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The Wnt/Fzd/B-catenin signaling pathway plays a significant role in physiology
and pathology of the liver. The role of B-catenin is linked mainly to the canonical
pathway of the system. Phosphorylation of B-catenin and abnormalities in function
of the E-cadherin-catenin unit lead to loss of intercellular junctions, progression in
liver fibrosis, and development of cirrhosis and hepatocellular carcinoma (HCC).
Progression of liver diseases is noted to be accompanied by disturbances in B-cat-
enin expression (mainly with its overexpression), with its cytoplasmic or nuclear
translocation and with lowered expression of E-cadherin. Increase in transcriptional
activity of B-catenin is associated mainly with mutations of CTNNBI. Detailed
mechanisms of HCC development are not known.

More B-catenin mutations are manifested in hepatitis C virus (HCV)-associated
than in HBV-related HCC. In recent years the role of nonstructural proteins and
of the core protein of HCV has been accentuated in induction of the Wnt path-
way. HCV proteins affect in a double manner expression of E-cadherin, including
modulation of the Wnt pathway and reduction of E-cadherin expression at the
transcriptional level.

This review presents current data on mechanisms of hepatocarcinogenesis involv-
ing participation of the Wnt canonical pathway and, in particular, interaction of
Wnt pathway components with HCV genome products in the process.

Key words: Wnt canonical pathway, B-catenin/E-cadherin complex, hepatitis C
virus, hepatocarcinogenesis.

Wnt/Fzd/B-catenin signaling pathway
in liver

The Wnt/Fzd/B-catenin signaling pathway plays
a significant role in liver physiology and pathology.
Its involvement was demonstrated in development of
liver and in morphogenesis of biliary ducts. It main-
tains correct homeostasis of liver cells in postnatal life
[1}, and it influences development of structure and
metabolic activity of the hepatic acinus, allowing for
growth and regeneration of the liver. It protects the

liver from the effects of toxic agents and oxidative
stress {2]. Also mechanisms of carcinogenesis, related
both to hepatoblastoma and to primary hepatocel-
lular carcinoma (HCC) involve the pathway {1, 31.
Interactions of the pathway have been described with
other pathways accelerating hepatocyte proliferation.
Detailed mechanisms of HCC development remain
unknown and determination of a simple model of
hepatocarcinogenesis with involvement of the Wnt
signaling pathway has proven to be difficule {1}.
Due to the fact that incidence of chronic hepatitis C
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Fig. 1. Immunocytochemical and hybridocytochemical localization of B-catenin in normal and pathological liver. Mem-
branous expression of B-catenin in control liver (A); mostly membranous (B) and cytoplasmic (C) expression of B-catenin
in human hepatocellular carcinoma cells; mRNA for B-catenin in HCC (D). Immunohistochemistry (A-C) and hybridiza-
tion 7z situ method (D). Hematoxylin counterstained. Objective magnification 40 X (A-D)

is increasing, leading to development of end-stage
liver disease including cirrhosis and HCC {4}, it is im-
portant to define mechanisms of hepatitis C virus
(HCV)-induced liver carcinogenesis with involve-
ment of the Wnt/B-catenin signaling pathway. Al-
ready at the beginning of this century more numer-
ous mutations of B-catenin were found to develop in
HCV-associated HCC than with HBV-related HCC
[51. Recent years have brought the results of studies
on direct interactions between oncogenic HCV pro-
teins and components of the Wnt/B-catenin signal-
ing pathway [6-10}.

Double role of B-catenin

In its inactivated state, B-catenin is phosphorylated
at its serine (SER)/threonine (THR) residues. It rep-
resents a component of a large cytoplasmic protein
complex with glycogen synthase kinase 3 (GSK-3p),
casein kinase 1 (CK1), the product of the APC (ad-
enomatous polyposis coli) suppressor gene and axin/
conductin {11, 12}. The complex controls intra-
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cellular levels of B-catenin mainly through protein
phosphorylation. Phosphorylation of the B-catenin
N-terminus represents a pre-requirement for recog-
nition by B-TrCP of an ubiquitin ligase E component,
with its subsequent degradation in proteasomes. At
the first stage phosphorylation of serine takes place
in position 45 (SER?) by CKla/e, and then SER?,
SER> and THR* by GSK3p {13}. Control of B-cat-
enin phosphorylation also involves the Diversin pro-
tein: while CK1a binds directly to axin, CKle links
the ankyrin fragment of the Diversin protein, form-
ing a degradation complex {14}. Phosphorylation of
B-catenin by GSK3p is much more effective in the
presence of axin, and overexpression of conductin
additionally augments degradation of B-catenin. In
neoplastic tumors (including those in the liver) ex-
pression of conductin (but not axin) is frequently el-
evated and may represent an early diagnostic marker
of certain tumors {15}. APC protein represents an-
other protein involved in formation of the B-catenin
destructive complex. The sites for B-catenin binding
are located in its central portion [16}. The critical
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variables for B-catenin activity involve nuclear export
of APC (reducing its activity) or loss of the nuclear
export signal (NES) sequence in the mutated APC
(increasing transcriptional activity) [17}.

B-catenin, together with the remaining catenins
(o and v) and E-cadherin, participates in formation
of intercellular junctions of zonulae adberens type. It
is located at the inner side of the cell membrane, and
it secures the link between E-cadherin and cell cyto-
skeleton [18). Zonulae adherens are also present be-
tween polarized epithelial cells, such as hepatocytes.
Apical surfaces of the cells represent regions which
generate bile canaliculi while membranes of basal he-
patocyte portions adjoin sinusoidal endothelial cells.
Junctions of zonula adberens, desmosome and nexus
(gap junction) types are present on lateral surfaces of
hepatocytes {19}. Tight junctions are areas of local-
ized contact, found in the apical region of adjacent
epithelial cells. In the liver they are situated close to
capillary bile canaliculi, and they isolate the canalic-
ular compartment from the intercellular space and
hepatic sinusoids {19, 20}. A novel mechanism is
suggested of cross-talk between specific components
of tight and adherens junctions to regulate adhesion
between hepatic cells {211. B-catenin is encoded by
the CTNNBI1 gene (chromosome 3p21-p22), con-
sisting of 16 exons (the first is a non-coding exon). It
represents a highly conserved protein, formed of 781
amino acids (aa), and, together with plakoglobin, it
belongs to the armadillo protein family [22}.

Canonical pathway of Wnt/Fzd/B-catenin
signaling

Stimulation of the canonical pathway induced by
Wnt ligands takes place through one of the recep-
tors belonging to the Frizzled (Fzd) family [23}. Out
of the old two LRP (low density lipoprotein-receptor
related protein) co-receptors, LRP-5 and -6, the lat-
ter is more important in formation of the Fzd-LRP
complex {24}. The Fzd receptor, through its PDZ
(Py,-95/dics large/ZO-1 homologous) domain, re-
cruits a cytoplasmic Dvl (disheveled) protein, which
contains three conserved domains of DIX, PDZ and
DEP DIX domains and, probably, multimerization of
Dvl protein, recruits the axin complex and activates
GSK3B to phosphorylate the intracellularly located
PPPSP motifs of the LRP co-receptor. This leads to
inhibition of B-catenin phosphorylation and to its ac-
cumulation in cytoplasm {23}. The Dvl protein binds
approximately 18 DAPs (Dvl-associated), including
Nkd, Idax, Frodo, Dapper, GBP/Frat, Stbm, Daam1
and Pricle proteins, which may activate or inhibit
Wnt signaling {251.

Activation of the Wnt canonical pathway results
in inhibition of B-catenin phosphorylation and ab-
sence of the protein degradation. Its stabilization and
accumulation in the cytoplasm facilitates transport of

B-catenin to the cell nucleus. Through the develop-
ment of a complex with LEF (lymphoid enhancer fac-
tor)/TCF (T cell factor), expression of various genes
becomes intensified.

Individual Wnt ligands (19 cystein-rich glycopro-
teins) were qualified to form two groups. The first
contains transforming glycoproteins with oncogenic
properties, linked to the canonical pathway, including
Wnt-1, -3a, -8 and -8b. The other group contains
non-transforming proteins, activating the non-ca-
nonical pathway with activity opposite to that of
first group ligands. They include Wnt-4, -5a and -11
[26]. In addition, it was demonstrated that certain
non-canonical ligands (Wnt-4 and Wnt-5a) may
induce B-catenin-dependent signals but only upon
fusion with specific subtypes of Fzd receptors, and
they manifest a selective dependence from LRP-5 and
LRP-6 {24}.

Receptors of Frizzled family

Fzd receptors represent a separate class (Frizzled)
in the family of GPCRs (G-protein-coupled recep-
tors), consisting of 10 isoforms of Fzd, {27} They
are responsible for proliferation, differentiation and
migration of cells, including hepatocytes {24}. Each
of the receptors represents a protein with seven hy-
drophobic transmembrane domains, a C-terminal
PDZ domain and an N-terminal extracellular cys-
teine-rich domain (CRD), which binds Wnt ligands
[28}. Various Wnt ligands bind to distinct Fzd re-
ceptors {27}. For example, Fzd2 receptor, consisting
of 565 aa (56% identical to a homologous receptor
in Drosophila), is encoded on chromosome 17q21.1.
{29, 301. Human Fzd1 and Fzd7 receptors, with size
of, respectively, 647 and 574 aa, have been mapped
to chromosomes 7q21 and 2q33, respectively [30].
Recent reports indicate that the Fzd7 receptor un-
dergoes overexpression in various tumors, including
HCC. It plays a significant role in biology of stem
cells, and in development and progression of malig-
nant tumors {31}].

In function of the canonical pathway of Wat,
transport of B-catenin to the cell nucleus has principal
significance. The detailed mechanism of the transport
(particularly in tumor cells) has not been fully clari-
fied. Previously the process was suggested to involve
the NLS, independently of involvement of the im-
portin protein, as a result of a direct interaction with
proteins of nuclear envelope pores {32}. Subsequent
studies excluded presence of NLS in the B-catenin
molecule {33, 34]. B-catenin undergoes translocation
also in the reciprocal direction, from the cell nucleus
to the cytoplasm. The export takes place in associa-
tion with APC, axin {35} and RanBP3 (Ran binding
protein 3) proteins {36}. Axin and APC augment cy-
toplasmic while TCF4 and BCL9/Pygopus augment
nuclear expression of B-catenin, but this reflects its in-
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creased accumulation in a given compartment rather
than a stimulated transport {37]. Some investigators
point to the need for activation of small GTPases and
Rac-1 (Ras-related C3 botulinum toxin substrate 1)
in the process of nuclear accumulation of B-caten-
in. Together with JNK2 (Jun N terminal kinase 2)
and B-catenin it forms a triple cytoplasmic complex,
causing phosphorylation of SER*! and SER®® in the
B-catenin molecule, facilitating its transport to the
cell nucleus [38]. Recent studies demonstrate that
SER* undergoing glycosylation (O-GlcNAc modifi-
cation) is responsible for subcellular localization and
transactivation of fB-catenin. Upon glycosylation of
SER?}, B-catenin undergoes translocation from the
cell nucleus to cell membranes. This is linked to am-
plification of B-catenin interaction with E-cadherin,
a decreased B-catenin-TCF interaction, decreased
transcriptional activity and Wnt target gene expres-
sion {39}.

Following translocation to the cell nucleus, B-cat-
enin binds to TCF/LEF transcription factors, belong-
ing to HMG (High Mobility Group) box proteins.
In mammals four genes encode TCF (TCF1, LEFI,
TCF3 and TCF4). They associate with DNA sequenc-
es termed WRE (Wnt responsive element). In cas-
es of absence of Wnt stimulation and upon absence
of B-catenin in the cell nucleus, the TCF/LEF com-
plex inhibits transcription of Wnt-dependent genes.
It contains four domains, the N-terminal B-caten-
in-binding domain, the central domain, the HMG
domain which binds to DNA, and also contains an
NLS sequence as well as a long terminal C fragment
[401. Another element which co-operates with TCF in
inhibiting transcription of Wnt-dependent proteins
involves Groucho proteins (Grg-1, -2, -3, -4, -5) in
Drosophila and homologous proteins in mammals, i.e.
TLE-1, -2, -3, -4 (transducin-like enhancer split) and
hAES (amine terminated enhancer split). The tran-
scription-inhibiting mechanism employing Groucho/
TLE is linked to histone deacetylase RPD3 from the
HDAC-1 (histone deacetylase) protein group, respon-
sible for development of a more compact chromatin
structure and transcription repression {41}.

E-cadherin/B-catenin complex in physiology

Catenins (including B-catenin) and E-cadherin
(typical for epithelial cells) form a structural-func-
tional E-cadherin-catenin unit (ECCU). Interactions
between the proteins are not direct, and instead an
allosteric switch in o-catenin may mediate actin cy-
toskeleton reorganization. The complex is controlled
by processes of phosphorylation and endocytosis
[42}. Cadherins are glycoproteins consisting of intra-
cellular, transmembrane and extracellular portions.
Apart from calcium ion-dependent control of cellu-
lar adhesion, they participate in tissue morphogen-
esis, recognition and grouping of appropriate cells,
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maintenance of tissue coherence and coordination of
cell translocation {43}. They are included in the su-
perfamily of cell adhesion molecules, which in their
extracellular portions contain cadherin repeats EC1-
EC5. Within hepatic E-cadherin (liver-cadherin,
LI-cadherin) DXNDN and DXD motifs were iden-
tified, responsible for binding calcium ions. LI-cad-
herin is localized to the basolateral domain of hepato-
cytes and enterocytes {44}. The cytoplasmic domain
of classical cadherins is highly conserved, while its
catenin-binding site has been mapped to 72 aa of the
C-terminal portion of the E-cadherin molecule. This
fragment of E-cadherin participates in interactions
with cytoplasmic proteins and controls functions of
cadherins {18, 45}. Six subfamilies of cadherins are
distinguished, including the classical ones (type I),
atypical ones (type II), present in desmosomes — des-
mocollin and desmoglein, protocadherins and Fla-
mingo cadherin {46]. Epithelial E-cadherin was the
first identified cadherin. It forms adherens junctions
between epithelial cells, and belongs to classical cad-
herins, along with N-cadherins in nervous tissue,
P-cadherins in placenta and R-cadherin in retina.
B-catenin binds to a cytoplasmic domain of E-cadher-
in and through linkage with a-catenin it anchors it to
actin of the cytoskeleton. The membranous domain
of cadherin binds to p120 protein. It is indispensable
for stabilization of E-cadherin and it fulfils functions
controlling junctions between cadherin and the cyto-
skeleton through interactions with small GTPases of
the Rho family. Also p120 protein represents a fac-
tor controlling the cadherin cycle {47}. Linkage be-
tween cadherin and B-catenin and between B-catenin
and a-catenin is controlled by numerous kinases and
phosphatases {42]. The process of E-cadherin deg-
radation starts with phosphorylation of TYR within
its molecule, followed by recognition and binding of
Hakai protein (ubiquitin ligase E3) in a Src phos-
phorylation-dependent manner {48}.

E-cadherin/B-catenin complex in pathology

Disturbances in structure and function of ECCU
were detected in the process of organ fibrosis, includ-
ing liver fibrosis {49}. The process is closely linked to
decreased expression of E-cadherin and overexpression
of B-catenin with its cytoplasmic translocation, which
results in a loss of intercellular junctions {45}. Such al-
terations were detected in cells of biliary duct epitheli-
um in patients with primary biliary cirrhosis, primary
sclerosing cholangitis and in alcohol-induced hepatitis
[50}1. Also in hepatic stellate cells (HSCs) involvement
of Wnt/B-catenin pathway components was demon-
strated in mechanisms of liver cirrhosis. As compared
to resting cells, activated HSCs were demonstrated to
contain 3- to 12-fold increased quantities of mRNA
for representatives of the canonical (Wnt-3a and
-10b) and non-canonical (Wnt-4 and -5a) pathway
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of Wnt, receptors Fzd-1 and -2 and for co-receptors
LRP-6 and Ryk. This was accompanied by markedly
increased nuclear expression of B-catenin. Activity of
TCF-dependent genes was stimulated by Wnt-1 and
inhibited by inhibitors of the Wnt pathway — small
proteins of Chibby (blocking interactions of B-catenin
with TCF) and Dkk-1 (blocking interactions of Wnt
with LRP). Presence of Dkk-1 reduced agonist-stim-
ulated activation of HSCs, while a high concentration
of Dkk-1 intensified apoptosis in activated cultures
of HSCs [51}. In another study, activation of HSCs
proliferation was demonstrated and inhibition of
TRAIL-induced apoptosis under the effect of Wnt-
3a. The reciprocal relationship was also detected, or
inhibition of activity and increased apoptosis in HSCs
under the effect of an inhibitor of the Wnt pathway,
i.e. SFRP 1 (Secreted frizzled-related protein 1) {521].

Disturbances in cadherin/catenin complex
and epithelial-mesenchymal transition

The cadherin/catenin complex actively partici-
pates in epithelial-mesenchymal transition (EMT)
and mesenchymal-epithelial transition (MET), which
are important both in physiology (embryonic devel-
opment) and in pathology (fibrosis of organs, carcino-
genesis) {45]. The EMT process is characterized by
de-differentiation of epithelial cells to fibroblasts and
myofibroblasts, which produce components of extra-
cellular matrix. Epithelial cells lose their marker pro-
teins, such as E-cadherin, ZO-1 (zonula occludens-1)
and cytokeratins, gaining phenotypic markers of
mesenchymal cells, such as vimentin, a-smooth mus-
cle actin (a-SMA) or fibroblast-specific protein-1
(FSP1). The cells of altered phenotype begin to pro-
duce mainly collagen type I and fibronectin {45].
EMT leads to a loss of intercellular junctions. A de-
crease in E-cadherin level results in release of B-cat-
enin from its associations and facilitates EMT, while
the restored presence of E-cadherin re-establishes the
altered cell phenotype. Hakai protein participates in
the dynamic recycling of E-cadherin, which modu-
lates cell adhesion and is involved in EMT {48}. In-
tercellular junctions with E-cadherin also provide
a target for ADAM 10 (A disintegrin and metallo-
proteinase 10). The protein cuts the extracellular
domain of cadherin close to its transmembrane do-
main, releasing in parallel B-catenin. It may increase
its transcriptional activity, augmenting expression of
the gene encoding cyclin D1 {53]. Also the intracel-
lular domain of cadherin may provide a target for
proteolytic cuts exerted by presenilin, which results
in a loss of cellular adhesion and increase in amounts
of free B- and a-catenin {54}. Epigenetic alterations
of E-cadherin are also described (methylation of the
gene promoter), which may lead to lowered expres-
sion of the protein, progression of disease and devel-

opment of neoplastic metastases {55}. Control pro-
teins, containing zinc-finger proteins, coded by the
gene families of Snail and Slug and SIP-1 (Smad in-
teracting protein-1) represent negative controllers of
the E-cadherin gene [56]. B-catenin is also involved
in the TGF-B-dependent EMT {57}. In the absence
of TGF-B, both E-cadherin and B-catenin undergo
degradation, with the resulting loss of intercellular
junctions. At the same time, cytoplasmic accessibility
of B-catenin becomes augmented and its transport to
the cell nucleus becomes possible {58}.

Disturbances in Wnt/B-catenin pathway in liver
carcinogenesis

Involvement of the canonical and non-canonical
Wt pathway in liver oncogenesis has been described
by various investigators [59-671. One of the most fre-
quently described mechanisms for activation of the
canonical signaling pathway in HCC involves activa-
tion of B-catenin through mutations in the CTNNB1
gene. This is accompanied by overexpression/repres-
sion of other genes involved in transmission of signals
to the cell nucleus, with the resulting intensification
of proliferation, migration and cellular invasion. At
the molecular level, a characteristic trait described in
hepatocellular tumors involves nuclear or cytoplasmic
accumulation of B-catenin, detected in a higher pro-
portion of cells in cases of hepatoblastoma (50-80%)
than in HCC (8-40%) {60, 62-64, 68}. Taniguchi ez
al. detected CTNNBI mutations in 19% of HCC and
in 70% of hepatoblastoma cases. They included main-
ly point mutations, and more than half of hepato-
blastomas contained deletions. Approximately 50%
of HCC with mutations of axin and conductin man-
ifested accumulation of B-catenin in the cell nucleus,
cytoplasm or on cell membranes {69}. In HCC a re-
lationship was detected between nuclear location of
the protein and more pronounced proliferative activ-
ity of hepatocytes and shorter survival of the patients
[641, or the opposite: lower invasiveness of HCC and
more frequent S-year survival of the patients {62}.
Relatively early, another role was suggested for wild-
type B-catenin as compared to its mutated form.
The mutated form of the protein was supposed to
be linked to HCC subtypes with a better prognosis
[62]. Nuclear localization of B-catenin may also be
induced by the TGF-p signaling pathway, in response
to trans-differentiation of neoplastic hepatocytes to
immature liver progenitor cells. Nuclear expression
of B-catenin was correlated with tumor invasion or
relapses of HCC following liver transplantation [66].

Certain investigators detected a relatively high
proportion of patients (62%) with non-nuclear ac-
cumulation of B-catenin (in cytoplasm/cell mem-
branes), pointing to heterogeneous mechanisms of
the protein accumulation in HCC {63}]. Most of the
observations point to the fact that mutations with-
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in CTNNBI are manifested in a later stage of liver
cancer development while nuclear accumulation of
B-catenin is detected in early stages of HCC devel-
opment, suggesting other (distinct from mutations)
mechanisms of stabilization involving the protein
[63, 70, 711. Using a model of transgenic mice, nu-
clear localization of B-catenin was demonstrated only
in adenoma and in highly differentiated cancers of
eosinophil phenotype, which also pointed to the fact
that activation of the Wnt/B-catenin pathway with
protein translocation of the cell nucleus represents
an early stage of carcinogenesis [72}]. Following years
of investigations, two HCC subtypes were distin-
guished, depending on molecular alterations related
to the Wnt/B-catenin pathway. The first one, with
a mutation in CTNNB], is characterized by increased
expression of liver-specific targets. HCC of this sub-
group represents well-differentiated tumors of a low
histological malignancy, with stable chromosomes
and a good prognosis. In the other subtype of HCC,
also with the Wnt/B-catenin pathway activated, no
B-catenin mutations are detected. The tumors are
characterized by extensive dysregulation of the clas-
sical Wnt pathway, a significant degree of chromo-
some instability, aggressive phenotype, and they are
preferentially linked to HBV infection {71, 73}. In-
terestingly, even if involvement of B-catenin is of key
importance to embryonic development of liver and
for processes of liver regeneration {2}, activation of
B-catenin itself remains insufficient to initiate per se
the process of liver carcinogenesis {67, 74}: a tran-
sient hepatocyte hyperplasia was noted only, with no
neoplastic transformation {74}. However, the acti-
vated B-catenin may cooperate with other pathways
of oncogenesis, such as insulin/IGF-1/IRS-1/MAPK,
H-RAS, MET, AKT or with chemical compounds
which initiate carcinogenesis {74, 75}. Even if the
mutated form of B-catenin is insufficient to trigger
the process of HCC development, it promotes the
process in another manner (increasing chromosome
instability, amplifying action of other oncogenes)
[67]. Amazingly, a phenomenon of sevenfold in-
crease in development of liver tumors was detected
in mice with CITNNBI knockout, as compared to
control mice {76}. It seems paradoxical that both
presence of the mutated B-catenin form and absence
of wild type B-catenin amplifies the DEN (diethyl
nitrosamine)-induced liver carcinogenesis in mice
[671. Mechanisms of HCC development in mice with
a knockout of the B-catenin gene remain unknown.
Recent studies indicate involvement of the
Wnt/B-catenin pathway in processes of self-renew-
al and expansion of liver cancer stem cells (CSCs),
which may initiate HCC. The evidence is available for
preferential activation of the Wnt/B-catenin pathway
also within the pool of stem cells within a mature,
regenerating liver, termed oval cells or hepatic pro-
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genitor cells (HPCs) {77]. As progenitor cells, they
manifest uninhibited growth, which makes them
similar to cancer cells and suggests that disturbed
control over their division may provide a cause for
development of HCC. This has been corroborated in
studies on animal models [78}. Liver diseases leading
to development of cancer also frequently lead to acti-
vation of HPCs, which may suggest that it is precise-
ly this group of cells which provides a starting point
for HCC development {79]. In a significant propor-
tion of HCC, one or more markers of HPCs can be
detected, which are absent in normal mature hepato-
cytes {80, 81}. In the oval cells, stimulated to prolif-
eration, an increase was detected in Wnt-3-induced
dephosphorylated B-catenin in the cell nucleus and
augmented transcriptional activity in the Wnt/B-cat-
enin/TCF pathway, with activation of the cell cycle
[82]. In another investigation, increased amounts of
total and active (dephosphorylated) B-catenin forms
were detected in the cytoplasm and the cell nucleus.
The increased expression of B-catenin was accompa-
nied by increased amounts of Wnt-1 in the neigh-
boring hepatocytes and augmented expression of the
Fzd-2 receptor in oval cells, in parallel with reduced
expression of WIF-1, an inhibitor of Wnt. An ad-
ditional proof for involvement of the Wnt/B-catenin
pathway in proliferation of oval cells was provided by
the dramatic reduction in the number of the cells in
livers of rodents devoid of the B-catenin gene [83].
Signals of the Wnt/B-catenin pathway may also affect
the microenvironment of HCC and in this way may
affect survival and growth of neoplastic cells {67].

B-catenin and E-cadherin, as components of the
Wt signaling pathway, have been placed on the list
of serum markers of liver carcinogenesis {84]. In sera
of HCC patients (etiologically linked to infection with
HCV genotype 4) with liver cirrhosis, significantly
higher levels of four proteins were detected, includ-
ing B-catenin and E-cadherin, as compared to sera of
patients with chronic HCV infection with no cancer
and sera of control individuals {84]. Summing up the
above, it may be accepted that B-catenin probably
plays a role in initiation of hepatic oncogenesis and,
at subsequent stages, the non-canonical pathway of
Wnt becomes mobilized {67}.

Wnt/B-catenin pathway in HCV-associated liver
carcinogenesis

Studies on involvement of HCV in liver car-
cinogenesis developing through modulation of the
Wnt/B-catenin signaling pathway have been con-
ducted since the 1990s. At the beginning, nuclear ac-
cumulation of p-catenin was demonstrated in HCC,
on the background of HCV infection and in associ-
ation with mutations in the B-catenin gene, which
were detected in 26-41% of patients with HCC {61,
851. Activation of the Wnt/B-catenin signaling path-
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way and its involvement in liver carcinogenesis were
also linked to axin mutations [86}, inactivation of
GSK-3B {871, dephosphorylation of B-catenin {59}
and up-regulation of Fzd-7 {88}. Zhang ¢t #/. demon-
strated that also the up-regulated microRNA-155
(miR-155), markedly increased in HCV-infected pa-
tients, activates the Wat signaling pathway with nu-
clear accumulation of B-catenin and the accompany-
ing increase in cyclin D1, c-Myc, and survivin. It was
also determined that a direct and functional target
of miR-155 involved APC {89}. However, it was not
until 7z vitro studies were conducted that interactions
between HCV proteins and the Wnt/B-catenin sig-
naling pathway were clarified. In HepG2 cell lines
both NS5A protein and the entire HCV polyprotein
were demonstrated to be responsible for the increase
in B-catenin level (protein accumulation and stabili-
zation, decreased degradation in proteasomes) in cells
with expression of the HCV genome products. This
was developing in the mechanism of a reduced activ-
ity manifested by the FKHR (forkhead transcription
factor) and increased phosphorylation of GSK-3f [6].
Thus, the elevated cellular level of B-catenin resulted
from activation of the PI3K/Akt signaling pathway.
This caused augmented transcription of B-caten-
in-dependent genes and was supposed to facilitate
neoplastic transformation of HCV-infected hepato-
cytes. Involvement of NSSA protein in activation of
the Wnt/B-catenin signaling pathway was confirmed
in subsequent studies {71, documenting direct acti-
vation of endogenous, unphosphorylated wild-type
B-catenin by NSSA protein and co-localization of the
two proteins in cytoplasm of HepG2 cells. The mech-
anism of B-catenin accumulation at the protein level,
also through inactivation of GSK-3p, was confirmed.
In addition, the investigators proved that NS5A pro-
tein may directly interact with B-catenin through its
N-terminus and the ARM 1-6 region of B-catenin
[71. The authors also succeeded in demonstrating
that the N terminus of NS5A affects TCF-4-depen-
dent transcriptional activity. In other studies, evi-
dence was provided for a role of NS5A in binding
of the p85 regulatory subunit of phosphoinositide-3
kinase (PIK3) and, in consequence, in stabilization of
B-catenin, independently of effector kinases for PIK3,
i.e. Akt and GSK-3B. Both ends of the NS5 A protein
(N and C) were found indispensable for the direct
binding of B-catenin and for full activation of the pro-
tein within the Wnt pathway {8]. Recent studies of
Higgs ¢t a/. demonstrated a direct role for NSSA pro-
tein in B-catenin-dependent c-Myc expression {90}.
Direct activation of the Wnt/B-catenin pathway
was demonstrated in an 7z vitro model also separately
for the core (C) protein of HCV {9, 10, 91}. HCV-
core transfected Huh7 cells up-regulated Wnt-1 and
WISP-2 transcription {91]. The cells demonstrated
intensified proliferation, DNA synthesis and pro-

gression of the cell cycle {91]. In both studies by Liu
et al., core protein of HCV amplified the TCF-depen-
dent transcriptional activity, intensified expression
and stabilized B-catenin at the protein level in Huh7
cells through inactivation of GSK-3B. It proved to
be responsible for amplification of cell proliferation
and promotion of tumor growth following action of
one of the Wnt pathway ligands, the Wnt-3a protein
{9, 10}. Core protein of HCV increases active B-cat-
enin and nuclear accumulation in SMMC-7721 cells.
Up-regulation of gene expression involving many
Whnt ligands (Wnt-2, -3, -3a, -10a, -10b, Fzd-1,

-2, -3, -6, -7, -9, and LRP5/6 co-receptors) was
demonstrated [10}. HCV also affects in a twofold
way expression of E-cadherin, indirectly by modula-
tion of the Wnt/B-catenin pathway and directly with
mediation of HCV core protein. C protein diminishes
expression of E-cadherin at the transcriptional level,
through methylation of CpG islands in the promoter
of the CDH1 gene {92, 931.

Recent studies brought proof for HCV involve-
ment also in EMT [94-961. In cultures of HCC cells
infected with genotype 1b or 2a of HCV, increased
expression of numerous EMT markers (including vi-
mentin, snail, slug and twist proteins) was demon-
strated and a decrease in E-cadherin expression, as well
as an altered phenotype of hepatocytes, with higher
expression of fibroblast-specific protein 1 (FSP-1)
and elevated levels of B-catenin phosphorylated at
Ser>? {94}, Grégoire et al. suggested that neither
Hedgehog nor B-catenin is required for NS5SA-me-
diated EMT {96}. The study of Quan et /. strong-
ly suggests that the HCV core-induced epigenetic
silencing of SFRP (secreted frizzled-related protein)
family may lead to activation of the Wnt signaling
pathway and increase HCC aggressiveness through
induction of EMT [971.

Clinicopathological role of B-catenin
and E-cadherin expression in hepatocellular
carcinomas

B-catenin represents a recognized oncogene, and
both qualitative (pattern of expression) and quanti-
tative evaluation of tissue expression of the protein
permitted genetically distinct subsets of HCC to be
distinguished {5, 62, 71, 73}. In most HCCs, a vari-
able percentage of cells is noted with abnormal local-
ization of B-catenin (i.e. cytoplasmic, nuclear, or C/N)
[59, 61-66, 68, 69, 101}. Nuclear localization of the
protein most frequently correlated with somatic mu-
tations of B-catenin {5, 59, 62, 102}, although de-
scriptions of nuclear accumulation of the protein are
available in cases free of the gene mutation {63}. The
percentage of cells with B-catenin mutation in HCC
is quantitatively quite variable (from a few to a few
dozen percent) {59, 63, 64, 68, 103]. Mutations
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in the B-catenin gene seem to be more frequent in
HCC with the background of HCV than HBV infec-
tion {5}.

In HCC most frequently tissue overexpression
of the protein is noted {63, 101, 103}, but studies
are also available which manifest lower expression of
the protein in cancer than in the control {62, 104,
our own unpublished data}. Recently, a subgroup of
patients with HCC has been distinguished (~15%)
with complete absence of tissue B-catenin expression
{105}.

Most positive correlations between invasive char-
acter of HCC, high metastatic potential of HCC,
poorer cellular differentiation, and shorter survival
of patients involve manifestation of nuclear expres-
sion or overexpression of B-catenin, independently
of localization of the protein {63, 64, 103}. On the
other hand, individual studies describing reduced
expression of B-catenin {62, our own unpublished
data}, or even its absence in HCC in a proportion of
the patients {1051, document absence of significant
correlations between the expression on one hand and
invasiveness and prognosis of HCC on the other {62},
and in the case with complete absence of the protein
significantly lower fibrosis and inflammation, but
unremarkable differences in proliferation {105}. At
present, attempts are being undertaken to evaluate
numerous immunohistochemical markers (in parallel
with B-catenin) of a high negative predictive value in
HCC, such as glutamine synthase (one of the tran-
scriptional targets of B-catenin) {105].

Changes in expression of the other ECCU com-
ponent, i.e. E-cadherin, in HCC are more frequently
linked to epigenetic alterations in the CDHI pro-
moter than to gene mutations {55, 102}. In HCC
mainly a decrease in tissue expression of E-cadher-
in used to be described, as compared to the control
[104, our own unpublished observations}. However,
also variable (both decreased and augmented) ex-
pression of the protein was described in the studied
group of HCC {102}. Individual studies documented
increased accumulation of the protein in HCC cells
[106}. No nuclear localization of E-cadherin was de-
scribed. In cases with parallel examination of both
ECCU proteins the decreased expression of E-cadher-
in and overexpression of B-catenin was found to be
correlated with lymph node invasion, poor patholog-
ical stage, TNM stage, and worse prognosis {101}.
Correlations were demonstrated between lowered
expression of E-cadherin (or its loss) on one hand
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and advanced stage, poorly differentiated histology
and relapse of HCC following operation on the other
[1071.

Until now, the variability of tissue expression
manifested by B-catenin and E-cadherin in the en-
tire HCC group has not permitted the proteins to be
recognized as independent prognostic indices in HCC
{104, our own unpublished observations}. Examina-
tion of the proteins’ expression is not recommended
in the routine histopathological diagnosis of HCC.
Nevertheless, the quoted results of studies point to
complex relationships between tissue expression of
the principal representative of the Wnt canonical
pathway (B-catenin) and E-cadherin on one hand and
histopathological indices of HCC invasion or clinical
data of the patients on the other. In our opinion, fur-
ther studies should be devoted to developing a more
uniform scale for quantitative evaluation of the pro-
teins in tissue material which would allow one to
draw more reliable conclusions from meta-analysis of
the data. In cases of HCV-associated HCC in parallel
to expression of B-catenin and E-cadherin, it would
be important to examine tissue expression of HCV
viral proteins (core, non-structural proteins) [our own
unpublished data}l.

In HCC treatment using therapy targeted at the
Wnt/B-catenin pathway, inhibitors of the pathway
remain in preclinical evaluation, and only a few com-
pounds have started to reach the phase I clinical trials
[review of the topic: 671. In the opinion of the au-
thors, an ideal antagonist of the Wnt pathway would
involve a drug which would exert its action in the
cell nucleus. In Poland the only registered systemic
drug for HCC targeted therapy involves the multiki-
nase inhibitor sorafenib {108}. Targeted therapy in
HCC requires analysis of multiple serum and tissue
biomarkers. Uniform quantitative analysis in cases
of tissue expression manifested by Wnt/B-catenin
pathway proteins may prove to be an invaluable tool
in classification for treatment. The individualized
targeted therapeutic strategies in HCC should also
take into account molecular interactions between the
Wnt pathway and fragments of the HCV genome.

The most important 7z vitro and in vive studies
on Wnt/B-catenin signaling pathway components in
HCV-related hepatocellular carcinomas are summa-
rized in Table I.

The authors declare no conflict of interest.
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