Are we ready for targeted therapy in AML

Lidia Gil MD PhD Department of Hematology and Bone Marrow Transplantation Poznan University of Medical Sciences

- Fundametal shift in the treatment of malingnant blood diseases is under way
- Classical cytotoxic chemotherapy may not be a component of therapy in multiple myeloma, chronic lymphocytic leukemia, acute lymphoblastic leukemia
- Does cytotoxic therapy still have a place in the management of acute myeloid leukemia (AML)

Acute promyelocytic leukemia

- APL t(15;17); PML/RARA gene
- Induction and consolidation based on all-trans retinoic acid (ATRA) in combination with arsenic trioxide (ATO) or anthracyclin (idarubicine)
- CR >95%

Lo-Cocco et al. NEJM 2013, Abaza et al. Blood 2017

AML – acute myeloid leukemia

AML and related neoplasms	AML and related neoplasms (cont'd)		
AML with recurrent genetic abnormalities	Acute myelomonocytic leukemia		
AML with t(8;21)(q22;q22.1); RUNX1-RUNX1T1	Acute monoblastic/monocytic leukemia		
AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11	Pure erythroid leukemia#		
Acute promyelocytic leukemia with PML-RARA*	Acute megakaryoblastic leukemia		
AML with t(9;11)(p21.3;q23.3); MLLT3-KMT2A†	Acute basophilic leukemia		
AML with t(6;9)(p23;q34.1); DEK-NUP214	Acute panmyelosis with myelofibrosis		
AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1)	Myeloid sarcoma		
AML (megakaryoblastic) with t(1;22)(p13.3;q13.3); RBM15-MKL1‡	Myeloid proliferations related to Down syndrome		
Provisional entity: AML with BCR-ABL1	Transient abnormal myelopoiesis		
AML with mutated NPM1§	Myeloid leukemia associated with Down		
	syndrome		
AML with biallelic mutations of CEBPA§	Blastic plasmacytoid dendritic cell neoplasm		
Provisional entity: AML with mutated RUNX1	Acute leukemias of ambiguous lineage		
AML with myelodysplasia-related changesII	Acute undifferentiated leukemia		
Therapy-related myeloid neoplasms¶	MPAL with t(9;22)(q34.1;q11.2); BCR-ABL1**		
AML, NOS	MPAL with t(v;11q23.3); KMT2A rearranged		
AML with minimal differentiation	MPAL, B/myeloid, NOS		
AML without maturation	MPAL, T/myeloid, NOS		
AML with maturation			

AML

- Prognostic factors in AML
 - Age
 - Performance status
 - Functional and cognitive status
 - **Comorbid condition**
 - Antecedent haematologic al disorder
 - **WBC** at presentation
 - Cytogenetics
 - Molecular abnormalities

Risk Profile	Subsets
Favorable	t(8;21)(q22;q22); <i>RUNX1-RUNX1T1</i> inv(16)(p13.1q22) or t(16;16)(p13.1;q22); <i>CBFB-MYH11</i> Mutated <i>NPM1</i> without <i>FLT3</i> -ITD (normal karyotype) Biallelic mutated <i>CEBPA</i> (normal karyotype)
Intermediate-I†	Mutated <i>NPM1</i> and <i>FLT3</i> -ITD (normal karyotype) Wild-type <i>NPM1</i> and <i>FLT3</i> -ITD (normal karyotype) Wild-type <i>NPM1</i> without <i>FLT3</i> -ITD (normal karyotype)
Intermediate-II	t(9;11)(p22;q23); <i>MLLT3-KMT2A</i> Cytogenetic abnormalities not classified as favorable or adverse <u>‡</u>
Adverse	inv(3)(q21q26.2) or t(3;3)(q21;q26.2); <i>GATA2–MECOM</i> <i>(EVI1)</i> t(6;9)(p23;q34); <i>DEK-NUP214</i> t(v;11)(v;q23); <i>KMT2A</i> rearranged –5 or del(5q); –7; abnl(17p); complex karyotype§

Dohner et al. NEJM 2015, Blood 2017 Tamamyan et al. Critical Rev Oncol/Hematol 2017

AML

http://www.onkodin.de/e2/e51675/e52389/e52390/

Genetic abnormalities in AML

Treatment of AML

ELN, NCCN, PALG RECOMMENDATION

Induction chemotherapy

- Regimen "3+7" (daunorubicin + cytarabine): CR 60-85%
- Variants
 - Dose and type of anthracycline
 - Dose of cytarabine
 - Nucleoside analogue

Post-remission therapy

- Consolidation
 - Chemotherapy based on HiDAC
- **HSCT**

Maintenance therapy?

Hołowiecki et al. JCO 2012

AlloSCT in AML treatment

OS and NRM according to post-remission therapy and cytogenetic risk AlloSCT vs conventional treatment

Stelljes et al. JCO 2014

AlloSCT for AML

AlloSCT in AML treatment

CIBMTR Newsletter 2017

AML in older age

Intensive chemotherapy CR: 66,8% 2 yrs OS: 30% Risk factors performance status cytogenetics

Palliative treatment LD-AraC IDA + thioguanine Etoposide

OS of AML pts >60 years according to treatment arm. AML97 OSHO Study.

Kahl et al. J Cancer Res Clin Oncol 2016

AML – genomic and epigenomic landscape

Targeted mutational analysis s-AML, t-AML and de novo AML >60 years old Secondary AML De Novo AML

- RNA splicing: 55%
- DNA methylation: 46%
- Chromatin modification: 42%
- RAS pathway signaling: 42%
- Transcriptional regulation: 34%
- The cohesin complex: 22%
- "Secondary-type" mutations
 - ▶ 95% specificity for s-AML

- Elderly AML: 33,3% of secondary type mutation
- Change approach to management of AML use of HMA?

		Second	iary AML	De Nov	o AML	
		М	utated ca	ses, n (%)		P value
SRSF2 -		19	(20)	1	(1)	< 0.0001
ZRSR2 -	→ →→ :	7	(8)	0	(0)	0.0005
SF3B1 -		10	(11)	1	(1)	0.0001
ASXL1 -	⊢ ⊷-1 :	30	(32)	5	(3)	< 0.0001
BCOR -	⊢→→ 1:	7	(8)	2	(2)	0.035
EZH2 -	⊢ +−1:	8	(9)	3	(2)	0.009
U2AF1 -	H+++	15	(16)	8	(4)	0.002
STAG2 -	⊢ +−1	13	(14)	3	(2)	0.07
NF1 -	→ →→	6	(6)	7	(4)	0.005
RUNX1 -	HH	29	(31)	19	(11)	< 0.0001
CBL -	⊢ +-+	5	(5)	3	(2)	0.13
NRAS -	HH :	21	(23)	15	(8)	0.002
TET2 -	H	19	(20)	17	(9)	0.014
GATA2 -	⊢ → <u>+</u> -1	2	(2)	2	(1)	0.6
TP53 -	⊢ +-1	14	(15)	16	(9)	0.15
KRAS -	⊢+ +1	7	(8)	8	(4)	0.4
PTPN11 -	⊢ +−1	5	(5)	9	(5)	1
IDH1 -	H+H	10	(11)	20	(11)	1
IDH2 -	⊢ ∔-I	10	(11)	19	(11)	1
SMC1A -	⊢ •••••	3	(3)	7	(4)	1
RAD21 -	, <u> </u>	2	(2)	5	(3)	1
FLT3 -	HH	18	(19)	50	(28)	0.14
DNMT3A -	HH I	18	(19)	51	(28)	0.14
SMC3 -	⊢	2	(2)	7	(4)	0.7
CEBPA -	⊢ →→−1	3	(3)	13	(7)	0,28
NPM1 -		5	(5)	54	(30)	< 0.0001
11q23-rearranged	· · · · · · · · · · · · · · · · · · ·	0	(0)	11	(6)	0.002
CBF-rearranged	· · · · · · · · · · · · · · · · · · ·	0	(0)	19	(9)	< 0.0001
0.00	01 0.01 0.1 1 10 100	1000				
	Odds Ratio					

Azacitidine

 5-azacitidine – analog of cytosine, DNA methylotransferase inhibitor (DNMT)

Mechanism of action

- Dose-dependent activity
- Direct cytotoxicity and apoptotic effect on malignant cells (high dose)
- DNA demethylation leading to re-expression of silenced tumor suppression genes (low dose)

Therapeutic profile

- Prolongs OS in MDS and selected AML patients
- Responses seen in high risk patients (short-lived)
- Well tolerated in comorbid and/or elderly patients

AML 20-30% blasts. I I 3 patients; edian age 70 years.

AZA vs CCR. 2-yrs OS 50% vs 16%.

Azacitidine in MDS/AML treatment

Meta-analysis of randomised studies AZA vs conventional care regimen (CCR). 1775 patients. OS (a) ORR (b)

Yun et al. Clinical Epigenetics 2016

AML – novel therapies

New drugs for AML

Drug and indication	Regulatory status
Midostaurin (Rydapt)	
Adult patients with newly diagnosed AML who are <i>FLT3</i> ⁺ , as detected by an FDA-approved test, in combination with standard cytarabine and daunorubicin induction and cytarabine consolidation.	FDA approval 28 April 2017
In combination with standard daunorubicin and cytarabine induction and high-dose cytarabine consolidation chemotherapy, and for patients in complete response followed by Rydapt single-agent maintenance therapy, for adult patients with newly diagnosed AML who are <i>FLT3</i> ⁺ .	European Medicines Agency approval 20 September 2017
CPX-351 (Vyxeos)	
Treatment of adults with +AML or AML with AML-MRC.	FDA approval 3 August 2017
Enasidenib (Idhifa)	62.021
Treatment of patients with relapsed or refractory AML with an <i>IDH2</i> mutation detected with an FDA- approved assay.	FDA approval 1 August 2017
Gemtuzumab ozogamicin (Mylotarg)	
Adults with newly diagnosed AML whose tumors express the CD33 antigen (CD33 ⁺ AML). Patients aged 2 y and older with CD33 ⁺ AML who have experienced a relapse or who have not responded to initial treatment (refractory).	FDA approval 1 September 2017
Venetoclax (Venclexta)	
Venetoclax in combination with HMAs for the treatment of patients with untreated (treatment-naïve) AML who are ineligible to receive standard induction therapy (high-dose chemotherapy).	FDA breakthrough designation 28 January 2016
Venetoclax in combination with LDAC for elderly patients with previously untreated AML who are ineligible for intensive chemotherapy.	FDA breakthrough designation 28 July 2017

Midostaurin

FLT3 inhibitors

Reference	FLT3 inhibitor used	Study design	Patients number	Median age, yr (range)	Response	Survival
Cortes et al. ¹⁷	Quizartinib for relapsed/refractory AML FLT3+ or WT	Phase 1	76	60 (23-86)	CR:10 (13%) PR: 13 (17%)	Median OS: 14 w (18 w for FLT3+10 w for WT)
Levis et al. ⁷⁸	Lestaurtinib (L) for relapsed/refractory AML FLT3+	Randomized	224 CT: 112 L +CT: 112	CT: 54 (21–79) L+CT: 59 (20–81)	CT: 23 (CR/CRp) L+CT: 29 (CR/CRp)	No difference in OS
Smith et al. ¹⁴	Lestaurtinib for relapsed/refractory AML FLT3+	Phase 1/2	14	61(18-74)	50% PB blast reduction: 5 (36%)	
Knapper et al. ⁷⁷	Lestaurtinib for untreated older patients with AML not fit for CT (<i>FLT3</i> + or WT)	Phase 2	29 FLT3+: 5 WT: 24	73 (67–82)	BMR: 5 HR: 3	
Stone et al. ⁷⁵	Midostaurin (M) versus placebo (P) for first-line <i>FLT3</i> + AML added to ind/cons/main	RCT phase 3	717 M: 360 P: 357	48 (18–60)	CR: M 59%, P 54% (NS)	Median OS: M 74.7 m, P 26 m (S) Median EFS: M m, P 3 m (S)
Fischer et al. ⁷⁴	Midostaurin for relapsed/refractory AML <i>FLT3</i> + or WT	Randomized phase 2	95 <i>FLT3</i> +: 35 WT: 60	FLT3+: 16 (46%) were >65 yr WT: 45 (75%) were >65 yr	ORR: FLT3+ 25 (71%), WT 32 (56%)	Median survival: <i>FLT3</i> +100 d, WT 159 d
Stone et al. ¹⁵	Midostaurin for relapsed/refractory AML or MDS not candidates for CT FLT3+	Phase 2	20	62 (29-78)	50% PB blast reduction: 14 (75%)	<u>+</u> 1
Randhawa et al. ⁷⁹	Crenolanib for relapsed/refractory AML	Phase 2	38	61 (30-87)	ORR: 47%	Median EFS: 8 weeks Median OS: 19 weeks
Levis et al. ⁸⁰	Gilteritinib for relapsed/refractory AML	Phase 1/2	166		ORR: 57%	

Gemtuzumab ozogamycin

	Dates of recruitment	Number of patients	Eligibility criteria	Median age of patients in years (range)	Cytogenetic grouping by MRC ²² classification*	Chemotherapy given	Dose and dosing schedule of gemtuzumab ozogamicin	Median follow- up for survival	Time of last follow-up (original publication)	Time of last follow-up (data for meta-analysis)
MRC AML15†5	2002-06	1099	AML, either de novo or secondary; mostly aged <60 years	50 (15-71)	Favourable n=133 (15%); intermediate n=565 (63%); adverse n=196 (22%); unknown n=205	DA (3+10 then 3+8), ADE (3+10+5 then 3+8+5), or FLAG-Ida	3 mg/m² on day 1 of chemotherapy	86·0 months (IQR 76·6–99·4)	January, 2009	March, 2013
SWOG 501067	2004-09	595	De-novo AML; aged 18–60 years	47 (18–60)	Favourable n=72 (17%); intermediate n=283 (67%); adverse n=67 (16%); unknown n=173	DA (3+7) plus G-CSF or GM-CSF	6 mg/m² on day 4 of chemotherapy	55·2 months (IQR 46·0–66·3)	February, 2013	June, 2013
NCRI AML16 ⁶	2006-10	1115	AML, either de novo or secondary, or high-risk myelodysplastic syndrome; mostly aged ≥60 years	67 (51-84)	Favourable n=33 (4%); intermediate n=576 (66%); adverse n=264 (30%); unknown n=242	DA (3+10 then 3+8) or daunorubicin (days 1, 3, and 5) plus clofarabine (days 1–5)	3 mg/m² on day 1 of chemotherapy	45∙5 months (IQR 34∙3–57∙6)	July, 2011	March, 2013
GOELAMS AML 2006 IR ⁸	2007–10	238	De-novo AML, aged 18–60 years	50.5 (18–60)	Favourable n=0; intermediate n=224 (100%); adverse n=0; unknown n=14	DA (3+7)	6 mg/m² on day 4 of chemotherapy	39·3 months (IQR 29·1–44·4)		January, 2013
ALFA-0701 ¹¹	2008–10	278	De-novo AML; aged 50–70 years	62 (50–70)	Favourable n=9 (4%); intermediate n=179 (73%); adverse n=57 (23%); unknown n=33	DA (3+7)	3 mg/m² on days 1, 4, and 7 of chemo- therapy, up to 5 mg per dose	24·1 months (IQR 15·7-32·8)	August, 2011	August, 2011

Meta-analysis of randomised trials - 3325 patients. Hills et al. Lancet Oncol 2014

Gemtuzumab ozogamycin

D

CPX-351

Enasidenib

Enasidenib – phase ½ study					
enzymes					
• AML relapsed/retractory					
• mut/DH2 12%					
 Dosing: 100 mg selected 					
Efficacy					
• ORR 40.3%					
• CR 19.3%					
Early response I.9 mo					
Median response duration 5.8 mo					
Median OS 9.3 mo					
• OS for patients with CR 19.7 mo					
• I-yr OS 39%					
Safety					
Hyperbilirubinemia 12%					
Differentiation syndrome 7%					

Venetoclax

Venetoclax	
• Oral bcl-2 inhibitor	
 AML >65 yrs 	
• HMA	61 patients
LDAraC	100 patients
Efficacy	
 HMA combination 	
• ORR	68%
LDAraC combination	
• ORR	61%
Safety	
 Nausea 	
Diarrhoea	
Neutropenic fever	
Hypertension	

Pratz et al. Haematologica 2017 suppl.Wei al. Haematologica suppl 2017

Treatment of AML

		<u>Diagnostic gro</u> up	Therapeutic options
		PMLRARA	ATRA/ATO ? GO
	NGS–limited/rapid panel (send full panel) Gene fusion testing	CBF fusion	7+3 ? fractionated/low dose GO ? KIT inhibitor (e.g.midostaurin or dasatinib)
Untreated AML,	(RT-PCR or FISH) FLT3-PCR Send cytogenetics Immunophenotyping	TP53 mutation	CPX-351 HMA (or novel HMA) +/- additional agents (e.g. venetoclax)
fit patient	48-72 hours	FLT3-ITD+ or D835+	7+3 + midostaurin (especially if age ≤60) ? selective TKI (e.g. gilteritinib, crenolanib, quizartinib)
		IDH1+ or IDH2+	7+3 ? IDH inhibitor (e.g.enasidenib, ivosidenib)
		NPM1+ or CEBPa double mutation+	7+3 ? fractionated/low dose GO if no CR1 transplant planned
		t-AML or AML with MRC (if known)	CPX-351 ?additional agents depending on mutational profile (e.g. ?LSD1, DOT1L, or BET inhibitor if MLL fusion+)

Summary

- New targeted drugs are likely to re-shape the therapeutic landscape of AML
- Daunorubicin and cytarabine continue to play an important role in the treatment of AML