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INTRODUCTION
Prolonged exercise in hot conditions induces an important increase 
in body temperature that can result in impaired physical and mental 
performances in humans [1, 2]. The rise in core temperature depends 
upon exercise duration and/or intensity [3, 4]. Competition for blood 
flow develops between thermoregulatory and metabolic processes [5] 
and this may become problematic during conditions where cardiac 
output and arterial blood pressure are reduced due to dehydration 
and/or severe hyperthermia [6]. Blood flow to the active muscles is 
required to satisfy metabolic needs, while simultaneous blood flow 
to the skin ensures thermoregulatory control [5]. The major cardio-
vascular adjustment to heat stress is an increase in skin blood flow 
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(SkBF) in response to the increase in cardiac output [7]. Severe heat 
stress conditions lead to a substantial increase in resting SkBF due 
to thermoregulatory vasodilation [8, 9]. However, during exercise, 
SkBF fails to reach high levels compared to the resting state, as 
active skeletal muscles require a significant increase in blood flow [7]. 
Furthermore, prolonged exercise under warm or neutral conditions 
is accompanied by a complex phenomenon known as “cardiovascu-
lar drift” [10]. Cardiovascular drift manifests as a gradual increase 
in heart rate over time, accompanied by a decrease in both stroke 
volume and mean arterial pressure [10]. Traditionally, it has been 
suggested that cardiovascular drift reflects cardiac fatigue [11], 
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temperature. Thus, the body temperature continues to rise even 
after an adequate thermoregulatory response, but at a lower rate 
compared to when prolonged exercise was started [17, 18]. The 
increase in core temperature depends on both exercise intensity and 
duration [3, 4]. It has been identified that power output capability 
and integrated electromyographic activity of the muscles decrease 
during prolonged exercise under heat stress [19, 20]. It has been 
reported that the neural recruitment of skeletal muscle motor units 
is reduced when core body temperature rises to “critical” lev-
els [19, 20]. The critical temperature might be one of the major 
factors limiting muscular function [21]. Indeed, the efferent command 
to active muscles is attenuated when a high core temperature is 
reached (e.g. ~39–40°C) [2]. The critical temperature may function 
as a signal for the central nervous system, which will then inhibit 
motor unit recruitment to protect the brain against severe hyperther-
mia [2, 20, 22, 23]. We confirm that the central nervous system 
may reduce neural drive and attenuate skeletal muscular function to 
prevent overheating. On the other hand, we suggest that the decrease 
in myocardial function cannot be considered as a strategy for prevent-
ing overheating as it may disturb the thermoregulatory control and 
increase the risk of heat stroke [17]. Interestingly, it is still unknown 
whether the decrease in cardiac performance (i) is simply due to an 
alteration in preload/afterload, and/or cardiac fatigue and/or cardiac 
damage, or (ii) it may be partially related to a protective strategy 
against the potential damage that could be induced by a permanent 
strong myocardial contraction [10].

Cutaneous vasodilation during exercise
It is well known that cutaneous vasodilation is attenuated during 
exercise relative to the rest condition [5, 24]. Exercise initiation in-
duces competition between the vasoconstrictor and vasodilator cu-
taneous systems [5]. Cutaneous vasoconstriction occurs in response 
to the initiation of exercise in heat-stressing conditions [5]. Exercise 
places several limits on the ability of the skin to dilate, due to an 
increased vasoconstrictor tone and decreased vasodilator capacity [5]. 
Furthermore, exercise influences the temperature threshold (which 
tends to rise) at which cutaneous vasodilation starts [5, 25]. Con-
sequently, the central temperature increases brusquely in the first 
few minutes of exercise. Otherwise, despite further significant core 
temperature increases particularly in severe heat stress conditions, 
the rise in SkBF is attenuated when the central temperature ap-
proaches 38°C [26].

It has been reported in the literature that the exercise effect is in-
tensity-dependent; low intensity does not alter thermoregulatory cu-
taneous vasodilation, whereas high intensity shifts the temperature 
threshold (which tends to rise) for cutaneous vasodilation [27–29]. 
However, the stimulus behind the exercise-induced shift in the tem-
perature threshold for cutaneous vasodilation remains unclear [26], 
Interestingly, since it has been observed that cutaneous vasodilation 
during high-intensity exercise in the heat is attenuated relative to that 
during low-intensity exercise due to increased oxidative stress [30, 31], 

serving as a marker of cardiovascular dysfunction and/or limitation [7]. 
However, we have previously proposed a novel phenomenon that 
can potentially explain cardiovascular drift [10], extending beyond 
the realm of cardiovascular fatigue alone. We posited that cardio-
vascular drift, characterized by changes in the force-frequency rela-
tionship, may serve as a protective strategy against potential damage 
induced by strong myocardial contractions [10]. It is important to 
note that the focus of this current narrative review does not revolve 
around cardiovascular drift and dehydration. Instead, our aim was 
to provide an updated (until December 2023) understanding of the 
molecules involved in mediating cutaneous vasodilation during 
strenuous endurance exercise in the heat and/or normothermia, along 
with potential risk factors contributing to cardiovascular dysfunction 
and fatigue. The present narrative review of the literature was un-
dertaken using PubMed, ScienceDirect, Medline, Google Scholar, 
and Scopus.

MATERIALS AND METHODS 
In this narrative review we searched databases including PubMed, 
ScienceDirect, Medline, Google Scholar, and Scopus for studies 
published up to 2023. The search focused on keywords such as 
“endurance exercise”, “cardiovascular function & dysfunction”, 
“thermoregulatory control”, “oxidative stress”, and “free radicals”. 
Inclusion criteria targeted studies relevant to the thermoregulatory 
control and cardiovascular responses to strenuous endurance exer-
cise in the heat, particularly emphasizing the role of free radicals 
in cardiovascular function and dysfunction. Exclusion criteria en-
compassed non-English publications. Data extraction emphasized 
study design, participant details, exercise protocols, and cardiovas-
cular measures. The quality of each study was assessed based on 
its design, methodology, and analytical rigor. Findings were synthe-
sized to align with the review’s objectives, focusing on the cardio-
vascular responses to strenuous endurance exercise and the identi-
fied risk factors.

Thermoregulatory control during exercise
During heat exposure and/or prolonged exercise, body temperature 
elevation induces a rise in the diameter of cutaneous blood vessels 
and therefore a reduction in vascular resistance [12]. Heart rate 
increases to restore peripheral blood pressure. Consequently, SkBF 
and skin temperature increase, which enhances heat dissipation via 
convection [8, 13]. Moreover, heat dissipation by evaporation of 
sweat needs heat transfer to the skin via cutaneous vasodila-
tion [14, 15]. Indeed, the large increase in SkBF requires a significant 
elevation in cardiac output and a reduction of blood flow to renal 
and splanchnic circulations [16]. These adjustments could be suf-
ficient to match the demand for increased SkBF at rest [8]. How-
ever, during prolonged exercise (of moderate or high intensity) in the 
heat or thermoneutral conditions [4, 17, 18], the heat loss remains 
inferior to heat generation. Therefore, in such conditions, the body 
cannot stop temperature elevation or maintain steady-state core 
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we speculate that oxidative stress is a potential factor explaining the 
shift in the temperature threshold.

There are several agents that have recently been found to act as 
vasodilators during exercise. Louie et al. [32] reported that ATP-sen-
sitive potassium, calcium-activated potassium channels, and volt-
age-gated potassium channels contribute to the control of cutane-
ous vasodilation during exercise in heat stress conditions. Furthermore, 
Fujii et al. [33] highlighted that heat shock protein 90 contributed 
to cutaneous vasodilation during exercise via nitric oxide (NO) syn-
thase (NOS)-dependent mechanisms. Importantly, Fujii et al. [33] 
also stated that NOS contributes to ~40–50% of total cutaneous 
vasodilation during prolonged exercise in healthy humans. This find-
ing reflects the major role of NOS in the thermoregulatory control 
(vasodilation response) during endurance exercise [33–36]. The va-
sodilation response to heat stress appears to be potentiated by NO 
production at rest and during exercise. Charkoudian et al. [37] iden-
tified that the cutaneous vasodilation response to a local warming 
(i.e. 30 minutes at 42°C) stimulus is biphasic and NO plays an im-
portant role in both the initiation and the maintenance of the second 
slower phase.

Mechanisms mediating cutaneous vasodilation differ between 
whole-body and local skin heating [38]. However, it appears that 
there are some common points between them (e.g. NO-induced va-
sodilation) [33–36]. The skin vasodilation response to endurance 
exercise depends on reflex control (i.e. sensory nerve-mediated 

vasodilation) and free radicals (cutaneous endothelial NO-dependent 
vasodilation) (Figure 1). It has been demonstrated that skin vasodi-
lation in heat stress depends on NO at rest and during exercise, with 
sensory nerves mediating an initial transient vasodilatory “peak” fol-
lowed by a prolonged vasodilatory “plateau” mediated primarily by 
NO production [33, 39, 40]. We highlight that it is still unknown 
whether the source of NO during “local heating” is the same as the 
one released during exercise where the heat generation comes from 
the muscular work. Future research should pay more attention to 
such issues.

Cardiovascular fatigue related to oxidative stress during endurance 
exercise
Multiple factors contribute to cardiovascular fatigue during prolonged 
exercise and make it a complex phenomenon [41–43]. Meta-analy-
ses revealed a reduction in left ventricular function following 24-h 
exercise [42, 43]. During prolonged exercise, the large displacement 
of blood flow toward the skin appears to play a key role in the de-
velopment of cardiovascular fatigue [17].

Exercise results in an increase in heart rate, which increases the 
mechanical forces of blood flow on the vascular wall (i.e. shear stress 
and blood pressure) [44]. Shear stress has been shown to increase 
endothelial superoxide generation in conductance arteries in vivo [45]. 
Similarly, high levels of shear stress during prolonged exercise have 
been found to stimulate vascular superoxide and hydrogen peroxide 

FIG. 1. Simplified representation of the cardiovascular response to prolonged exercise. CO: cardiac output. HR: heart rate. MAP: mean 
arterial pressure. ROS: reactive oxygen species. SkBF: skin blood flow. SV: stroke volume. T: temperature. Tre: rectal temperature.
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indicating that NO may play a cardio-protective role by attenuating 
the effect of catecholamines, potentiating the positive inotropic ef-
fect in normal hearts. Accordingly, it has been confirmed that the in-
crease in NO concentrations attenuates the positive inotropic effect 
of catecholamines [81]. Furthermore, certain molecules associated 
with inflammation, such as IL-10, brain-derived neurotrophic factor, 
and follistatin-like protein, which increase during or after exercise, 
may also play a cardio-protective role by facilitating tissue repair and 
regeneration [82]. These findings raise a crucial question regarding 
the initial causes of cardiovascular risk. The primary focus of the 
present narrative review is to elucidate our current understanding of 
cardiovascular dysfunction during prolonged exercise with respect to 
inflammation and oxidative stress. Additionally, we aim to identify 
the primary cause of cardiovascular risk.

Cardio-renal association and immune response activation
Renal vasoconstriction and NADPH oxidase activation
The large increase in SkBF during endurance exercise requires a sig-
nificant reduction of renal blood flow [16]. The decrease in renal 
blood flow [16] constitutes a potential factor for the decline in renal 
function. Sustained levels of sympathetic activity and dehydration 
may contribute to the increase in plasma renin activity and circulat-
ing angiotensin II [83, 84]. Then, the activation of angiotensin II type 
1 receptors (i) elevates ROS production through NADPH oxidase 
activation [85–87], and (ii) stimulates aldosterone secretion [88, 89]. 
In turn, aldosterone can directly stimulate ROS production through 
the activation of NADPH oxidase [90]. Importantly, the stimulation 
of aldosterone release is linked to an increase in galectin-3 concen-
tration in the heart and kidney [77, 91]. Galectin-3 and other mark-
ers of cardiac damage (e.g. troponin I, suppression of tumorigenic-
ity 2 (ST2)) increase following strenuous physical effort [92, 93]. 

production [46]. Exercise-induced oxidative stress has recently been 
well confirmed [47–51], and it is well established that the increased 
production of reactive oxygen species (ROS) during exercise has both 
positive and negative physiological effects [47, 51–53]. The latter 
may shift the redox balance to a pro-oxidant state and impair ther-
moregulatory vasodilation [47, 49, 51]. According to this fact, stud-
ies indicated that NOS-dependent cutaneous vasodilation during 
high-intensity exercise in the heat is attenuated relative to that dur-
ing moderate-intensity exercise due to increased oxidative 
stress [30, 31].

Nicotinamide adenine dinucleotide phosphate oxidase enzyme 
(NADPH) is the major source of ROS in the heart [54, 55], and also 
well known for its role in myocardial dysfunction [55]. Interestingly, 
a significant link between NADPH oxidase-dependent oxidative stress 
and myocardial dysfunction has been identified after prolonged stren-
uous exercise in rats [56–58]. This might potentially represent a new 
trigger in the understanding of exercise-induced myocardial dysfunc-
tion. High oxidative stress was proposed to depress cardiac function 
through protein kinase G and cyclic monophosphate-mediated de-
sensitization of cardiac myofilaments [59].

Furthermore, a long period of exercise increases catecholamine 
and pro-inflammatory markers such as tumour necrosis factor and in-
terleukin-6 (IL-6) [60–62]. Excess catecholamines contribute to an 
increase in ROS formation [61], and attenuation of β-adrenergic ino-
tropic responsiveness [63–66]. A previous study highlighted that car-
diac stress induced by exercise activates both oxidative stress, inflam-
mation and β-adrenergic pathways [67]. It is well known that oxidative 
stress and inflammation are potentially involved in the pathogenesis 
of heart failure and impaired left ventricular function [56–58, 68, 69]. 
Interestingly, the administration of IL-1 and tumour necrosis factor is 
associated with a decline in contractile function in rats’ hearts, this 
being partially improved by treatment with an NOS inhibitor [70]. 
Moreover, antioxidant supplementation may attenuate the decline in 
myocardial function during exercise [67, 71, 72].

Does inflammation cause cardiovascular risk during endurance 
exercise?
For a considerable period, the notion of cardiovascular risk has been 
associated with increased cardiovascular stress leading to alterations 
(decline) in cardiovascular function [12, 17] (Figure 2). Recent stud-
ies have attributed the decline in cardiac function during exercise to 
adrenergic desensitization (β1 and β2 receptors), [10, 73, 74], which 
attenuates cardiac function and provides cardioprotection against 
acute stressors induced by exercise, such as mechanical stress, cel-
lular damage, and mitochondrial damage [10, 42, 75]. Interest-
ingly, alongside the controlled mechanisms of β-adrenergic receptor 
desensitization and β3 activation, high levels of oxidative stress linked 
to inflammation [10, 62,  76, 77] may also contribute to the at-
tenuation of cardiac function.

In fact, studies have demonstrated that inhibition of endogenous 
NO leads to an enhancement of the effects of catecholamines [78–80], 

FIG. 2. Putative mechanisms leading to cardiovascular stress 
during exercise. ROS: reactive oxygen species.
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Interestingly, as at December 2023, there remains no explanation of 
the reason for this increase, which has been suggested to be physi-
ological [94, 95]. This narrative review seeks to clarify our compre-
hension of the factors contributing to the elevation of galectin-3 lev-
els in reaction to strenuous endurance exercise.

Galectin-3 and inflammatory biomarkers
When cardiovascular tissues are physically damaged, the immune 
system is activated in order to remove the damaged cells and maintain 
homeostasis in the body [96]. Galectin-3 seems to play an important 
role in immune response activation [97] by stimulating hyperoxide 
secretion from neutrophils through NADPH activation [98, 99]. Neu-
trophils are generated and sent to the site of injury within minutes 
and are the hallmark of acute inflammation [100]. Suzuki [101] high-
lighted the protective role of neutrophils in the exercise-induced 
muscle damage associated with high production of ROS. Hence, 
neutrophil levels have been shown to double during prolonged stren-
uous exercise and remain elevated for at least 24 h [102].

Galectin-3 is actually considered a reasonable cardiovascular in-
flammatory biomarker [97]. Although galectin-3 is identified as a risk 
predictor of adverse events and cardiac arrest [103, 104], its levels 
correlate also with tissue repair [105, 106]. Galectin-3 should not be 
considered a pathogenic molecule inducing cardiovascular damage, 
since it contributes to activation of the immune system, playing a car-
dioprotective role during exercise. Interestingly, it was observed that 
the blood levels of galectin-3 in endurance athletes were more elevat-
ed than in sedentary healthy humans at the beginning and the end of 
exercise [107], confirming that galectin-3 can play a cardioprotective 
role in athletes. A 2020 review suggested that galectin-3 could be 
used as a novel treatment for atherosclerosis [97]. In fact, galectin-3 can 
play an anti-inflammatory role and exert a beneficial effect on athero-
sclerosis by activating M2 macrophage differentiation, via the CD98/
phosphoinositide 3-kinase pathway [108]. On the other hand, we high-
light that a clinical 2022 study found that galectin-3 accumulation po-
tentiates platelet aggregation via dectin-1 activation [109], which can 
promote thrombosis during/or following exercise.

FIG. 3. Potential factors contributing to coagulation and cardiovascular dysfunction during prolonged exercise. FGF-23: fibroblast 
growth factor 23. PTH: parathyroid hormone. RAS: renin-angiotensin-aldosterone system. SA: sympathetic activity.
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promotes platelet adhesion possibly by potentiating collagen produc-
tion [117, 118], triggering a cascade of coagulation. We believe that 
aldosterone can play a crucial role in the development of thrombo-
sis, resulting in cardiovascular dysfunction during and following en-
durance exercise. FGF23 directly alters endothelial vasodilation func-
tion by reducing NO bioavailability [119] (Figure 3). Importantly, 
clinical studies identified a strong correlation between PTH elevation 
and hypercoagulability [120]. One could speculate that PTH can 
contribute to blood coagulation and cardiovascular dysfunction dur-
ing prolonged exercise possibly by affecting calcium levels and po-
tentiating oxidative stress [121].

Toll-like receptor 4 (tlr4) and coagulation
The analysis of TLR4 is a promising advanced orientation in the search 
for understanding cardiovascular dysfunction [122]. Indeed, a single 
bout of exercise induces TLR4 activation, promoting endoplasmic 
reticulum stress [122, 123], an inflammatory response [122–124], 
and increased markers of cardiac injury [122, 123] and apopto-
sis [122] (i.e. heart-damaging events), which are necessary mecha-
nisms for remodelling and adaptation [122]. Interestingly, it has been 

Aldosterone, fibroblast growth factor 23 and parathyroid hormone
It is well established that fibroblast growth factor 23 (FGF-23), 
a newly discovered hormone, and parathyroid hormone (PTH) are 
markers of chronic kidney injury and cardiovascular impairment (i.e. 
ventricular hypertrophy, vascular calcification, and arterial stiff-
ness) [110]. The literature revealed that high-intensity endurance 
exercise training is associated with arterial stiffness [111], ventricu-
lar hypertrophy [112], and coronary artery calcification [113, 114]. 
Importantly, the increase in PTH level depends on exercise severity 
(intensity and duration), suggesting a complex cause-and-effect re-
lationship between PTH and coronary artery calcification [113]. 
Currently (December 2023), the mechanism explaining PTH eleva-
tion during exercise is not yet well understood. In fact, RAS is acti-
vated during prolonged exercise [115], indicating a decline in renal 
function and then an impairment in calcium and phosphate regula-
tion. Therefore, PTH and FGF-23 are both secreted to restore cal-
cium and decrease phosphate levels [116].

We hypothesize that aldosterone, PTH and FGF-23 play a key 
role in the development of cardiovascular fatigue during exercise: Al-
dosterone increases oxidative stress, reduces NO levels, and 

FIG. 4. Toll-like receptor 4  (TLR4) promotes acute coagulation via neutrophil activation, ROS generation and platelet aggregation. 
ROS: Reactive oxygen species.
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recently suggested that nuclear factor-kappa B (NF-κβ) activation by 
TLR4 is a necessary mechanism for cardiovascular adaptations induced 
by physical effort [122]. According to Gordon et al. [125], NF-κβ can 
promote desirable adaptive responses. Cardioprotection is triggered 
during or immediately after exercise when cells are under oxidative 
stress [126].

Although TLR4 is a physiological response favouring apoptosis 
and tissue regeneration to assure beneficial adaptive responses to 
exercise, evidence suggests that TLR4 promotes acute coagula-
tion [127] via NF-κβ activation, neutrophil activation, ROS genera-
tion, and platelet aggregation [127, 128] (Figure 4). Therefore, we 
highlight that TLR4 activation by acute strenuous exercise can re-
sult in undesirable cardiac events (myocardial infarction or sudden 
death), particularly in people with cardiovascular diseases [41].

What is the primary cause of cardiovascular risk?
To date (December 2023), inflammation has traditionally been re-
garded as the primary cause of cardiovascular dysfunction during 
endurance exercise. However, there is abundant evidence indicating 
that the inflammatory response is not the primary cause of dysfunc-
tion [129]. Importantly, some anti-inflammatory cytokines (e.g. IL-10) 
inhibit activation of coagulation and regulate thrombosis [130, 131]. 
Furthermore, it is well established that the IL-33/ST2 axis exhibits 
a cardioprotective role, reducing fibrosis and cardiomyocyte hyper-
trophy, and improving myocardial function in both chronic and acute 
heart failure [132]. Moreover, creatine kinase is traditionally consid-
ered an indicator of tissue damage and subsequent fatigue. Creatine 
kinase’s function is intriguing. Its role in cardioprotection, particu-
larly through the inhibition of ADP-triggered platelet activation [133], 
underscores the imperative for researchers to recalibrate and deepen 
their perspectives on the multifaceted biological responses to exercise.

White blood cells and platelet counts are reported to be elevated 
after prolonged strenuous exercise [134–136]. It was reported that 
inhibition of platelet aggregation by NO was decreased following 
acute prolonged strenuous exercise. The attenuated response of 

platelets to NO during exercise results in thrombotic complica-
tions [137]. Moreover, NADPH plays a crucial role in ROS genera-
tion and platelet activation [138]. Indeed, such activation despite 
its protective role through haemostasis-inducing coagulation can re-
sult in thrombosis, myocardial infarction, and cardiac arrest [139].

Moreover, it is well established that strenuous exercise induces 
endothelial damage/vascular injury [10]. The damage of endotheli-
al cells results in vasoconstriction and exposes the collagen substra-
tum to the blood circulating at high shear rates [128]. Therefore, 
platelets circulating at high velocity will adhere to collagen. The ad-
herent platelets then aggregate. Platelets are then activated (by se-
creting ADP, serotonin and TxA2) which promotes a cascade of co-
agulation [128] (Figure 5). Therefore, endothelial damage can further 
trigger haemostasis, resulting in a high level of blood viscosity, po-
tentiating thrombosis and cardiovascular dysfunction during and/or 
following exercise.

In summary, our review suggests that the primary causes of car-
diovascular risk during acute endurance exercise are two-fold. First-
ly, cell damage (involving endothelial and mitochondrial cells) emerg-
es as a significant contributor. The stress imposed during exercise 
can lead to damage in these cells and result in vasoconstriction, po-
tentially impacting cardiovascular function and overall risk. Second-
ly, blood coagulation (due to cell damage, inflammation, renal dys-
function, and high oxidative stress) leading to thrombosis and an 
increase in blood viscosity, plays a crucial role in cardiovascular risk. 
These factors can affect blood flow dynamics and potentially lead to 
adverse cardiovascular events. Additionally, it is important to con-
sider coronary artery calcification as a risk factor that may be exac-
erbated after high-load training. This calcification process can fur-
ther contribute to the overall cardiovascular risk profile.

In conclusion, the combination of several factors – (i) shear stress-
induced endothelial damage promoting coagulation cascade and then 
thrombosis, (ii) oxidative stress, inflammation, renal dysfunction, and 
immune activation promoting blood coagulation and then thrombo-
sis, and (iii) vasoconstriction (due to endothelial damage, oxidative 

FIG. 5. Platelets are activated when binding to the collagen substratum, which promotes a cascade of coagulation. EC: endothelial 
cell. PLT: platelet. RBC: red blood cell.
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The present narrative review, while providing valuable insights, 
does have additional perspectives. We acknowledge that not all bio-
markers of inflammation (e.g. IL-6 and IL-17), iron deficiency, and 
numerous other factors potentially exacerbating coagulation during 
exercise have been discussed. Furthermore, our focus centred on ox-
idative stress during exercise, while neglecting the influence of oth-
er factors, including alterations in pH, calcium levels, and energy 
metabolism, which can also contribute to cardiovascular dysfunc-
tion [145]. We encourage further exploration in this field to enhance 
our understanding of cardiovascular dysfunction during prolonged 
exercise by incorporating additional information and complementing 
our current knowledge base.

CONCLUSIONS 
The thermoregulatory vasodilation during prolonged exercise primar-
ily relies on reflex control and nitric oxide production. However, ex-
tensive evidence from the literature indicates that cutaneous vaso-
dilation during strenuous exercise is impaired by excessive ROS 
production and increased oxidative stress. Furthermore, reducing the 
inhibitory effects of nitric oxide on platelet aggregation during pro-
longed strenuous exercise may result in potentially dangerous throm-
botic complications.

Prolonged strenuous exercise has been shown to increase NADPH 
oxidase activity, shift the redox balance to a pro-oxidant state, and 
impair renal and cardiovascular function. NADPH plays a critical role 
in the formation of ROS, as well as immune and platelet activation. 
Although such activation serves an immune-protective function, it 
can lead to coagulation and myocardial infarction.
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stress, and haemostasis) promoting thrombosis – contributes to the 
increased cardiovascular fatigue and risk (myocardial infarction) dur-
ing and/or following strenuous endurance exercise. Finally, we high-
light that dehydration can potentiate cardiovascular fatigue and the 
risk of cardiovascular infarction.

Perspective and limitations
Our hypothesis revolves around the notion that excessive oxidative 
stress, potentially linked to shear stress, cellular damage, renal dys-
function, and activation of the immune response, contributes to car-
diovascular dysfunction through the promotion of platelet aggregation. 
This hypothesis is firmly grounded, supported by compelling evidence 
indicating that vigorous exercise leads to a significant rise in platelet 
aggregation and activation [140, 141]. Additionally, there exist vari-
ous other molecules associated with impaired energetic metabolism 
and cardiovascular dysfunction (such as free fatty acids, cholesterol, 
low-density lipoprotein, catecholamines, and serotonin) [142] that 
may further exacerbate coagulation during and/or following exer-
cise [143, 144]. Investigating the complex association of these vari-
ables with coagulation warrants comprehensive exploration in future 
studies. Of particular interest, the use of antithrombotic therapy holds 
promising potential in counteracting coagulation-induced cardiovas-
cular fatigue. However, caution must be exercised due to the inherent 
risk of bleeding complications. Markers of cardiac/renal damage (e.g. 
galectin-3) increase during and/or following exercise; however, there 
has been no explanation of the reason for this response, which has 
been suggested to be physiological (i.e. non-pathological), though it 
remains unexplained to date. Notably, this increase in markers is 
potentially associated with activation of TLR4. TLR4 activation pro-
motes an inflammatory response and increases markers of cardiac 
injury, which are crucial for remodelling. Immune activation and in-
flammatory responses to acute exercise are both adequate physiolog-
ical responses, ensuring a cardioprotective role by optimizing cardio-
vascular adaptation to physical effort (i.e. training). However, excessive 
immune system activation and inflammation during exercise are as-
sociated with a heightened risk of cardiac events. Although evidence 
suggests that galectin-3 is secreted to promote physiological cardiac 
remodelling and immune system activation, it is not yet clear wheth-
er galectin-3 contributes to cardiovascular dysfunction by promoting 
platelet activation and thrombosis (i.e. by activating dectin-1/spleen 
tyrosine kinase signalling). This narrative review serves as a call to 
researchers to explore and investigate this potential pathway for a bet-
ter understanding of cardiovascular risk prevention through exercise.
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