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Abstract 
Purpose: Motivated by recent advances in deep learning, the purpose of this study was to investigate a  deep 

learning method in automatic segment and reconstruct applicators in computed tomography (CT) images for cervix 
brachytherapy treatment planning. 

Material and methods: U-Net model was developed for applicator segmentation in CT images. Sixty cervical can-
cer patients with Fletcher applicator were divided into training data and validation data according to ratio of 50 : 10, 
and another 10 patients with Fletcher applicator were employed to test the model. Dice similarity coefficient (DSC) 
and 95th percentile Hausdorff distance (HD95) were used to evaluate the model. Segmented applicator coordinates 
were calculated and applied into RT structure file. Tip error and shaft error of applicators were evaluated. Dosimetric 
differences between manual reconstruction and deep learning-based reconstruction were compared. 

Results: The averaged overall 10 test patients’ DSC, HD95, and reconstruction time were 0.89, 1.66 mm, and 17.12 s, 
respectively. The average tip error was 0.80 mm, and the average shaft error was less than 0.50 mm. The dosimetric dif-
ferences between manual reconstruction and automatic reconstruction were 0.29% for high-risk clinical target volume 
(HR-CTV) D90%, and less than 2.64% for organs at risk D2cc at a scenario of doubled maximum shaft error. 

Conclusions: We proposed a deep learning-based reconstruction method to localize Fletcher applicator in three- 
dimensional CT images. The achieved accuracy and efficiency confirmed our method as clinically attractive. It paves 
the way for the automation of brachytherapy treatment planning. 
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Purpose 
Cervical cancer is a  common malignant tumor in 

women [1]. External beam radiotherapy combined with 
brachytherapy is the standard radiotherapy treatment 
for cervical cancer. At present, image-based three-di-
mensional (3D) brachytherapy has become the standard 
procedure. Applicator reconstruction is a critical step in 
treatment planning [2]. At this stage, the applicator re-
construction is performed manually by the planner. 

Automatic planning is an important research topic in 
radiotherapy [3]. Automatic, accurate, and rapid appli-

cator reconstruction needs to be resolved for automatic 
planning in brachytherapy [4]. Before deep learning, re-
searchers usually used threshold-based method to seg-
ment the applicator; however, this method still requires 
planners to define some points manually in clinical prac-
tice [5]. In recent years, more studies on automatic appli-
cator reconstruction have been conducted based on deep 
learning [6-12]. 

In this study, a deep learning model to automatical-
ly segment and reconstruct the applicator was built. The 
dosimetric differences were compared between manual 
reconstruction and automatic reconstruction. 
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Material and methods 
Segmentation model 

The network structure is illustrated in Figure 1.  
The model was based on a U-Net structure and consisted 
of 10 components [13]. The model input included two- 
dimensional (2D) computed tomography (CT) images; 
the first 5 layers were under sampling layers, each layer 
contained two convolution operations and max pooling 
operation. Layers 6 to 9 were up sampling layers. After 
the transposed convolution operation, each layer merged 
the low-level information with the high-level information 
through a skip connection and then, performed two con-
volution operations. The convolution kernel was 3 × 3,  
the transposed convolution kernel and the max pooling 
kernel were 2 × 2, the step was both 1, and the activa-
tion function was Relu. The 10th layer integrated the 
cross-channel features through a 1 × 1 convolution layer, 
the activation function was sigmoid, and finally derived 
the desired 256 × 256 2D mask image. 

Data annotation 

We retrospectively studied 70 patients who complet-
ed CT-based 3D brachytherapy. All patients used a CT/
magnetic resonance imaging (MRI) Fletcher applicator 
(Elekta part # 189.730). The resolution of CT images was  
1 mm × 1 mm, and the slice thickness was 3 mm. The 
number of CT slices was 69 to 100 (average, 87). The 70 pa- 
tients were divided into training data, validation data, 
and test data according to the ratio of 50 : 10 : 10. The an-
notating of applicator was performed by an experienced 
physicist using Oncentra (Elekta AB, Stockholm, Sweden, 
version 4.3) treatment planning system. The tandem di-
ameter of CT/MRI Fletcher applicator was 4 mm, and the 
inner lumen of tandem was about 2 mm, so the applicator 
from the middle of each channel was annotated and de-
picted in a circle with a 2 mm radius. The number of CT 
slices containing mask images (ground truth) was from 
38 to 71, and the average number of slices for training 
data and validation data was 58 and 56, respectively. 

Data pre-process 

We performed historical equalization on the CT im-
ages in the training data and validation data to raise 

the applicator characteristics. For cervical cancer pa-
tients, the applicator is usually located in the middle 
area of CT image. In order to reduce the training data 
and validation data size, we shortened the CT images 
to a small region that included the Fletcher applicator 
(256 × 256 pixels). The shorten center was the geomet-
ric center of the CT image. We normalized all CT im-
ages and ground truths, so that all data were between  
0 and 1. Deep learning model generally requires a large 
number of training data to learn effectively and pre-
vent under-fitting or over-fitting. Therefore, we used 
ImageDataGenerator interface of Keras to augment the 
training data. More images were generated by rotating, 
enlarging, scaling, and shifting the image in other direc-
tions. The final training data and validation data were 
256 × 256 × 116 × 50 and 256 × 256 × 56 × 10, respec-
tively. 

Training and segmentation 

The training and segmentation were completed on 
an Intel Core i7-7700HQ CPU @ 2.80GHz, GPU NVIDIA 
GeForce GTX 1050ti, 8GB RAM personal computer, and 
the process is illustrated in Figure 2. In the training stage, 
the pre-processed training data and validation data were 
placed into the U-Net model. The batch size was 8, the 
epoch was 200, and the initial learning rate was 0.0001. 
The learning rate was dynamically adjusted by monitor-
ing the learning process, and early stopping was adopted 
to avoid over-fitting of the model. We selected an Adam 
(adaptive moment estimation) as the optimizer and a dice 
loss as the loss function in the training stage [14]. The dice 
similarity coefficient (DSC) and dice loss were defined as 
follows: 

DSC = (2|A∩B|+λ)
(|A|+|B|+λ) (1)

where A  is the prediction mask image, B is the ground 
truth, and λ is the Laplace smoothing factor (usually 1), 
which could reduce over-fitting and avoid the denomi-
nator, and is 0. 

Ls = 1 – DSC (2)
After the training, the data of the test set were in-

putted into the model for segmentation, and the segmen-
tation result of the corresponding patient was obtained 
and evaluated. 

Fig. 1. U-Net structure for applicator segmentation
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Evaluation of segmentation results 

We used two parameters to evaluate segmentation re-
sults [15, 16]. The first one was DSC. The DSC was used to 
measure the similarity of the two segmentation samples 
(manual and automatic). The range of DSC was 0-1. The 
larger the DSC, the better the segment. In the test process, 
the mean and standard deviation of DSC were calculated 
for all slices. 

The second parameter was Hausdorff distance (HD). 
The HD was defined as: 

HD(A, B) = max (D(A, B), D(B, A)) (3)

D(A, B) = maxa∈A minb∈B ||a–b|| (4)

where A is the prediction image surface, B is the ground 
truth surface, and a and b are the points on the surfaces of 
A and B, respectively. In order to eliminate the influence 
of outliers between the predicted image and the ground 
truth, the 95 percentile HD (HD95) was calculated. The 
unit of HD95 was mm. The smaller the HD95, the better 
the segmentation. 

Automatic applicator reconstruction 

We applied the test data into the trained model. The 
segmented applicator contour was composed by multiple 
points. We used a clustering method to create applicator 
contours as showed in reference [12]. For each channel, 
the average coordinate value of all points in one slice was 
calculated to obtain the trajectory of the channel central 
path. A polynomial curve fitting method was used in the 
reconstruction to reduce the systematic error. Then, the 
trajectory was written into the RT structure file, and the 
process of automatic reconstruction was completed. 

Evaluation of reconstruction results 

For each patient, we used the tip error and the shaft 
error to evaluate the reconstruction results [17]. The defi-
nitions of tip error and shaft error were as follows: 

|Predi – Gti|
1
N ∑

i = 1
NETip = (5) 

where N is the total channel number (3 in this study), Predi 
is the predicted length of the i-th channel, and Gti is the 
annotation length of the i-th channel. 

||Pred(x, y), Gt(x, y)||1
MN ∑

i = 1 ∑
j = 1

M nEShaft = (6) 

where M is the slices number, Pred(x, y) are the predicted 
coordinates of the i-th slice, and Gt(x, y) are the annota-
tion coordinates of the i-th slice. 

Dosimetric comparison

Dose volume histogram (DVH) parameters were used 
to evaluate the dosimetric difference between the auto-
matic reconstruction and manual reconstruction. The 
DVH parameters were D90% for high-risk clinical target 
volume (HR-CTV), and D2cc for organs at risk (OARs). 
The OARs included bladder, rectum, sigmoid, and intes-
tines [18].

Results
In the training stage, the loss converted to a  low-

er level after 10 epochs. Because of the early stopping, 
the model finished training after 60 epochs. At the end 
of training stage, the loss of training data and validation 
data decreased to 0.10 and 0.11. The average DSC was 
0.90 for the training data and 0.89 for the validation data. 

Fig. 2. Process of training and segmentation on the U-Net
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The training results indicated that there was no over-fit-
ting. The total training time was 8 hours for 60 epochs. 

The segmentation and reconstruction results are pre-
sented in Table 1. In the average overall test data, the 
applicator segmented DSC was 0.89 and the HD95 was  
1.66 mm. Compared with the manual reconstruction, the 
average tip error of the 10 cases was 0.80 mm, and the shaft 
errors were all within 0.50 mm. Tip error and shaft error 
of three channels were within a  reliable range. Table 2  
shows the breakdown time in this model. The average 
total time (including pre-processing, segmentation, and 
reconstruction) was 17.12 s. A reconstruction comparison 
of Fletcher applicator is illustrated in Figure 3. 

In order to obtain a  more conservative result, we 
chose 1 mm, which doubled the maximum shaft error  
(0.5 mm), to compare dosimetric differences. Table 3 pres-

ents the dosimetric data obtained by the two different re-
construction methods. Although we increased the shaft 
error, the dosimetric differences of HR-CTV D90% were 
still less than 0.30%, and the maximum 2.64% for OARs 
D2cc. These results confirmed that the accuracy of this 
model was acceptable [19]. 

Discussion
Applicator reconstruction is one of the most criti-

cal steps in brachytherapy treatment planning [2, 20]. 
Motivated by recent advances in deep learning, we in-
vestigated a deep learning method to automatically seg-
ment and reconstruct applicators in CT images for cervix 
brachytherapy treatment planning with the Fletcher ap-
plicator. Evaluation results proved its feasibility and reli-

Table 1. The results of applicator segmentation and reconstruction on the test cases  

Test case Segmentation Reconstruction 

DSC HD95 (mm) ETip (mm) EShaft (mm) 

Channel 1 Channel 2 Channel 3 

1 0.88 ±0.10 2.07 ±5.28 1.00 0.38 ±0.37 0.49 ±0.33 0.32 ±0.26 

2 0.90 ±0.07 0.97 ±0.83 0.00 0.29 ±0.23 0.50 ±0.32 0.30 ±0.22 

3 0.90 ±0.09 1.40 ±2.44 1.00 0.35 ±0.37 0.32 ±0.34 0.30 ±0.17 

4 0.89 ±0.09 1.26 ±2.19 0.00 0.30 ±0.25 0.35 ±0.46 0.33 ±0.20 

5 0.88 ±0.12 1.56 ±3.69 1.00 0.30 ±0.28 0.28 ±0.32 0.31 ±0.22 

6 0.88 ±0.08 1.89 ±6.27 1.00 0.36 ±0.29 0.40 ±0.26 0.36 ±0.34 

7 0.89 ±0.10 2.07 ±5.56 2.00 0.45 ±0.77 0.47 ±0.58 0.27 ±0.17 

8 0.90 ±0.06 0.99 ±0.76 1.00 0.34 ±0.16 0.30 ±0.24 0.33 ±0.16 

9 0.89 ±0.13 1.72 ±4.31 1.00 0.26 ±0.12 0.29 ±0.19 0.26 ±0.26 

10 0.90 ±0.09 2.66 ±8.90 0.00 0.30 ±0.25 0.31 ±0.24 0.25 ±0.16 

Mean 0.89 ±0.09 1.66 ±4.02 0.80 0.33 ±0.31 0.37 ±0.33 0.30 ±0.22 

Channel 1, Channel 2, Channel 3 – three channels of Fletcher applicator 

Table 2. Breakdown time (s)
 Test case Pre-processing time Segmentation time Reconstruct time Total time 

1 3.64 5.54 7.14 16.32 

2 3.33 6.17 7.06 16.56 

3 2.84 5.85 7.36 16.05 

4 3.27 5.98 8.16 17.41 

5 4.15 5.19 10.01 19.35 

6 3.14 5.90 7.93 16.97 

7 3.55 5.43 7.48 16.46 

8 3.18 5.39 7.08 15.65 

9 4.12 6.08 9.00 19.20 

10 3.54 5.82 7.84 17.20 

Mean 3.48 5.73 7.91 17.12 
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ability. The model can quickly and accurately segment the 
applicator regions, and complete the reconstruction. For 
the commonly used applicator reconstruction, this mod-
el takes about 17.12 s from pre-processing to reconstruc-
tion, while an experienced physicist needs about 60 s,  
which increases the reconstruction efficiency by almost  
4 times. The pre-processing, segmentation, and recon-
struction time would be shorter if a  high-performance 
computer was used. 

Many scholars have conducted a  series of research 
on the reconstruction of interstitial needles. Zhang et al. 
constructed an attention network and applied it to ultra-
sound-guided high-dose-rate prostate brachytherapy [6]. 
Wang et al. built two kinds of neural networks for segmen-
tation of interstitial needles in ultrasound-guided prostate 
brachytherapy [7]. By constructing a 3D U-Net network, 
Zaffino et al. completed the reconstruction of interstitial 
needles in MRI-guided cervical cancer brachytherapy 
[17]. Moreover, Dai et al. developed a deeply supervised 
model by an attention-gated U-Net, incorporated with 
total variation regularization to detect multi-interstitial 
needles in MRI-guided prostate brachytherapy [8]. 

There are also studies about applicator segmenta-
tion. Hrinivich et al. studied an image model algorithm 
to reconstruct the applicator in cervical cancer guided by 
MRI. The average reconstruction accuracy of ring appli-
cator and tandem applicator were 0.83 mm and 0.78 mm,  
respectively [9]. Based on the U-Net, Jung et al. pro-
posed a  deep learning-assisted applicators and intersti-
tial needles digitization method for 3D CT image-based 
brachytherapy. In tandem and ovoid applicator digitiza-
tion, DSC reached 0.93 and HD was less than 1 mm [10, 11].  
Deufel et al. applied image thresholding and density- 
based clustering in applicator digitization. Their HDs 
were ≤ 1.0 mm, and the differences for HR-CTV D90%, 

D95%, and OARs D2cc were less or equal to 1% [12]. In the 
present study, the DSC was 0.89, HD was 1.66 mm, the 
dosimetric differences for the target were less than 0.30%, 
and the maximum 2.64% for OARs D2cc. Compared with 
previous studies, our results still have room for an im-
provement. 

After the model trained with the Fletcher applicator, 
six patients with a  vaginal CT/MRI applicator (Elekta 
part # 101.001) were also used to test this model. A vag-
inal applicator differs from the Fletcher applicator with 
a  connection end. The average overall test data DSC, 
HD95, tip error, and shaft error were 0.84, 1.81 mm,  
1.00 mm, and 0.31 mm, respectively. The dosimetric dif-
ference of HR-CTV D90% was less than 0.51%, and the one 
of OARs D2cc was less than 4.87%. The results of vaginal 
applicator were slightly worse than that of the Fletcher 
applicator, since the model was trained by Fletcher appli-
cators; however, the differences of all evaluated parame-
ters were less than 5%. 

Automatic radiotherapy planning is a hot spot in cur-
rent studies, and it is also a subject of interest of our re-
search group. We have made efforts in this direction [21, 
22]. These results prove that this model could be integrat-
ed into an automatic treatment planning system. 

Our present study has some limitations. One is that, 
according to published research, the accuracy needs to be 
improved. Although the dosimetric differences between 
the two reconstruction methods were acceptable, we are 
still working on the ways to increase the segmentation 
and reconstruction accuracies. The other limitation is that 
only two applicator types were included in this study. 
Here, we chose the Fletcher applicator because it is one of 
the most commonly used applicators in our center. Even 
though there are many kinds of applicators in clinical 
practice, this model could not be used for other applica-
tor types. However, we are convinced that reconstruction 
of other applicator types can be carried out quickly with 
the foundation of the present research. Another limita-
tion of this work is that the CT slice thickness was large 
in this study (3 mm). Slice thickness is a source of the tip 
uncertainty; therefore, the large slice thickness could be 
a reason of the large tip error in this study. 

Conclusions 
In summary, applicator reconstruction is a  critical 

process of treatment planning. We implemented a U-Net 
model for applicator segmentation and reconstruction in 

Fig. 3. Comparison of Fletcher applicator reconstructed by 
manual and automatic methods 
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Table 3. The results of dosimetric differences 
between manual and automatic reconstructions  

Parame-
ters 

Manual Automatic Differ-
ences 

HR-CTV D90% 600.42 ±0.82 598.70 ±3.55 0.29% 

Rectum D2cc 339.29 ±44.88 334.96 ±41.69 1.27% 

Bladder D2cc 392.48 ±43.06 402.83 ±43.87 2.64% 

Sigmoid D2cc 273.81 ±93.05 274.77 ±93.01 0.35% 

Intestines D2cc 350.78 ±65.65 353.64 ±65.41 0.82% 

The unit of D90% and D2cc is cGy 
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CT-based cervix brachytherapy in this study. The DSC, 
HD95, tip error, and shaft error were used to evaluate this 
model. The results demonstrated that our model is clini-
cally attractive. Therefore, this research paves the way for 
automatic treatment planning in brachytherapy. 
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