight loss control and clinical pathology score. In con-
trast, for luminal IBD, the efficacy of intravenous injection 
is also weaker than local MSC injection. Ko et al. demon-
strated that MSCs coated with antibodies and delivered to 
the colon, which modified the survival rates, therapeutic 
scores and body weight in the IBD mice [74]. Also research-
ers have detected that MSCs not only have the efficiency 
to upgrade the length of the colon and size of the spleen 
but also depress the risk of colorectal cancer via reducing 
the production of TNF-α, IL-1β and IL-6 and stimulation  
of the STAT3 signaling pathway [75]. The therapeutic ef-
fects of MSCs with intraperitoneal injection and IBD drugs 
are mutually compatible [76]. The gene expression level in 
IBD mice treated with MSCs is also discrepant compared to 
IBD rats and the normal group. Xing et al. established IBD 
rat models to verify such a hypothesis. The results demon-
strated that in the MSC-treated group, the expression of 
the genes Olfm4 and Wnt3a was deregulated while GSK-
3β was upregulated, which contrasts with the IBD group 
[77]. Wang et al. also discovered that MSC administration 
decreased the expression of IL-31b [78]. Although such 

benefits derived from MSC treatment are able to relieve 
the pain of patients with IBD, there are numerous difficul-
ties involved in the application of MSCs. For example, the 
IBD animal model cannot completely replace and reflect 
the actual condition of IBD patients. Different sources of 
MSCs can also differentially influence the MSC action [79].

Macrophages play a  crucial role in the pathogenesis 
of IBD stimulated by intestinal microorganism [80, 81]. 
CD68+ macrophages accumulated in the lamina of the 
intestinal inflammatory lesions reduce the expression of 
tight junction proteins, and damage epithelial cell barrier 
function and integrity, thereby accelerating disease pro-
gression via stimulating iNOS and TNF-α expression [82]. 
MSCs influence the balance between M1 and M2 macro-
phages to exert a therapeutic effect. Wang et al. reported 
that in the acute colitis mouse model, the clinical patho-
logical score was significantly decreased in the MSC group 
compared with the control group. M2 macrophage polar-
ization was enhanced significantly in DSS-colitis with MSC 
administration and the TGF-β signaling pathway was stim-
ulated mainly by anti-inflammatory macrophages, while 
the therapeutic effect of MSCs on IBD would fade away 
if the TGF-β signaling pathway was inhibited [83]. In the 
peritoneal cavity of mice with acute colitis, the amount of 
CD206+ M2 macrophages was significantly increased by 
MSCs with IL-1 pretreatment, which inhibited the number 
of CD11c+ M1 macrophages, thus alleviating inflammatory 
responses in the intestinal mucosa [84]. Semitic et al. also 
demonstrated that MSCs mediated the alternative activa-
tion of macrophages through the inhibition of galectin-3 
[85]. We have demonstrated that hucMSCs could repair 
DSS-induced IBD through the regulation of 15-LOX-1 ex-
pression and the modulation of inflammatory responses 
in macrophages [86]. The mechanism of MSC regulation 
of macrophages to treat IBD remains vague, and more in-
tensive and pervasive investigations are needed to better 
understand it.

Mesenchymal stem cells regulate macrophages 
to treat inflammatory bowel disease-associated 
colorectal cancer

Ulcerative colitis (UC) and Crohn’s disease (CD) are as-
sociated with an increased rate of colorectal cancer (CRC) 
[87, 88]. The estimated risk of CRC varies among stud-
ies, although it is accepted that the risk for malignancy 
increases with duration of diagnosis [89, 90]. CRC is the 
third most commonly diagnosed cancer worldwide, which 
develops slowly and begins with adenoma and progresses 
over several years to carcinoma [91, 92]. The present stud-
ies indicate that MSCs have an effect on the treatment of 
CRC. The stromal cell niche in the intestine is comprised of 
numerous, heterogeneous subsets of stromal cells, which 
include CD45-EpCAM-cells, fibroblasts, myofibroblast, and 
MSCs [93]. Chen et al. reported that MSCs not only could 
increase the length of the colon and the size of the spleen 
but also could reduce the risk of colorectal cancer via re-
ducing the production of TNF-α, IL-1β and IL-6 and inhibit-
ing activation of the STAT3 signaling pathway [75].
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Evidence shows that macrophages in the tumor micro-
environment display M2 phenotype, which dampens the 
anti-tumor immune responses [94–96]. MSCs can exert 
their tumor protecting effects by interacting with macro-
phages in the tumor microenvironment [94, 95]. Mesen-
chymal stem cells can polarize macrophages towards the 
“anti-inflammatory” M2 phenotype, characterized by in-
creased IL-10 production and decreased iNOS and IL-12 ex-
pression [94, 95, 97, 98]. However, Sala et al. reported that 
MSCs transplanted into mice with CRC by intraperitoneal 
injection did not completely home to the damaged inflam-
matory intestinal mucosa lesion, but rather accumulated 
in the abdominal cavity and were accompanied by T cells 
and macrophages. Macrophages treated with MSCs show 
M2 phenotype with increased production of IL-10 and 
iNOS and decreased expression of IFN-γ, IL-6 and TNF [47]. 

Conclusions

In this review, we elaborate the immunoregulatory effect 
of MSCs on macrophages via cell-to-cell contact and para-
crine actions, which inhibits the secretion of pro-inflam-
matory factors in macrophages to alleviate the severity of 
IBD. Macrophages also have the capacity to regulate MSCs, 
which still needs more in-depth analyses to determine the 
specific mechanism. It seems that MSCs from different 
sources may have distinct therapeutic efficacy according to 
the disease. It is necessary to choose the proper approach 
for MSC transplantation for different types of IBD. The dose 
of injected MSC also needs to be optimized, which is criti-
cal to the repair of damaged intestinal mucosa. Finally, the 
mechanism for the potential modulation of macrophages 
by MSCs in IBD needs to be further explored. If these prob-
lems were satisfactorily solved, MSC-based therapy would 
provide a novel strategy for the treatment of IBD and the 
prevention of IBD-associated CRC.
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