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A b s t r a c t

The MTHFR gene has been reported as a susceptibility locus for sporadic Parkinson’s disease (sPD). The functional vari-
ant rs1801133 has been linked to hyperhomocysteinemia and dopaminergic cell death. Among different populations, 
Mexican-Mestizos (most present-day Mexicans) have the highest frequency of this variant. Therefore, we sought to 
determine a possible association of rs1801133 with SPD. In total, 356 individuals were included: 140 patients with PD, 
diagnosed according to the Queen Square Brain Bank criteria, and 216 neurologically healthy controls. Genotyping 
was performed using TaqMan probes for rs1801133 and real-time PCR. Logistic regression analysis with adjustment 
for smoking and gender was used to test for an association between genotype and SPD. The CC genotype was asso-
ciated with SPD; exp(β) = 2.06; 95% CI: 1.101-3.873, p = 0.024. No association with age at onset, cognitive impair-
ment or gender was found in our study group. Our data suggest an important role of MTHFR gene variants in SPD.
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Introduction 

Parkinson’s disease (PD) is a multifactorial neuro­
degenerative disease that affects about 1-2% of peo­
ple older than 65 years [23], sporadic cases (sPD) 
being more frequent than familial ones. Among 
genetic factors influencing PD, rare variants in PARK 

genes such as LRRK2 (PARK8) and SNCA (PARK1) [2,5] 
are known to play a major role in PD pathogenesis 
(rare variant common disease hypothesis) [3,14]. 
However, it is possible that common variants in other 
genes account for part of the unrevealed heritability 
of PD (the common variant common disease hypoth­
esis) [16]. In this regard, the MTHFR gene has been 
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recently proposed as a candidate risk gene for PD by 
two independent meta-analyses [24,25].

The enzyme MTHFR (EC 1.5.1.20) catalyzes the 
transformation of 5,10-methylenetetrahydrofolate to 
5‑methyltetrahydrofolate, a co-substrate for homo­
cysteine remethylation to methionine. The T allele 
of the functional rs1801133 variant in this gene gen­
erates a thermolabile enzyme with reduced activity. 
The homozygous state of this variant (TT) has been 
linked to elevated plasma homocysteine (Hcy) levels 
[9], although optimal folate and vitamin B12 intake 
can counteract the effect of genotype [12]. Elevat­
ed Hcy may hasten dopaminergic cell death through 
oxidative stress and excitotoxicity [7,18]. 

Variants in the MTHFR gene may also influence 
the response to treatment, since impaired trans­
methylation potential has been detected in hyper­
homocysteinemic L-dopa-treated PD patients [6].

Among different populations, Mexican-Mestizos 
(most present-day Mexicans) have the highest fre­
quency of the T allele [20]; therefore we sought to 
determine whether rs1801133 is associated with SPD 
in our population.

Material and methods

Patients and controls

We conducted a case-control study that included 
140 SPD patients and 216 neurologically healthy con­
trols. Institutional Committees approved the study 
and informed written consent was obtained from 
participants. Patients were recruited from February 
2009 to June 2010, from four tertiary-care level hos­
pitals in Mexico (Neurology Departments from Cen­
tro Médico Nacional “20 de Noviembre” – ISSSTE, 
Centro Médico Nacional Siglo XXI-IMSS, Instituto 
de Ciencias Médicas y de la Nutrición “Salvador 
Zubirán”, Mexico City; and División de Genética, 
Centro de Investigación Biomédica de Occidente- 
IMSS, Jalisco, Mexico). Diagnosis was performed 
according to Queen Square Brain Bank criteria [15]. 

The threshold for early-onset Parkinson’s disease 
(EOPD) was considered as onset earlier than 40 years 
old. Cognitive impairment was assessed using the 
Folstein Mini Mental State Examination Test. We did 
not measure plasma Hcy levels because most PD 
patients could show elevated levels derived from 
pharmacological therapy with L-dopa. Controls were 
healthy blood bank donors or patients’ spouses who 
agreed to participate in an additional neurological 
evaluation; they were Mexican-Mestizos without 
family history of neurodegenerative disorders.

DNA isolation and genotyping

DNA was extracted from peripheral blood sam­
ples by the DTAB CTAB method [13]. Genotyping was 
performed by real-time PCR using TaqMan probes 
(Hydrolysis probes) using the C_1202883_20 assay 
(Applied Biosystems, Foster City, CA, USA). Real-time 
PCR was performed on a LightCycler 480 II (Roche 
Diagnostics GmbH, Switzerland); PCR reactions were 
conducted according to the manufacturer’s instruc­
tions. Random samples were confirmed by high 
resolution melting curves (Fig. 1). The samples were 
previously screened for common variants in six PARK 
genes, including A30P of SNCA and G2019S and 
G2385R of LRRK2; the prevalence of DNA changes 
was low [10].

Statistical analysis

Statistical analysis was performed using SPSS 
software v. 18.0 (SPSS Inc., Chicago, IL, USA) for the  
χ2 test, logistic regression and ANOVA. Hardy-Wein­
berg equilibrium (HWE) was estimated in both groups 
using the χ2 test (http://ihg.gsf.de/cgi-bin/hw/hwa1.
pl [20/08/2013]). Statistical power was calculated 
a posteriori using Quanto Software Version 1.2.

Results 

In total, 356 individuals were genotyped, 140 pa­
tients with SPD (95 males and 45 females, aged: 
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Fig. 1. Melting curves for the MTHFR rs1801133 showing CC and CT genotypes.
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65.46 ± 11.5 [mean ± standard deviation] years old), 
age at onset 58 ± 13.66), whereas 216 healthy indi­
viduals constituted the control group (140 males 
and 76 females, aged: 63.68 ± 8.8 years old). Hardy- 
Weinberg equilibrium test showed that alleles were 
distributed according to expected frequencies in 
both groups (corrected p-values, controls p = 0.13, 
cases p = 1.00). Distribution of genotypes between 
groups is shown in Table I.

The association test showed that the C allele was 
associated with PD only under the recessive mod­
el (OR = 2.02, CI: 1.08-3.77, p = 0.02); after logistic 
regression for known confounding factors, the asso­
ciation remained significant (exp(β) = 2.06, CI: 1.101-
3.873, p = 0.024). There was no association of any 
allele and cognitive impairment (p = 0.33). One-way 
ANOVA showed no differences between genotypes 
and age at onset (p > 0.05). Additionally, when age 
at onset was categorized (EOPD), the χ2 test did not 
show an association of any allele or genotype and 
EOPD (p > 0.05) (TT group n = 31).

Discussion

In contrast to the hypothesis that the TT geno­
type of rs1801133 in the MTHFR gene leads to ele­
vated levels of Hcy, cell death and therefore a higher 
risk of neurodegeneration [25], our data suggest that 
the CC genotype is associated with PD. This may be 
explained by the fact that the TT genotype has the 
greatest influence on Hcy levels in populations with 
low folate and high B12 vitamin plasma concentra­
tion such as Africans but not Mexican-Mestizos, in 
whom folate and B12 levels were high and moder­
ate respectively [11]. Thus the TT genotype does not 
always imply high Hcy levels; in fact, a  protective 
effect of the TT genotype against preeclampsia was 
reported in Maya-Mestizo women [1].

Others have also suggested that homozygosis of 
the T allele may confer a survival advantage in pop­
ulations with sufficient dietary folate consumption 
[11,17,19]. Therefore, it is expected that in some pop­

ulations such as Mexican-Mestizos, the T allele even 
when linked to an impaired biochemical function 
(elevated Hcy) may represent the wild-type allele, 
since an advantage may fix an allele within a pop­
ulation under particular environmental conditions. 
A  presumptive advantage may exist, as described 
previously in an intervention where folate sources 
and dosages where controlled [4]. In contrast to its 
counterpart, the TT genotype showed only a slight 
decrease in global DNA methylation after folate 
depletion; conversely, under low folate basal levels, 
the TT genotype has shown significantly diminished 
global DNA methylation [8]. Thus, the finding that 
the derived CC genotype has the greatest decrease 
in DNA methylation after folate depletion may repre­
sent a different mechanism linked to neurodegenera­
tion, besides the known effect of hyperhomocystei­
nemia on neuronal cytotoxicity [4].

The ancestral C allele may be considered the 
risk variant for PD in the Mexican-Mestizo popula­
tion. Although it is speculative, hypomethylation 
as observed with the CC genotype under folate 
depletion may potentially impact epigenetic regula­
tion of other genes such as LRRK2 and SNCA [21]. 
SNCA protein is also involved in the arrest of DNMT1 
(a major element in epigenetic regulation) in post­
mortem brains of PD patients, worsening in this 
way the hypomethylation phenomenon [21]. Inter­
estingly, another study found this same genotype 
(CC of rs1801133) related to earlier age at onset of 
PD [22]. Our data do not replicate the observation, 
probably because in our group patients with EOPD 
were uncommon. Larger studies documenting age at 
onset and MTHFR genotype may confirm this find­
ing. To our knowledge this is the first report on asso­
ciation of the CC genotype of MTHFR and SPD. Other 
studies in different populations with larger samples 
may add support to our hypothesis in which conver­
gent pathways between common and rare variants 
may potentially affect complex neurodegenerative 
disorders such as PD. 

Table I. Genotype frequencies of rs1801133 in cases and controls

Genotypes Controls
n = 216 

Patients
n = 140

OR (95% CI) p-value*

CC 37 (0.17) 38 (0.27) 2.02 (1.081-3.779)  0.026

TC 118 (0.55) 71 (0.51)

TT   61 (0.28) 31 (0.22)
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Limitations of the study

Some of the limitations of the present study were 
that since a considerable proportion of patients were 
treated with L-dopa among other anti-parkinsonian 
drugs, homocysteine levels or global methylation 
were not measured and therefore the genotype-phe­
notype correlation could not be explored to support 
our hypothesis. The presence of essential hyper­
tension could not be assessed accurately, since the 
study was not intended to do so. The statistical pow­
er reached was 72% (lower than the expected 80%).
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