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Abstract

Inhaled nitric oxide has been shown to reduce pulmonary hy-
pertension in several disease states. The vasodilatory effect of 
inhaled nitric oxide is limited almost exclusively to the pulmo-
nary circulation, due to its rapid diffusion across the capillary 
membrane and its immediate deactivation by hemoglobin in 
the pulmonary vasculature lumen. However, many reports on 
the use of inhaled nitric oxide have revealed a broad spectrum 
of changes outside the lung. The remote effects are typically 
dose dependent and the mechanisms responsible for these 
effects are incompletely understood. New evidence indicates 
that nitric oxide inhalation leads to formation of new com-
pounds which may be carried as thiol groups attached to pro-
tein in blood or act indirectly through nitrite metabolites. This 
review presents the mechanisms of inhaled nitric oxide con-
version to active compounds/metabolites and discusses their 
actions beyond pulmonary circulation with special emphasis 
on the potential for systemic effects. 
Key words: respiratory system agents, nitric oxide, nitrite, S-ni
trosothiol, ischemia, reperfusion injury.

Streszczenie

Tlenek azotu stosowany wziewnie wykorzystywany jest w le-
czeniu różnych stanów chorobowych przebiegających z nadciś­
nieniem płucnym. Jego działania wazodylatacyjne ograniczone 
są wyłącznie do krążenia płucnego, ze względu na szybką dy-
fuzję przez błony kapilar płucnych i natychmiastową dezakty-
wację przez hemoglobinę. W ostatnim czasie jednak, pojawiło 
się wiele obserwacji wskazujących na szerokie spektrum dzia-
łania wziewnego tlenku azotu również poza łożyskiem płuc-
nym. Te odlegle systemowe efekty jego działania są zazwyczaj 
zależne od dawki, natomiast odpowiedzialne mechanizmy po-
zostają nie w pełni wyjaśnione. Wiele obserwacji wskazuje, że 
wdychanie tlenku azotu prowadzi do powstawania aktywnych 
S-nitrozotioli oraz nitrozylacji grup sulfhydrylowych różnych 
białek. Wszystko to w  połączeniu z  aktywnością produktów 
jego metabolizmu azotynów i azotanów, może stanowić poten-
cjalnie bardziej stabilne źródło magazynowania tlenku azotu 
w ustroju. Prezentowana praca przedstawia mechanizmy kon-
wersji tlenku azotu do aktywnych metabolitów i omawia ich 
działania poza łożyskiem płucnym, ze szczególnym uwzględ-
nieniem potencjału działań ogólnoustrojowych w warunkach 
upośledzonej perfuzji narządowej.
Słowa kluczowe: tlenek azotu, uraz reperfuzyjny, azotyny, S-ni­
trozotiole.
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Introduction

Inhaled nitric oxide (iNO) has been shown to reduce 
pulmonary hypertension associated with several disease 
states. It started to be applied in clinical work late in 1991, 
and became registered as a drug for use in persistent pul-
monary hypertension of the newborn (PPHN) in the Europe-
an Union in 2001. Inhaled nitric oxide therapy in neonates 

and children: reaching a  European consensus in 2004 [1] 
and adults European Expert Recommendations in 2005 [2]. 

The therapeutic potential of inhaled NO as a  selecti-
ve pulmonary vasodilator was shown for the first time in 
a lamb model of pulmonary hypertension in 1991 [3]. The 
vasodilatory effect of inhaled nitric oxide is limited largely 
to the lungs, due to its rapid diffusion across the capillary 
membrane and its immediate deactivation by hemoglobin 
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(Hb) in the pulmonary vasculature lumen. This is in contrast 
to intravenously infused vasodilators that can cause syste-
mic vasodilation and severe systemic arterial hypotension. 
Inhaled NO therapy for selective pulmonary vasodilatation 
in adults and children has been recently reviewed by Bloch 
and Creagh-Brown [4, 5].

Many clinical and experimental reports on the thera-
peutic use of inhaled nitric oxide in various settings have 
revealed a broad spectrum of changes outside the lung [6]. 
The mechanisms responsible for these effects are incom-
pletely understood [7]. The remote effects of iNO are ty-
pically dose-dependent and can take place in the absence 
of systemic hemodynamic changes. These effects go well 
beyond relaxation of vascular smooth muscle and include 
inhibition of leukocyte adhesion and migration and incre-
ases in renal glomerular filtration and natriuresis [8]. NO 
inhalation after various insults results in myocardial, cen-
tral nervous system and liver function improvement. Ad-
ditionally, multi-organ protection in sepsis was noted [9]. 
New evidence indicates that NO inhalation leads to forma-
tion of new compounds which may be carried as thiol gro-
ups attached to protein in blood [10]. Another possibility is 
that inhaled NO acts indirectly through nitrite and nitrate, 
metabolites which have been shown to elevate over time 
during exposure to inhaled NO [11]. A growing body of evi-
dence indicates that iNO has no hemodynamic effects on 
normally perfused tissue, but increases blood flow selec-
tively in ischemic tissue [12]. This review focuses on iNO 
effects outside the lungs, and discusses the possible me-
chanisms of action with particular attention to potential of 
the systemic effects of the gas in conditions of impaired 
organ perfusion.

		
Nitric oxide generation

Nitric oxide is produced endogenously in humans from 
the amino acid L-arginine by a family of enzymes known 
as nitric oxide synthase (NOS). The genes for the three dif-
ferent NOS isoforms – endothelial NOS (eNOS), neuronal 
NOS (nNOS), and inducible NOS (iNOS) – are located on 
different chromosomes. eNOS was first discovered in the 
vascular endothelium and plays an important role in regu-
lating vascular tone. nNOS was discovered in the brain and 
participates in central and peripheral neuronal physiology. 
iNOS was first identified in macrophages and plays an im-
portant role in infection. Transcription of iNOS is mainly 
driven by inflammatory agents such as cytokines and lipo-
polysaccharides. The different NOS may appear in almost 
any cell type. Binding of NO to the heme group of soluble 
guanylate cyclase (sGC) leads to increased conversion of 
GTP to cyclic guanosine monophosphate (cGMP), which in 
turn activates protein kinase G (PKG) [13]. 

Medical-grade NO gas is produced under carefully con-
trolled conditions, diluted with pure nitrogen, and stored 
in the absence of oxygen. An iNO delivery system should 
allow for constant and accurate measurements of NO and 
nitrogen dioxide (NO2). The measurement of iNO and NO2 
concentrations can be undertaken using chemiluminescen-
ce or electrochemical devices [14]. 

The biological action of inhaled nitric oxide

After inhalation, NO diffuses rapidly across the alveolar-
-capillary membrane into the subjacent smooth muscle of 
pulmonary vessels to activate sGC. The effects of cGMP 
are mediated through activation of its effector proteins 
– cGMP-dependent protein kinase PKG, cGMP-gated ion 
channels, and cGMP-regulated phosphodiesterases (PDE) 
[15]. The physiological action of cGMP is limited to its area 
of synthesis by its hydrolysis to GMP by cyclic nucleotide 
PDE or by its export from the cell. PDE5 is considered to 
be the most active cGMP-hydrolyzing PDE in smooth mu-
scle. PDE5 has a high affinity for cGMP and is selectively 
inhibited by compounds such as zaprinast, sildenafil, and 
vardenafil [16]. 

Inhaled nitric oxide dilates pulmonary resistance ves-
sels to improve ventilation–perfusion matching; iNO is 
therefore a selective pulmonary vasodilator. In the normal 
lung, a  low oxygen tension constricts the vascular bed in 
hypoxic regions and redistributes blood flow toward lung 
regions with better ventilation and a higher intra-alveolar 
partial pressure of oxygen. Inhaled NO enhances this me-
chanism by increasing blood flow to well-ventilated lung 
areas that, in some diseases, have an elevated vasomotor 
tone. This vasodilatory effect of inhaled NO is in marked 
contrast to intravenously administered vasodilators. Such 
intravenous agents produce diffuse dilation of the pulmo-
nary vasculature, including areas of non-ventilated lung, 
thereby increasing intrapulmonary shunting and reducing 
the PaO2 [16]. Nitric oxide after inhalation diffuses into the 
bloodstream and is expected to react at a nearly diffusion-
-limited rate (1 s) with both oxy- and deoxyhemoglobin to 
form methemoglobin/nitrate and iron-nitrosyl-hemoglobin 
(HbFeIINO). The metabolic fate of iNO is similar to endoge-
nous NO with the formation of nitrites and nitrates elimi-
nated in the urine. Almost 70% of the inhaled gas will ap-
pear in the urine as nitrates within 48 hours of inhalation. 
Blood levels of nitrate have been reported to increase 4-fold 
during breathing of 80 parts/million (ppm) NO [17]. In addi-
tion to its pulmonary vasodilating effects, iNO has several 
other effects in the lung, including bronchodilatation, anti-
-inflammatory properties and anti-proliferative effects. 

Observations indicating the systemic action  
of inhaled nitric oxide

Inhaled NO is a  selective pulmonary vasodilator, but 
pioneering research already pointed to the possibility of 
discrete systemic effects of gas inhalation, particularly in 
terms of its higher concentrations of about 80 ppm [3]. 
In subsequent years there have been many observations 
supporting possibilities of multidirectional remote sys-
temic iNO effects far beyond the pulmonary circulation. 
Studies in human volunteers showed that inhaled NO 80 
ppm during blockade of regional NO synthesis can sup-
ply intravascular NO to maintain normal forearm blood 
flow and vascular function [17]. Inhalation of NO gas was 
shown to decrease systemic vascular resistance, decrease 
thrombosis after thrombolysis, decrease neointima forma-
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tion after carotid artery injury, and cause bleeding time 
prolongation [18]. 

Inhaled nitric oxide adducts  
and metabolites in systemic circulation

Part of the intravascular NO which diffuses into vascu-
lar smooth muscle and activates sGC can escape hemoglo-
bin scavenging and reacts with oxygen in plasma to form 
more stable NO adducts. Several NO-modified compounds 
have been proposed as species that function to preserve 
iNO bioactivity in blood. All these modified proteins can 
retain the biological properties of NO and are more sta-
ble than NO itself, thereby preserving and increasing the 
persistence of NO. Nitric oxide can form adducts with mo-
lecules containing sulfhydryl functional groups to yield  
S-nitrosothiols (SNO) such as S-nitrosocysteine (CysNO) 
and S-nitrosoglutathione (GSNO), which have been repor-
ted to possess NO-transporting activity [19]. SNO forma-
tion and stabilization occurs by endogenous NO-mediated 
nitrosylating agents such as dinitrogen trioxide (N2O3), or 
by transnitrosylation from low-molecular-weight SNO, such 
as GSNO or CysNO [20]. The S-nitrosylation of cysteine re-
sidue on proteins depends on the precise conditions of NO, 
O2, hydrophobicity, nucleophilicity, and redox surrounding 
the targeted thiols and ultrastructural accessibility of cy-
steine residues under low-oxygen tension, such as hypoxia 
and ischemia, might determine whether a particular thiol 
in a given protein is subjected to S-nitrosylation [21]. 

NO and S-nitrosothiols in plasma can react with protein 
sulfhydryl, forming S-nitrosoproteins [22]. S-nitrosoalbu-
min (SNO-Alb) has been implicated in protection by iNO 
against reperfusion injury in systemic vessels, and posses-
ses NO-like properties, including vasodilatation and inhibi-
tion of platelet aggregation [23]. The half-lives of SNO-Alb 
and GSNO have been reported to be 15-40 min and 8 min, 
respectively [24]. Additionally to SNO, a number of intrava-
scular species capable of causing vasodilation have been 
found: nitrite N-nitrosamines, iron-nitrosyls and nitrated 
lipids [25]. In subsequent studies, S-nitrosylated proteins 
were expanded to include S-nitrosohemoglobin (SNO-Hb), 
which exhibits the ability to mediate selective vasodilation 
in proportion to the degree of hypoxemia. [10]. Inhaled 
NO can generate SNO-Hb through multiple reactions. Re-
actions with hemes of Hb to the adjacent Cysβ93 residue 
are relatively inefficient because of relatively low levels [10]. 
Much more effective is SNO-Hb generation with the invo-
lvement of GSNO produced in airways from N2O3, through 
a simple transnitrosylative transfer of the NO group. This 
pathway was suggested by Terpolilli and coworkers in their 
recently published experimental stroke model study. They 
have demonstrated neuroprotection by increasing circula-
ting levels of SNO-Hb and the SNO-Hb–generating nitrite 
after NO inhalation [26].

Hemoglobin role in nitric oxide transport

A subject of very great interest is currently the dual role 
of red blood cells (RBCs) and hemoglobin, not only as car-

riers of oxygen but also as direct effectors of local blood 
flow. There have been suggested three main mechanisms 
by which RBCs can regulate their own distribution in the 
microcirculation: deoxygenation-dependent release of ATP 
from RBCs, which stimulates production of NO and other 
vasodilators in the endothelium; release of vasoactive NO 
from SNO-Hb upon deoxygenation; and reduction of natu-
rally occurring nitrite to vasoactive NO by deoxygenated 
Hb [27]. Hemoglobin can react with nitric oxide and related 
compounds depending on specific conditions. NO can be 
consumed, bound, or generated by four different reactions: 
• �oxyhemoglobin + nitric oxide → methemoglobin + nitrate 

(the classical pathway), 
• �deoxyhemoglobin + nitric oxide ↔ nitrosyl-hemoglobin, 
• �Hb (b93-cys) + nitric oxide ↔ S-nitrosohemoglobin, 
• �deoxyhemoglobin + nitrite → methemoglobin + nitric oxide 

[28]. 
The O2 binding and delivery properties of RBCs are gu-

ided by the allosteric properties of the hemoglobin inside 
the cells. Hemoglobin is in equilibrium between two qu-
aternary structures, the relaxed (R) structure with high O2 
affinity, characterizing oxygenated Hb, and the tense (T) 
structure with low O2 affinity, characterizing deoxygenated 
Hb. At high PO2 (oxygen partial pressure), Hb will assume 
the R structure. As the blood enters the microcirculation, 
the PO2 decrease will promote O2 off loading from hemo-
globin and a  shift to the T structure [29]. Hemoglobin in 
the presence of oxyhemoglobin in its R structure binds NO 
at highly conserved Cys-β93 residues, forming SNOHb. Un-
der physiologic conditions, SNOHb is produced in NO-Hb 
interactions in quantities and on time scales that compe-
te favorably with those of methemoglobin and heme-iron 
nitrosyl hemoglobin, which were classically viewed as the 
terminal and sole products of reactions between NO and 
Hb [30]. Binding of NO to the heme iron of Hb predomina-
tes in the deoxygenated state on its T structure. As such, 
circulating erythrocytes may effectively store and release 
NO peripherally in areas of low oxygen tension, augmen-
ting microvascular blood flow and oxygen delivery via hy-
poxic vasodilation of systemic vascular beds [7]. 

All these findings resulted in a model of the respiratory 
cycle, first proposed by Stamler and coworkers, which is 
based on the coordinated transport of three gases, NO, O2, 
and CO2. In this cycle, the delivery of NO bioactivity convey-
ed through SNO is coupled to O2 delivery and thus is regu-
lated by tissue PO2 [10]. Hypoxia, hypercarbia, and acidosis 
promote the deoxygenated conformation (T-structure) in 
Hb that coordinately liberates SNO and O2, thereby mat-
ching blood flow with metabolic demand [31]. More recen-
tly, hypoxic vasodilation has been shown in the absence of 
red blood cells, suggesting that other, possibly integrated, 
overlapping or redundant pathways exist to ensure tissue 
perfusion. These may include waste products of metabo-
lism such as adenosine, potassium, lactate and/or carbon 
dioxide among others. In this context, plasma nitrite may 
provide a bridge between red blood cell dependent and in-
dependent effects [32].
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Nitrite as a mediator of inhaled nitric oxide 
effects outside the lungs

Nitrate and nitrite generation has been reported to de-
velop after NO inhalation and treatment with different NO 
donors including nitroglycerine [35]. For many years both 
nitrate and nitrite were considered as inert byproducts of 
nitric oxide metabolism. These observations were suppor-
ted by studies from Lauer et al. [36], demonstrating that 
nitrite had no vasodilator activity when infused at concen-
trations of 200 μM in the forearm of normal human volun-
teers. 

New evidence suggests that nitrite represents a circu-
lating storage pool of NO and may selectively donate nitric 
oxide to hypoxic vascular beds [28]. Nitrite can be a sub-
strate for NOS-independent generation of NO in vivo, and 
reduction of nitrite possibly occurs systemically in blood 
and tissues. There are several routes by which nitrite can 
be bioactivated to nitric oxide and other nitrogen oxides. In 
contrast to NOS-dependent nitric oxide production, these 
pathways are greatly enhanced during hypoxia and low pH. 
They may be considered as a backup system to ensure bio-
active nitric oxide under conditions where NOS enzymes 
may be dysfunctional [13, 35]. 

The vasoactive role of nitrite was first shown by Cannon, 
who reported artery-to-vein gradients in nitrite across the 
human forearm, with increased consumption of nitrite du-
ring exercise stress, suggesting that nitrite was metabolized 
across the peripheral circulation. Additionally, in humans 
breathing 80 ppm iNO, the observed increase in peripheral 
forearm blood flow was only associated with increases in 
plasma nitrite and there was no significant increase in pla-
sma SNO-albumin or erythrocyte SNO-Hb [17]. Mechanisms 
proposed for the in vivo conversion of nitrite to NO include 
enzymatic reduction by xanthine oxidoreductases (XOR) [36] 
and non‑enzymatic disproportionation/acidic reduction. Ho-
wever, vasodilatation mediated by near-physiological con-
centrations of nitrite under normal physiological conditions 
appears to be inconsistent with a mechanism of nitrite re-
duction by XOR or disproportionate, because both of these 
pathways require very low pH and nearly anoxia. The obse-
rvation that nitrite infusions produce vasodilatation along 
the physiological oxygen gradient suggests an alternative 
mechanism of bioactivation [37]. In the absence of mole-
cular oxygen during hypoxia, NOS cannot produce NO and 
deoxyhemoglobin catalyses NO release from nitrite, thus po-
tentially also providing hypoxia-specific vasodilatory effects. 
[28]. Other studies have revealed that nitrite-related RBC-de-
pendent vasodilatation is initiated at an oxygen tension aro-
und hemoglobin P50 (arterial PO2 of 40 mmHg) and occurs 
as hemoglobin unloads oxygen to 50% saturation. This ma-
ximal reductase activity of hemoglobin is regulated and pe-
aks around the P50 level, because of two opposing chemical 
factors related to R or T hemoglobin conformation. R-state 
Hb exhibits a decreased redox potential of the hemes [38]. 
The maximal reductase activity around the P50 level invo-
lves the role of the T state or deoxygenated conformation of 
hemoglobin that has most hemes available for binding and 

reaction with nitrite. Such a maximal nitrite reductase acti-
vity at Hb P50 appears ideal for oxygen sensing and hypoxic 
vasodilation because this point is thermally, chemically, and 
electronically responsive to tissue metabolism. Additionally, 
a maximal reductase activity at P50 is biochemically consi-
stent with a role in hypoxic vasodilation because physiologi-
cal studies demonstrate an onset of hypoxic vasodilation at 
40–60% hemoglobin oxygen saturation [39].

Hemoglobin, myoglobin, neuroglobin, XOR, aldehyde oxi-
dase, carbonic anhydrase, eNOS, and mitochondrial enzymes 
have all been identified in nitrite bioactivation [25, 40]. Con-
tribution from these factors varies between tissues and is 
dependent on local pH, oxygen tension, and redox status [13]. 

Conclusions

Several experimental and clinical studies have indica-
ted that inhaled nitric oxide has no hemodynamic effects 
on normally perfused tissue, but increases blood flow se-
lectively in ischemic tissue. Because of these properties 
iNO may be easy implemented as a  rescue therapy for 
ischemic conditions in which collateral blood flow is im-
portant or until interventional or spontaneous reperfusion 
occurs. Numerous examples of iNO applications in various 
conditions of systemic organ dysfunction will be presented 
in the second part of this review.
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