

"Why Do We Avoid Noninvasive Ventilation In The Medical ICU?"

Bob Kacmarek PhD, RRT Harvard Medical School Massachusetts General Hospital Boston, Massachusetts 12-11-15 Poland

Conflict of Interest Disclosure Robert M Kacmarek

I disclose the following financial relationships with commercial entities that produce healthcare-related products or services relevant to the content I am presenting:

<u>Company</u>	<u>Relationship</u>	Content Area
Orange Medical	Consultant	Mechanical Ventilation
Covidien	Research Grant	Mechanical Ventilation
Venner Medical	Research Grant	Airways

Clinicians Unwilling to Change their Practice?

Insufficient evidence based education Scientific/clinical bias Lack of financial incentives Lack of belief in the research evidence Taubes G. Science 1996;272:22-24. Whitcomb ME. Acad Med 2002;77:1067-1068 Kalassian KG et al. Crit Care 2002;6:11-14.

Clinicians Unwilling to Change their Practice?

- Integration of innovation into practice takes 10 to 15 years!
- Innovation that makes management easier/better for clinicians is easier to integrate into practice than innovation that is better for patients!
- The use of NIV in the MICU requires more time and effort than invasive mechanical ventilation!
- Failure during initial applications!

Who – Indications for NIV **Undisputed indications** Acute Exacerbation of COPD Acute Cardiogenic Pulmonary Edema Weaning from mechanical ventilation **General Indications for Use** Postoperative respiratory failure Hypoxemic Respiratory Failure Patients with DNI Status Neurological/Neuromuscular Disease **Controversial Indications** ALI/ARDS Asthma

NIV Acute Exacerbation of COPD Over 20 RCT's NIV in COPD Prevents intubation Decreases length of MV Decreases ICU and Hosp stay Decreases cost Decreases mortality Ramsey, Hart Curr Opin Pulm Med 2013;19:626-630 Hess RC 2013;58:950-9971 Ram Cochrane Syst Rev 2004;1:CD004104

NIV Acute Exacerbation of COPD

 Standard of Care
 Should be available as first line therapy in all setting caring for COPD patients

Masip JAMA 2005;294:3124 Mets-analysis of the use of NIV/CPAP for the management of acute cardiogenic pulmonary edema ■17 RCT's, both approaches over whelmingly positive Both avoided intubation No differences between the two approaches

MV and Heart Failure **CPAP** - standard NIV - ventilatory failure Intubation and invasive ventilation Active cardiac ischemia (infarction) Hemodynamic instability Arrhythmias Depressed mental status

NIV Acute Hypoxemic RF

Post Operative Respiratory Failure Immunosurpressed Patients Patients Awaiting Transplantation Patients Post Lung Resection Acute Lung Injury Acute Respiratory Distress Syndrome

NIV-Hypoxemic Respiratory Failure Hilbert NEJM 2001;344:481 52 Immunosuppressed patients NIV vs. St Rx Required intubation, Serious complications, Died in the ICU: better with NIV p < 0.05Antonelli JAMA 2000; 283:235 40 Patients awaiting transplantation NIV vs. St Rx Intubation, Length of hospitalization, Complications, ICU mortality: better with NIV p < 0.05Squadrone ICM 2010;36:1666 ■ 40 pts Hematological Malignancy O₂ vs. O₂ + CPAP ■ ICU + inubation 2 vs. 14, p < 0.00001 Auriant AJRCCM 2001;164:1231 48 patients post lung resection ■ Intubation, Hospital mortality: better with NIV p <0.05

Agarwal RC 2010;55:1653

Meta-analysis of the use of NIV in ARDS

14 RCT's includedNo difference in rate of intubation or mortality

Schettino CCM 2008;36:459

■ 458 pt with ARF 38% failed NIV Mortality failing 47% vs. 5.4%, p < 0.0001</p> ■ 144 with hypoxemic ARF (not CHF) ■60% failed NIV, 64% (55) died CPE 18% intubated, mortality 39% COPD 24% intubated, mortality 33% Hypercapnia 38% intubated, mortality 0.0% Extubation failure 40% intubated, mortality 32%

Elective Extubation to NIV

COPD, failed T-piece trial 48-72 hr after intubation Randomized to PSV vs. extubation to NIV Better outcome NIV Nava Ann Intern Med 1998; 128:721 No difference in outcome Girault AJRCCM 1999;160:86 Failed weaning trial 3 consecutive days, 50% of patients COPD, better outcome NIV Ferrier AJRCCM 2003;168:70 No difference in outcome, largest trial 13 centers 208 pts Girault 2011;184:672-679

Pass SBT - High Risk of Reintubation

Nava CCM 2005;33:2465

COPD, CHF, ineffective cough and excessive secretions, > one weaning failure, more than one comorbid condition or upper airway obstruction: NIV > 8 hrs/day for 48 hrs, decreased reintubation rate

Ferrer AJRCCM 2006;173:164

Age > 65, Cardiac failure cause of intubation or APACHE II > 12 day of extubation: All high risk patients but mostly COPD, NIV 24 hrs

NIV decreased reintubation, less ICU/Hosp mortality Ferrer Lancet 2009;374:1082

- 106 pts, chronic RF who passed a SBT
- RF less NIV 8 (15%) vs. 25 (48%), p<0.0001</p>
- 90 day mortality less NIV 21(39%) vs 47(87%), p<0.0146</p>

NIV Post-Extubation Failure

- Weaned non-COPD patients developing AHRF < 48 hours after extubation (n=81)
 Reintubation 72 vs. 69%, LOS, mortality ND Keenan JAMA 2002;287:3238
- Patients AHRF (n=244), 37 centers, 8 countries

Reintubation 48% both groups
ICU mortality 25% NIV vs. 14% p=0.048
Time to intubation 12 hr NIV vs. 2.5 hr p=0.02 Esteban NEJM 2004;350:2452

Diagnosis and Hospital Outcome: DNI/DNR patients receiving NIV

Schettino CCM 2005;33:1976

Successful Application of NIV The Clinician

The Ventilator The "MASK"

Ventilator Settings

PEEP - initially zero Peak pressure - 5 cmH₂O ■ Volume - 100-200 mL Adjust the ventilator from these basic settings based on the patients response and the goals of therapy! Strap the mask only when the patient is comfortable! Clinician time >1 hour

Ventilator Settings

■PEEP 3-10 cmH₂O to offset auto-PEEP or manage hypoxemia Peak pressure $\leq 20 \text{ cmH}_2\text{O}$ Tidal Volume 300-500 mL ■Inspiratory time < 1.0 sec Final setting individualized based on the specific patient's response!!!

Successful Application of NPPV in Acute Respiratory Failure

PaCO₂ decrease
pH increase
PaO₂ increase

Unsuccessful Application of NPPV in Acute Respiratory Failure Cardiopulmonary stress unchanged $-RR, V_{T}$ - HR, BP - accessory muscle use PaCO₂/pH/ PaO₂ unchanged If the above unchanged in 1 - 2 hrs of NPPV, especially in hypoxemic ARF, intubate!

Oto RC 2013;58: 2027-2037 ASL5000: invasive and non-invasive modes Maquet Servo-i, Drager V500, Respironics V60, Covidien 840, General Electric Care Station, Hamilton C3 and G5, and Care Fusion AVEA Leaks BL 3-4 l/min, L1 9-10 l/min, L2 26-27 l/min, L3 36-37 l/min. Increasing (n=6) and decreasing (n=6) leaks.

Lung model I and E: R 10 and 20 cmH₂O/L/sec respectively C 60 mL/cmH₂O.

Lung model RR 15/mim and inspir time 0.9 sec
 PIP/PEEP 17/5 cmH₂O

Oto RC 2013;58: 2027-2037

Breaths to synchronization Auto-triggered breaths Missed triggered breaths Breaths to reestablish breathing pattern **Results:** 840 and V60 preformed best followed by Servo I, G3 and G5, then Care Station and V500 last Avea

Humidification

Essential in acute application of NIV High flows and high F_1O_2 result in dried retained secretions Use heated pass over humidifier System temperature about 30 degrees C Adjust to patient comfort Should not use an HME because of high gas flow and air leak!!!

Successful Use of NIV in the MICU

Select the correct patients! Ventilator that compensates for leak well! Variety of masks and interfaces! Slow meticulous application! Spend sufficient time to insure success!

Thank You