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Wnt/Fzd/β-catenin signaling pathway  
in liver 

The Wnt/Fzd/β-catenin signaling pathway plays 
a significant role in liver physiology and pathology. 
Its involvement was demonstrated in development of 
liver and in morphogenesis of biliary ducts. It main-
tains correct homeostasis of liver cells in postnatal life 
[1], and it influences development of structure and 
metabolic activity of the hepatic acinus, allowing for 
growth and regeneration of the liver. It protects the 

liver from the effects of toxic agents and oxidative 
stress [2]. Also mechanisms of carcinogenesis, related 
both to hepatoblastoma and to primary hepatocel-
lular carcinoma (HCC) involve the pathway [1, 3]. 
Interactions of the pathway have been described with 
other pathways accelerating hepatocyte proliferation. 
Detailed mechanisms of HCC development remain 
unknown and determination of a simple model of 
hepatocarcinogenesis with involvement of the Wnt 
signaling pathway has proven to be difficult [1]. 
Due to the fact that incidence of chronic hepatitis C 
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is increasing, leading to development of end-stage 
liver disease including cirrhosis and HCC [4], it is im- 
portant to define mechanisms of hepatitis C virus 
(HCV)-induced liver carcinogenesis with involve-
ment of the Wnt/β-catenin signaling pathway. Al-
ready at the beginning of this century more numer-
ous mutations of β-catenin were found to develop in 
HCV-associated HCC than with HBV-related HCC 
[5]. Recent years have brought the results of studies 
on direct interactions between oncogenic HCV pro-
teins and components of the Wnt/β-catenin signal-
ing pathway [6-10].

Double role of β-catenin

In its inactivated state, β-catenin is phosphorylated 
at its serine (SER)/threonine (THR) residues. It rep-
resents a component of a large cytoplasmic protein 
complex with glycogen synthase kinase 3β (GSK-3β),  
casein kinase 1 (CK1), the product of the APC (ad-
enomatous polyposis coli) suppressor gene and axin/
conductin [11, 12]. The complex controls intra-

cellular levels of β-catenin mainly through protein 
phosphorylation. Phosphorylation of the β-catenin 
N-terminus represents a pre-requirement for recog-
nition by β-TrCP of an ubiquitin ligase E component, 
with its subsequent degradation in proteasomes. At 
the first stage phosphorylation of serine takes place 
in position 45 (SER45) by CK1α/ε, and then SER33, 
SER37 and THR41 by GSK3β [13]. Control of β-cat-
enin phosphorylation also involves the Diversin pro-
tein: while CK1α binds directly to axin, CK1ε links 
the ankyrin fragment of the Diversin protein, form-
ing a degradation complex [14]. Phosphorylation of 
β-catenin by GSK3β is much more effective in the 
presence of axin, and overexpression of conductin 
additionally augments degradation of β-catenin. In 
neoplastic tumors (including those in the liver) ex-
pression of conductin (but not axin) is frequently el-
evated and may represent an early diagnostic marker 
of certain tumors [15]. APC protein represents an-
other protein involved in formation of the β-catenin 
destructive complex. The sites for β-catenin binding 
are located in its central portion [16]. The critical 

Fig. 1. Immunocytochemical and hybridocytochemical localization of β-catenin in normal and pathological liver. Mem-
branous expression of β-catenin in control liver (A); mostly membranous (B) and cytoplasmic (C) expression of β-catenin 
in human hepatocellular carcinoma cells; mRNA for β-catenin in HCC (D). Immunohistochemistry (A-C) and hybridiza-
tion in situ method (D). Hematoxylin counterstained. Objective magnification 40×(A-D)
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variables for β-catenin activity involve nuclear export 
of APC (reducing its activity) or loss of the nuclear 
export signal (NES) sequence in the mutated APC 
(increasing transcriptional activity) [17]. 

β-catenin, together with the remaining catenins  
(α and γ) and E-cadherin, participates in formation 
of intercellular junctions of zonulae adherens type. It 
is located at the inner side of the cell membrane, and 
it secures the link between E-cadherin and cell cyto-
skeleton [18]. Zonulae adherens are also present be-
tween polarized epithelial cells, such as hepatocytes. 
Apical surfaces of the cells represent regions which 
generate bile canaliculi while membranes of basal he-
patocyte portions adjoin sinusoidal endothelial cells. 
Junctions of zonula adherens, desmosome and nexus 
(gap junction) types are present on lateral surfaces of 
hepatocytes [19]. Tight junctions are areas of local-
ized contact, found in the apical region of adjacent 
epithelial cells. In the liver they are situated close to 
capillary bile canaliculi, and they isolate the canalic-
ular compartment from the intercellular space and 
hepatic sinusoids [19, 20]. A novel mechanism is 
suggested of cross-talk between specific components 
of tight and adherens junctions to regulate adhesion 
between hepatic cells [21]. β-catenin is encoded by 
the CTNNB1 gene (chromosome 3p21-p22), con-
sisting of 16 exons (the first is a non-coding exon). It 
represents a highly conserved protein, formed of 781 
amino acids (aa), and, together with plakoglobin, it 
belongs to the armadillo protein family [22]. 

Canonical pathway of Wnt/Fzd/β-catenin 
signaling

Stimulation of the canonical pathway induced by 
Wnt ligands takes place through one of the recep-
tors belonging to the Frizzled (Fzd) family [23]. Out 
of the old two LRP (low density lipoprotein-receptor 
related protein) co-receptors, LRP-5 and -6, the lat-
ter is more important in formation of the Fzd-LRP 
complex [24]. The Fzd receptor, through its PDZ 
(PSD-95/dics large/ZO-1 homologous) domain, re-
cruits a cytoplasmic Dvl (disheveled) protein, which 
contains three conserved domains of DIX, PDZ and 
DEP. DIX domains and, probably, multimerization of 
Dvl protein, recruits the axin complex and activates 
GSK3β to phosphorylate the intracellularly located 
PPPSP motifs of the LRP co-receptor. This leads to 
inhibition of β-catenin phosphorylation and to its ac-
cumulation in cytoplasm [23]. The Dvl protein binds 
approximately 18 DAPs (Dvl-associated), including 
Nkd, Idax, Frodo, Dapper, GBP/Frat, Stbm, Daam1 
and Pricle proteins, which may activate or inhibit 
Wnt signaling [25].

Activation of the Wnt canonical pathway results 
in inhibition of β-catenin phosphorylation and ab-
sence of the protein degradation. Its stabilization and 
accumulation in the cytoplasm facilitates transport of 

β-catenin to the cell nucleus. Through the develop-
ment of a complex with LEF (lymphoid enhancer fac-
tor)/TCF (T cell factor), expression of various genes 
becomes intensified. 

Individual Wnt ligands (19 cystein-rich glycopro-
teins) were qualified to form two groups. The first 
contains transforming glycoproteins with oncogenic 
properties, linked to the canonical pathway, including 
Wnt-1, -3a, -8 and -8b. The other group contains 
non-transforming proteins, activating the non-ca-
nonical pathway with activity opposite to that of 
first group ligands. They include Wnt-4, -5a and -11 
[26]. In addition, it was demonstrated that certain 
non-canonical ligands (Wnt-4 and Wnt-5a) may 
induce β-catenin-dependent signals but only upon 
fusion with specific subtypes of Fzd receptors, and 
they manifest a selective dependence from LRP-5 and 
LRP-6 [24]. 

Receptors of Frizzled family

Fzd receptors represent a separate class (Frizzled) 
in the family of GPCRs (G-protein-coupled recep-
tors), consisting of 10 isoforms of Fzd1-10 [27]. They 
are responsible for proliferation, differentiation and 
migration of cells, including hepatocytes [24]. Each 
of the receptors represents a protein with seven hy-
drophobic transmembrane domains, a C-terminal 
PDZ domain and an N-terminal extracellular cys-
teine-rich domain (CRD), which binds Wnt ligands 
[28]. Various Wnt ligands bind to distinct Fzd re-
ceptors [27]. For example, Fzd2 receptor, consisting 
of 565 aa (56% identical to a homologous receptor 
in Drosophila), is encoded on chromosome 17q21.1. 
[29, 30]. Human Fzd1 and Fzd7 receptors, with size 
of, respectively, 647 and 574 aa, have been mapped 
to chromosomes 7q21 and 2q33, respectively [30]. 
Recent reports indicate that the Fzd7 receptor un-
dergoes overexpression in various tumors, including 
HCC. It plays a significant role in biology of stem 
cells, and in development and progression of malig-
nant tumors [31]. 

In function of the canonical pathway of Wnt, 
transport of β-catenin to the cell nucleus has principal 
significance. The detailed mechanism of the transport 
(particularly in tumor cells) has not been fully clari-
fied. Previously the process was suggested to involve 
the NLS, independently of involvement of the im-
portin protein, as a result of a direct interaction with 
proteins of nuclear envelope pores [32]. Subsequent 
studies excluded presence of NLS in the β-catenin 
molecule [33, 34]. β-catenin undergoes translocation 
also in the reciprocal direction, from the cell nucleus 
to the cytoplasm. The export takes place in associa-
tion with APC, axin [35] and RanBP3 (Ran binding 
protein 3) proteins [36]. Axin and APC augment cy-
toplasmic while TCF4 and BCL9/Pygopus augment 
nuclear expression of β-catenin, but this reflects its in-
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creased accumulation in a given compartment rather 
than a stimulated transport [37]. Some investigators 
point to the need for activation of small GTPases and 
Rac-1 (Ras-related C3 botulinum toxin substrate 1) 
in the process of nuclear accumulation of β-caten-
in. Together with JNK2 (Jun N terminal kinase 2) 
and β-catenin it forms a triple cytoplasmic complex, 
causing phosphorylation of SER191 and SER605 in the 
β-catenin molecule, facilitating its transport to the 
cell nucleus [38]. Recent studies demonstrate that 
SER23 undergoing glycosylation (O-GlcNAc modifi-
cation) is responsible for subcellular localization and 
transactivation of β-catenin. Upon glycosylation of 
SER23, β-catenin undergoes translocation from the 
cell nucleus to cell membranes. This is linked to am-
plification of β-catenin interaction with E-cadherin, 
a decreased β-catenin-TCF interaction, decreased 
transcriptional activity and Wnt target gene expres-
sion [39].

Following translocation to the cell nucleus, β-cat-
enin binds to TCF/LEF transcription factors, belong-
ing to HMG (High Mobility Group) box proteins. 
In mammals four genes encode TCF (TCF1, LEF1, 
TCF3 and TCF4). They associate with DNA sequenc-
es termed WRE (Wnt responsive element). In cas-
es of absence of Wnt stimulation and upon absence 
of β-catenin in the cell nucleus, the TCF/LEF com-
plex inhibits transcription of Wnt-dependent genes. 
It contains four domains, the N-terminal β-caten-
in-binding domain, the central domain, the HMG 
domain which binds to DNA, and also contains an 
NLS sequence as well as a long terminal C fragment 
[40]. Another element which co-operates with TCF in 
inhibiting transcription of Wnt-dependent proteins 
involves Groucho proteins (Grg-1, -2, -3, -4, -5) in 
Drosophila and homologous proteins in mammals, i.e. 
TLE-1, -2, -3, -4 (transducin-like enhancer split) and 
hAES (amine terminated enhancer split). The tran-
scription-inhibiting mechanism employing Groucho/
TLE is linked to histone deacetylase RPD3 from the 
HDAC-1 (histone deacetylase) protein group, respon-
sible for development of a more compact chromatin 
structure and transcription repression [41].

E-cadherin/β-catenin complex in physiology

Catenins (including β-catenin) and E-cadherin 
(typical for epithelial cells) form a structural-func-
tional E-cadherin-catenin unit (ECCU). Interactions 
between the proteins are not direct, and instead an 
allosteric switch in α-catenin may mediate actin cy-
toskeleton reorganization. The complex is controlled 
by processes of phosphorylation and endocytosis 
[42]. Cadherins are glycoproteins consisting of intra-
cellular, transmembrane and extracellular portions. 
Apart from calcium ion-dependent control of cellu-
lar adhesion, they participate in tissue morphogen-
esis, recognition and grouping of appropriate cells, 

maintenance of tissue coherence and coordination of 
cell translocation [43]. They are included in the su-
perfamily of cell adhesion molecules, which in their 
extracellular portions contain cadherin repeats EC1-
EC5. Within hepatic E-cadherin (liver-cadherin, 
LI-cadherin) DXNDN and DXD motifs were iden-
tified, responsible for binding calcium ions. LI-cad-
herin is localized to the basolateral domain of hepato-
cytes and enterocytes [44]. The cytoplasmic domain 
of classical cadherins is highly conserved, while its 
catenin-binding site has been mapped to 72 aa of the 
C-terminal portion of the E-cadherin molecule. This 
fragment of E-cadherin participates in interactions 
with cytoplasmic proteins and controls functions of 
cadherins [18, 45]. Six subfamilies of cadherins are 
distinguished, including the classical ones (type I), 
atypical ones (type II), present in desmosomes – des-
mocollin and desmoglein, protocadherins and Fla-
mingo cadherin [46]. Epithelial E-cadherin was the 
first identified cadherin. It forms adherens junctions 
between epithelial cells, and belongs to classical cad-
herins, along with N-cadherins in nervous tissue, 
P-cadherins in placenta and R-cadherin in retina. 
β-catenin binds to a cytoplasmic domain of E-cadher-
in and through linkage with α-catenin it anchors it to 
actin of the cytoskeleton. The membranous domain 
of cadherin binds to p120 protein. It is indispensable 
for stabilization of E-cadherin and it fulfils functions 
controlling junctions between cadherin and the cyto-
skeleton through interactions with small GTPases of 
the Rho family. Also p120 protein represents a fac-
tor controlling the cadherin cycle [47]. Linkage be-
tween cadherin and β-catenin and between β-catenin 
and α-catenin is controlled by numerous kinases and 
phosphatases [42]. The process of E-cadherin deg-
radation starts with phosphorylation of TYR within 
its molecule, followed by recognition and binding of 
Hakai protein (ubiquitin ligase E3) in a Src phos-
phorylation-dependent manner [48]. 

E-cadherin/β-catenin complex in pathology

Disturbances in structure and function of ECCU 
were detected in the process of organ fibrosis, includ-
ing liver fibrosis [49]. The process is closely linked to 
decreased expression of E-cadherin and overexpression 
of β-catenin with its cytoplasmic translocation, which 
results in a loss of intercellular junctions [45]. Such al-
terations were detected in cells of biliary duct epitheli-
um in patients with primary biliary cirrhosis, primary 
sclerosing cholangitis and in alcohol-induced hepatitis 
[50]. Also in hepatic stellate cells (HSCs) involvement 
of Wnt/β-catenin pathway components was demon-
strated in mechanisms of liver cirrhosis. As compared 
to resting cells, activated HSCs were demonstrated to 
contain 3- to 12-fold increased quantities of mRNA 
for representatives of the canonical (Wnt-3a and 
-10b) and non-canonical (Wnt-4 and -5a) pathway 
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of Wnt, receptors Fzd-1 and -2 and for co-receptors 
LRP-6 and Ryk. This was accompanied by markedly 
increased nuclear expression of β-catenin. Activity of 
TCF-dependent genes was stimulated by Wnt-1 and 
inhibited by inhibitors of the Wnt pathway – small 
proteins of Chibby (blocking interactions of β-catenin 
with TCF) and Dkk-1 (blocking interactions of Wnt 
with LRP). Presence of Dkk-1 reduced agonist-stim-
ulated activation of HSCs, while a high concentration 
of Dkk-1 intensified apoptosis in activated cultures 
of HSCs [51]. In another study, activation of HSCs 
proliferation was demonstrated and inhibition of 
TRAIL-induced apoptosis under the effect of Wnt-
3a. The reciprocal relationship was also detected, or 
inhibition of activity and increased apoptosis in HSCs 
under the effect of an inhibitor of the Wnt pathway, 
i.e. SFRP 1 (Secreted frizzled-related protein 1) [52].

Disturbances in cadherin/catenin complex  
and epithelial-mesenchymal transition

The cadherin/catenin complex actively partici-
pates in epithelial-mesenchymal transition (EMT) 
and mesenchymal-epithelial transition (MET), which 
are important both in physiology (embryonic devel-
opment) and in pathology (fibrosis of organs, carcino-
genesis) [45]. The EMT process is characterized by 
de-differentiation of epithelial cells to fibroblasts and 
myofibroblasts, which produce components of extra-
cellular matrix. Epithelial cells lose their marker pro-
teins, such as E-cadherin, ZO-1 (zonula occludens-1) 
and cytokeratins, gaining phenotypic markers of 
mesenchymal cells, such as vimentin, α-smooth mus-
cle actin (α-SMA) or fibroblast-specific protein-1 
(FSP1). The cells of altered phenotype begin to pro-
duce mainly collagen type I and fibronectin [45]. 
EMT leads to a loss of intercellular junctions. A de-
crease in E-cadherin level results in release of β-cat-
enin from its associations and facilitates EMT, while 
the restored presence of E-cadherin re-establishes the 
altered cell phenotype. Hakai protein participates in 
the dynamic recycling of E-cadherin, which modu-
lates cell adhesion and is involved in EMT [48]. In-
tercellular junctions with E-cadherin also provide 
a target for ADAM 10 (A disintegrin and metallo-
proteinase 10). The protein cuts the extracellular 
domain of cadherin close to its transmembrane do-
main, releasing in parallel β-catenin. It may increase 
its transcriptional activity, augmenting expression of 
the gene encoding cyclin D1 [53]. Also the intracel-
lular domain of cadherin may provide a target for 
proteolytic cuts exerted by presenilin, which results 
in a loss of cellular adhesion and increase in amounts 
of free β- and α-catenin [54]. Epigenetic alterations 
of E-cadherin are also described (methylation of the 
gene promoter), which may lead to lowered expres-
sion of the protein, progression of disease and devel-

opment of neoplastic metastases [55]. Control pro-
teins, containing zinc-finger proteins, coded by the 
gene families of Snail and Slug and SIP-1 (Smad in-
teracting protein-1) represent negative controllers of 
the E-cadherin gene [56]. β-catenin is also involved 
in the TGF-β-dependent EMT [57]. In the absence 
of TGF-β, both E-cadherin and β-catenin undergo 
degradation, with the resulting loss of intercellular 
junctions. At the same time, cytoplasmic accessibility 
of β-catenin becomes augmented and its transport to 
the cell nucleus becomes possible [58]. 

Disturbances in Wnt/β-catenin pathway in liver 
carcinogenesis

Involvement of the canonical and non-canonical 
Wnt pathway in liver oncogenesis has been described 
by various investigators [59-67]. One of the most fre-
quently described mechanisms for activation of the 
canonical signaling pathway in HCC involves activa-
tion of β-catenin through mutations in the CTNNB1 
gene. This is accompanied by overexpression/repres-
sion of other genes involved in transmission of signals 
to the cell nucleus, with the resulting intensification 
of proliferation, migration and cellular invasion. At 
the molecular level, a characteristic trait described in 
hepatocellular tumors involves nuclear or cytoplasmic 
accumulation of β-catenin, detected in a higher pro-
portion of cells in cases of hepatoblastoma (50-80%) 
than in HCC (8-40%) [60, 62-64, 68]. Taniguchi et 
al. detected CTNNB1 mutations in 19% of HCC and 
in 70% of hepatoblastoma cases. They included main-
ly point mutations, and more than half of hepato-
blastomas contained deletions. Approximately 50% 
of HCC with mutations of axin and conductin man-
ifested accumulation of β-catenin in the cell nucleus, 
cytoplasm or on cell membranes [69]. In HCC a re-
lationship was detected between nuclear location of 
the protein and more pronounced proliferative activ-
ity of hepatocytes and shorter survival of the patients 
[64], or the opposite: lower invasiveness of HCC and 
more frequent 5-year survival of the patients [62]. 
Relatively early, another role was suggested for wild-
type β-catenin as compared to its mutated form. 
The mutated form of the protein was supposed to 
be linked to HCC subtypes with a better prognosis 
[62]. Nuclear localization of β-catenin may also be 
induced by the TGF-β signaling pathway, in response 
to trans-differentiation of neoplastic hepatocytes to 
immature liver progenitor cells. Nuclear expression 
of β-catenin was correlated with tumor invasion or 
relapses of HCC following liver transplantation [66]. 

Certain investigators detected a relatively high 
proportion of patients (62%) with non-nuclear ac-
cumulation of β-catenin (in cytoplasm/cell mem-
branes), pointing to heterogeneous mechanisms of 
the protein accumulation in HCC [63]. Most of the 
observations point to the fact that mutations with-
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in CTNNB1 are manifested in a later stage of liver 
cancer development while nuclear accumulation of 
β-catenin is detected in early stages of HCC devel-
opment, suggesting other (distinct from mutations) 
mechanisms of stabilization involving the protein 
[63, 70, 71]. Using a model of transgenic mice, nu-
clear localization of β-catenin was demonstrated only 
in adenoma and in highly differentiated cancers of 
eosinophil phenotype, which also pointed to the fact 
that activation of the Wnt/β-catenin pathway with 
protein translocation of the cell nucleus represents 
an early stage of carcinogenesis [72]. Following years 
of investigations, two HCC subtypes were distin-
guished, depending on molecular alterations related 
to the Wnt/β-catenin pathway. The first one, with 
a mutation in CTNNB1, is characterized by increased 
expression of liver-specific targets. HCC of this sub-
group represents well-differentiated tumors of a low 
histological malignancy, with stable chromosomes 
and a good prognosis. In the other subtype of HCC, 
also with the Wnt/β-catenin pathway activated, no 
β-catenin mutations are detected. The tumors are 
characterized by extensive dysregulation of the clas-
sical Wnt pathway, a significant degree of chromo-
some instability, aggressive phenotype, and they are 
preferentially linked to HBV infection [71, 73]. In-
terestingly, even if involvement of β-catenin is of key 
importance to embryonic development of liver and 
for processes of liver regeneration [2], activation of 
β-catenin itself remains insufficient to initiate per se 
the process of liver carcinogenesis [67, 74]: a tran-
sient hepatocyte hyperplasia was noted only, with no 
neoplastic transformation [74]. However, the acti-
vated β-catenin may cooperate with other pathways 
of oncogenesis, such as insulin/IGF-1/IRS-1/MAPK, 
H-RAS, MET, AKT or with chemical compounds 
which initiate carcinogenesis [74, 75]. Even if the 
mutated form of β-catenin is insufficient to trigger 
the process of HCC development, it promotes the 
process in another manner (increasing chromosome 
instability, amplifying action of other oncogenes) 
[67]. Amazingly, a phenomenon of sevenfold in-
crease in development of liver tumors was detected 
in mice with CTNNB1 knockout, as compared to 
control mice [76]. It seems paradoxical that both 
presence of the mutated β-catenin form and absence 
of wild type β-catenin amplifies the DEN (diethyl 
nitrosamine)-induced liver carcinogenesis in mice 
[67]. Mechanisms of HCC development in mice with 
a knockout of the β-catenin gene remain unknown. 

Recent studies indicate involvement of the 
Wnt/β-catenin pathway in processes of self-renew-
al and expansion of liver cancer stem cells (CSCs), 
which may initiate HCC. The evidence is available for 
preferential activation of the Wnt/β-catenin pathway 
also within the pool of stem cells within a mature, 
regenerating liver, termed oval cells or hepatic pro-

genitor cells (HPCs) [77]. As progenitor cells, they 
manifest uninhibited growth, which makes them 
similar to cancer cells and suggests that disturbed 
control over their division may provide a cause for 
development of HCC. This has been corroborated in 
studies on animal models [78]. Liver diseases leading 
to development of cancer also frequently lead to acti-
vation of HPCs, which may suggest that it is precise-
ly this group of cells which provides a starting point 
for HCC development [79]. In a significant propor-
tion of HCC, one or more markers of HPCs can be 
detected, which are absent in normal mature hepato-
cytes [80, 81]. In the oval cells, stimulated to prolif-
eration, an increase was detected in Wnt-3-induced 
dephosphorylated β-catenin in the cell nucleus and 
augmented transcriptional activity in the Wnt/β-cat-
enin/TCF pathway, with activation of the cell cycle 
[82]. In another investigation, increased amounts of 
total and active (dephosphorylated) β-catenin forms 
were detected in the cytoplasm and the cell nucleus. 
The increased expression of β-catenin was accompa-
nied by increased amounts of Wnt-1 in the neigh-
boring hepatocytes and augmented expression of the 
Fzd-2 receptor in oval cells, in parallel with reduced 
expression of WIF-1, an inhibitor of Wnt. An ad-
ditional proof for involvement of the Wnt/β-catenin 
pathway in proliferation of oval cells was provided by 
the dramatic reduction in the number of the cells in 
livers of rodents devoid of the β-catenin gene [83]. 
Signals of the Wnt/β-catenin pathway may also affect 
the microenvironment of HCC and in this way may 
affect survival and growth of neoplastic cells [67]. 

β-catenin and E-cadherin, as components of the 
Wnt signaling pathway, have been placed on the list 
of serum markers of liver carcinogenesis [84]. In sera 
of HCC patients (etiologically linked to infection with 
HCV genotype 4) with liver cirrhosis, significantly 
higher levels of four proteins were detected, includ-
ing β-catenin and E-cadherin, as compared to sera of 
patients with chronic HCV infection with no cancer 
and sera of control individuals [84]. Summing up the 
above, it may be accepted that β-catenin probably 
plays a role in initiation of hepatic oncogenesis and, 
at subsequent stages, the non-canonical pathway of 
Wnt becomes mobilized [67]. 

Wnt/β-catenin pathway in HCV-associated liver 
carcinogenesis

Studies on involvement of HCV in liver car-
cinogenesis developing through modulation of the 
Wnt/β-catenin signaling pathway have been con-
ducted since the 1990s. At the beginning, nuclear ac-
cumulation of β-catenin was demonstrated in HCC, 
on the background of HCV infection and in associ-
ation with mutations in the β-catenin gene, which 
were detected in 26-41% of patients with HCC [61, 
85]. Activation of the Wnt/β-catenin signaling path-
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way and its involvement in liver carcinogenesis were 
also linked to axin mutations [86], inactivation of 
GSK-3β [87], dephosphorylation of β-catenin [59] 
and up-regulation of Fzd-7 [88]. Zhang et al. demon-
strated that also the up-regulated microRNA-155 
(miR-155), markedly increased in HCV-infected pa-
tients, activates the Wnt signaling pathway with nu-
clear accumulation of β-catenin and the accompany-
ing increase in cyclin D1, c-Myc, and survivin. It was 
also determined that a direct and functional target 
of miR-155 involved APC [89]. However, it was not 
until in vitro studies were conducted that interactions 
between HCV proteins and the Wnt/β-catenin sig-
naling pathway were clarified. In HepG2 cell lines 
both NS5A protein and the entire HCV polyprotein 
were demonstrated to be responsible for the increase 
in β-catenin level (protein accumulation and stabili-
zation, decreased degradation in proteasomes) in cells 
with expression of the HCV genome products. This 
was developing in the mechanism of a reduced activ-
ity manifested by the FKHR (forkhead transcription 
factor) and increased phosphorylation of GSK-3β [6]. 
Thus, the elevated cellular level of β-catenin resulted 
from activation of the PI3K/Akt signaling pathway. 
This caused augmented transcription of β-caten-
in-dependent genes and was supposed to facilitate 
neoplastic transformation of HCV-infected hepato-
cytes. Involvement of NS5A protein in activation of 
the Wnt/β-catenin signaling pathway was confirmed 
in subsequent studies [7], documenting direct acti-
vation of endogenous, unphosphorylated wild-type 
β-catenin by NS5A protein and co-localization of the 
two proteins in cytoplasm of HepG2 cells. The mech-
anism of β-catenin accumulation at the protein level, 
also through inactivation of GSK-3β, was confirmed. 
In addition, the investigators proved that NS5A pro-
tein may directly interact with β-catenin through its 
N-terminus and the ARM 1-6 region of β-catenin 
[7]. The authors also succeeded in demonstrating 
that the N terminus of NS5A affects TCF-4-depen-
dent transcriptional activity. In other studies, evi-
dence was provided for a role of NS5A in binding 
of the p85 regulatory subunit of phosphoinositide-3 
kinase (PIK3) and, in consequence, in stabilization of 
β-catenin, independently of effector kinases for PIK3, 
i.e. Akt and GSK-3β. Both ends of the NS5A protein  
(N and C) were found indispensable for the direct 
binding of β-catenin and for full activation of the pro-
tein within the Wnt pathway [8]. Recent studies of 
Higgs et al. demonstrated a direct role for NS5A pro-
tein in β-catenin-dependent c-Myc expression [90].

Direct activation of the Wnt/β-catenin pathway 
was demonstrated in an in vitro model also separately 
for the core (C) protein of HCV [9, 10, 91]. HCV-
core transfected Huh7 cells up-regulated Wnt-1 and 
WISP-2 transcription [91]. The cells demonstrated 
intensified proliferation, DNA synthesis and pro-

gression of the cell cycle [91]. In both studies by Liu  
et al., core protein of HCV amplified the TCF-depen-
dent transcriptional activity, intensified expression 
and stabilized β-catenin at the protein level in Huh7 
cells through inactivation of GSK-3β. It proved to 
be responsible for amplification of cell proliferation 
and promotion of tumor growth following action of 
one of the Wnt pathway ligands, the Wnt-3a protein  
[9, 10]. Core protein of HCV increases active β-cat-
enin and nuclear accumulation in SMMC-7721 cells. 
Up-regulation of gene expression involving many 
Wnt ligands (Wnt-2, -3, -3a, -10a, -10b, Fzd-1, 
 -2, -3, -6, -7, -9, and LRP5/6 co-receptors) was 
demonstrated [10]. HCV also affects in a twofold 
way expression of E-cadherin, indirectly by modula-
tion of the Wnt/β-catenin pathway and directly with 
mediation of HCV core protein. C protein diminishes 
expression of E-cadherin at the transcriptional level, 
through methylation of CpG islands in the promoter 
of the CDH1 gene [92, 93]. 

Recent studies brought proof for HCV involve-
ment also in EMT [94-96]. In cultures of HCC cells 
infected with genotype 1b or 2a of HCV, increased 
expression of numerous EMT markers (including vi-
mentin, snail, slug and twist proteins) was demon-
strated and a decrease in E-cadherin expression, as well 
as an altered phenotype of hepatocytes, with higher 
expression of fibroblast-specific protein 1 (FSP-1) 
and elevated levels of β-catenin phosphorylated at 
Ser552 [94]. Grégoire et al. suggested that neither 
Hedgehog nor β-catenin is required for NS5A-me-
diated EMT [96]. The study of Quan et al. strong-
ly suggests that the HCV core-induced epigenetic 
silencing of SFRP (secreted frizzled-related protein) 
family may lead to activation of the Wnt signaling 
pathway and increase HCC aggressiveness through 
induction of EMT [97]. 

Clinicopathological role of β-catenin  
and E-cadherin expression in hepatocellular 
carcinomas

β-catenin represents a recognized oncogene, and 
both qualitative (pattern of expression) and quanti-
tative evaluation of tissue expression of the protein 
permitted genetically distinct subsets of HCC to be 
distinguished [5, 62, 71, 73]. In most HCCs, a vari-
able percentage of cells is noted with abnormal local-
ization of β-catenin (i.e. cytoplasmic, nuclear, or C/N) 
[59, 61-66, 68, 69, 101]. Nuclear localization of the 
protein most frequently correlated with somatic mu-
tations of β-catenin [5, 59, 62, 102], although de-
scriptions of nuclear accumulation of the protein are 
available in cases free of the gene mutation [63]. The 
percentage of cells with β-catenin mutation in HCC 
is quantitatively quite variable (from a few to a few 
dozen percent) [59, 63, 64, 68, 103]. Mutations  
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in the β-catenin gene seem to be more frequent in 
HCC with the background of HCV than HBV infec-
tion [5]. 

In HCC most frequently tissue overexpression 
of the protein is noted [63, 101, 103], but studies 
are also available which manifest lower expression of 
the protein in cancer than in the control [62, 104, 
our own unpublished data]. Recently, a subgroup of 
patients with HCC has been distinguished (~15%) 
with complete absence of tissue β-catenin expression 
[105]. 

Most positive correlations between invasive char-
acter of HCC, high metastatic potential of HCC, 
poorer cellular differentiation, and shorter survival 
of patients involve manifestation of nuclear expres-
sion or overexpression of β-catenin, independently 
of localization of the protein [63, 64, 103]. On the 
other hand, individual studies describing reduced 
expression of β-catenin [62, our own unpublished 
data], or even its absence in HCC in a proportion of 
the patients [105], document absence of significant 
correlations between the expression on one hand and 
invasiveness and prognosis of HCC on the other [62], 
and in the case with complete absence of the protein 
significantly lower fibrosis and inflammation, but 
unremarkable differences in proliferation [105]. At 
present, attempts are being undertaken to evaluate 
numerous immunohistochemical markers (in parallel 
with β-catenin) of a high negative predictive value in 
HCC, such as glutamine synthase (one of the tran-
scriptional targets of β-catenin) [105]. 

Changes in expression of the other ECCU com-
ponent, i.e. E-cadherin, in HCC are more frequently 
linked to epigenetic alterations in the CDH1 pro-
moter than to gene mutations [55, 102]. In HCC 
mainly a decrease in tissue expression of E-cadher-
in used to be described, as compared to the control 
[104, our own unpublished observations]. However, 
also variable (both decreased and augmented) ex-
pression of the protein was described in the studied 
group of HCC [102]. Individual studies documented 
increased accumulation of the protein in HCC cells 
[106]. No nuclear localization of E-cadherin was de-
scribed. In cases with parallel examination of both 
ECCU proteins the decreased expression of E-cadher-
in and overexpression of β-catenin was found to be 
correlated with lymph node invasion, poor patholog-
ical stage, TNM stage, and worse prognosis [101]. 
Correlations were demonstrated between lowered 
expression of E-cadherin (or its loss) on one hand 

and advanced stage, poorly differentiated histology 
and relapse of HCC following operation on the other 
[107]. 

Until now, the variability of tissue expression 
manifested by β-catenin and E-cadherin in the en-
tire HCC group has not permitted the proteins to be 
recognized as independent prognostic indices in HCC 
[104, our own unpublished observations]. Examina-
tion of the proteins’ expression is not recommended 
in the routine histopathological diagnosis of HCC. 
Nevertheless, the quoted results of studies point to 
complex relationships between tissue expression of 
the principal representative of the Wnt canonical 
pathway (β-catenin) and E-cadherin on one hand and 
histopathological indices of HCC invasion or clinical 
data of the patients on the other. In our opinion, fur-
ther studies should be devoted to developing a more 
uniform scale for quantitative evaluation of the pro-
teins in tissue material which would allow one to 
draw more reliable conclusions from meta-analysis of 
the data. In cases of HCV-associated HCC in parallel 
to expression of β-catenin and E-cadherin, it would 
be important to examine tissue expression of HCV 
viral proteins (core, non-structural proteins) [our own 
unpublished data]. 

In HCC treatment using therapy targeted at the 
Wnt/β-catenin pathway, inhibitors of the pathway 
remain in preclinical evaluation, and only a few com-
pounds have started to reach the phase I clinical trials 
[review of the topic: 67]. In the opinion of the au-
thors, an ideal antagonist of the Wnt pathway would 
involve a drug which would exert its action in the 
cell nucleus. In Poland the only registered systemic 
drug for HCC targeted therapy involves the multiki-
nase inhibitor sorafenib [108]. Targeted therapy in 
HCC requires analysis of multiple serum and tissue 
biomarkers. Uniform quantitative analysis in cases 
of tissue expression manifested by Wnt/β-catenin 
pathway proteins may prove to be an invaluable tool 
in classification for treatment. The individualized 
targeted therapeutic strategies in HCC should also 
take into account molecular interactions between the 
Wnt pathway and fragments of the HCV genome.

The most important in vitro and in vivo studies 
on Wnt/β-catenin signaling pathway components in 
HCV-related hepatocellular carcinomas are summa-
rized in Table I. 

The authors declare no conflict of interest.
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