

Hypoxia normalization in tumors: the role of PTEN in tuning the microenvironment

Claudine Kieda

Laboratory of molecular oncology and Innovative therapies, WIM, Warsaw Poland National Centre for Scientific Research, Centre for Molecular Biophysics, Orleans France

Tumor microenvironment composition is ruled by hypoxia

CNrs

The hypoxic stress in tumor: an angiogenesis-dependent disease

The strategies for hypoxia alleviation:

vessel normalization and stabilization through PTEN

Clinically related effects on: immunoresistance and perspectives for immunotherapy

Highlights in the development of "angiogenesis" and anti-angiogenesis drugs

U87human glioblastoma

CBM

• Angiogenesis,vascular tonus and erythropoiesis (VEGF, VEGF-R, NOS2, Epo, ...)

- Energy metabolism (Glut-1, Glut-3,...)
- Cellular proliferation and differentiation (TGF-β, Cyclin G2, p21...)

optical frequency domain imaging (OFDI) Vakoc et al. nature medicine, 15 | 2009, 2019

CINIS

Results?

Main molecular targets of anti-angiogenic drugs approved for patients treatment.

CNIS

K

Therapy for Cancer: Strategy of Combining Anti-Angiogenic and Target Therapies Comunanza, Bussolino Front. Cell Dev. Biol., 07, 2017 <u>https://doi.org/10.3389/fcell.2017.00101</u>

Approved VEGF-targeted therapy for oncology.

Drug	Brand name	Mechanism	Indications
Bevacizumab	Avastin (Genentech)	Monoclonal anti-VEGF antibody	CRC; NSCLC; RCC; GBM; epithelial ovarian cancer; fallopian tube cancer; primary peritoneal cancer; cervical cancer
Aflibercept	Zaltrap (Sanofi and Regeneron Pharmaceuticals)	Recombinant fusion VEGF protein	CRC
Ramucirumab	Cyramza (Eli Lilly and Company)	Monoclonal anti-VEGFR2 antibody	CRC ; NSCLC; gastric or gastroesophageal junction adenocarcinoma
Sorafenib	Nexavar (Bayer)	Multi-TKI (VEGFRs, PDGFRs, RAF, KIT, FLT3, RET)	RCC, HCC, thyroid cancer
Sunitinib	Sutent (Pfizer)	Multi-TKI (VEGFRs, PDGFRs, FLT3, CSF1R, RET)	RCC, pancreatic neuroendocrine tumors, gastrointestinal stromal tumors
Regorafenib	Stivarga (Bayer)	Multi-TKI (VEGFRs, PDGFRs, FGFRs, TIE2, KIT, RET, RAF)	GIST, CRC, HCC
Pazopanib	Votrient (GlaxoSmithKline)	Multi-TKI (VEGFRs, PDGFRs, FGFR1, c-Kit)	RCC, soft tissue sarcoma
Axitinib	Inlyta (Pfizer)	Multi-TKI (VEGFRs, PDGFRs, c-Kit)	RCC
Vandetanib	Caprelsa (AstraZeneca)	Multi-TKI (VEGFRs, EGFR, RET)	medullary thyroid cancer
Lenvatinib	Lenvima (Eisai)	Multi-TKI (VEGFRs, FGFRs, PDGFRa, RET, c-Kit)	thyroid cancer, RCC
Cabozantinib	Cometriq (Exelixis)/Cabometyx (Exelixis)	Multi-TKI (VEGFRs, cMet, AXL)	medullary thyroid cancer, RCC

CSFR1, colony stimulating factor 1 receptor; CRC, colorectal cancer; EGFR, epidermal growth factor receptor; FLT3, Fms-like tyrosine kinase 3; GBM, glioblastoma multiforme; GIST, gastrointestinal stromal tumor; HCC, hepatocellular carcinoma; KIT, stem cell factor receptor; MET, hepatocyte growth factor receptor; NSCLC, non-small cell lung cancer; PDGFR, platelet-derived growth factor receptor; RAF, rapidly accelerated fibrosarcoma; RCC, renal cell carcinoma; RET, rearranged during transfection; VEGFR, vascular endothelial growth factor receptor.

Anti-angiogenic therapies currently approved by the US Food and Drug Administration (FDA) for the treatment of malignancies (July 2017). For reference see http://cancer.gov.

Therapy for Cancer: Strategy of Combining Anti-Angiogenic and Target Therapies

<u>Comunanza, Bussolino</u> Front. Cell Dev. Biol., 07, 2017 https://doi.org/10.3389/fcell.2017.00101

Signaling molecules and immune checkpoint blocked by targeted therapy.

cnrs

Selected Clinical Trials of VEGF-targeted therapy in

	migration, adhesion, invasion, angiogenesis	Tumor	Anti-angiogenic	Target Therapy	Phase	Indications	ClinicalTrials.gov Identifier
			Bevacizumab	Trastuzumab	2	Stage IV metastatic breast cancer	NCT00428922
			Bevacizumab	Trastuzumab	3	Metastatic HER2+ breast cancer	NCT00391092
			Bevacizumab	Trastuzumab	2	Breast cancer	NCT01321775
			Bevacizumab	Trastuzumab	2	Metastatic HER2+ breast cancer	NCT00364611
			Bevacizumab	Trastuzumab	2	Metastatic HER2+ breast cancer	NCT00670982
			Bevacizumab	Trastuzumab	2	Metastatic HER2+ breast cancer	NCT00392392
			Bevacizumab	Trastuzumab	2	Metastatic breast cancer	NCT00405938
			Sorafenib	Trametinib	1	HCC	NCT02292173
			Sorafenib	Refametinib	2	HCC	NCT01204177
			Sorafenib	Refametinib	2	HCC RAS-mutated	NCT01915602
			Regorafenib	Refametinib	1	Neoplasm	NCT02168777
The	erapy for Cancer: Strategy of Combining	er: Strategy of Combining	Bevacizumab	Erlotinib	3	CRC	NCT00265824
Ant	ti-Angiogenic and Target Therapies		Bevacizumab	Erlotinib	2	NSCLC EGFR-mutated	NCT01562028
<u>Comunanza, Bussolino</u> Front. Cell Dev. Biol., 07, 20 https://doi.org/10.3389/fcell.2017.00101	2017	Bevacizumab	Erlotinib	2	NSCLC EGFR-mutated	NCT01532089	
	, _ • • • •	Regorafenib	Cetuximab	1	Advanced cancers	NCT02095054	
	<u></u>		Sorafenib	Cetuximab	2	Squamos cell carcinoma of the Head and Neck	NCT00815295
			Sorafenib	Cetuximab	2	CRC	NCT00326495
			Bevacizumab	Trastuzumab	3	HER2-positive breast cancer	NCT00625898
			Pazopanib	Lapatinib	2	HER2-positive breast cancer	NCT00558103.

CRC, colorectal cancer; EGFR, epiderma growth factor receptor; HCC, hepatocellular carcinoma; HER2, human epidermal growth factor receptor 2; NSCLC, non-small cell lung cancer. For reference see https://clinicaltrials.gov.

CBW

Selected Clinical Trials of VEGF-targeted therapy in combination with immune checkpoint inhibitors

Anti-angiogenic	Immunotherapy	Phase	Indications	ClinicalTrials.gov Identifier
Bevacizumab	Ipilimumab	2	Melanoma	NCT01950390
Bevacizumab	Ipilimumab	1	Melanoma	NCT00790010
Bevacizumab	Atezolizumab	2	CRC	NCT02982694
Bevacizumab	Atezolizumab	2	Melanoma brain metastases	NCT03175432
Bevacizumab	Atezolizumab	2	RCC	NCT02724878
Bevacizumab	Atezolizumab	3	RCC	NCT02420821
Bevacizumab	Nivolumab	2	Ovarian, Fallopian Tube Or Peritoneal Cancer	NCT02873962
Bevacizumab	Nivolumab	3	Glioblastoma	NCT02017717
Bevacizumab	Nivolumab	1	NSCLC	NCT01454102
Bevacizumab	Nivolumab	1	RCC	NCT02210117
Bevacizumab	Pembrolizumab	2	RCC	NCT02348008
Bevacizumab	Pembrolizumab	1/2	NSCLC	NCT02039674
Bevacizumab	Pembrolizumab	2	Glioblastoma	NCT02337491
Bevacizumab	Pembrolizumab	2	Melanoma/NSCLC brain metastases	NCT02681549
Aflibercept	Pembrolizumab	1	Solid tumors	NCT02298959
Sunitinib	Nivolumab	1	RCC	NCT01472081
Axitinib	Pembrolizumab	3	RCC	NCT02853331
Axitinib	Avelumab	3	RCC	NCT02684006
Cabozantinib	Nivolumab	3	RCC	NCT03141177

CRC, colorectal cancer; NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma. For reference see https://clinicaltrials.gov.

> Therapy for Cancer: Strategy of Combining Anti-Angiogenic and Target Therapies Comunanza, Bussolino Front. Cell Dev. Biol., 07, 2017 https://doi.org/10.3389/fcell.2017.00101

Therapeutic triad to reach adjuvant effect for radiotherapy anf imunotherapy

CNTS

Combining Radiotherapy With Anti-angiogenic Therapy and Immunotherapy Goedegebuure et al. Front. Immunol.,2019 doi.org/10.3389/fimmu.2018.03107

Therapeutic triad to reach adjuvant effect for radiotherapy anf imunotherapy

cnrs

Combining Radiotherapy With Anti-angiogenic Therapy and Immunotherapy Goedegebuure et al. Front. Immunol.,2019 doi.org/10.3389/fimmu.2018.03107

In tumors: angiogenesis normalization effects

goal of anti-angiogenic cancer therapy

Abnormal Tumor Vessels Normalized Tumor Vessels Jormalized basemen et al. Physiol Rev 91: 1071-1121, 201 ¥ Vascular permeability в ¥ Interstitial fluid pressure Drug н. Edam **Immunotherapy**? Therapeutic outcome 4 Cancer-cell shedding Cancer-cell invasiveness ¥ Tumor ¥ 4 Metastasis progression Sensitivity to radiation and many anticancer drugs 4 4 Immune response Normalized: decreased hypoxia B Norma Decreased perfusion oxygenation Increased hypoxia in tissue No changes Intratumora hypoxia Excess pruning: increased hypoxia No effect on vessels Time of treatment Time of treatment

Yasufumi Sato¹

How does repair of the endothelial damage change tumor microenvironment?

✓ Strategy directed to hemoglobin properties

Hemoglobin carries oxygen

Can ITPP increase oxygen delivery ?

Hemoglobin carries oxygen

Oxygen delivery can be increased if oxygen affinity for hemoglobin is decreased

Decrease oxygen affinity for hemoglobin:

- pH decrease
- 2,3-diphosphoglycerate (DPG)

delivered into RBCs

Duarte CD et al, Chembiochem. 2010)

Hypoxia compensating strategies are normalizing vessels:

myo-Inositol Trispyrophosphate (ITPP): A novel allosteric effector of hemoglobin with high permeation selectivity across the red blood cell plasma membrane:

ITPP uptake is mediated by Band 3 protein (Duarte CD et al, Chembiochem. 2010)

Band 3: anion exchanger (AE1) mediates oxygen-regulated metabolic transitions in RBC

Elevates glycolytic fluxes in deoxygenated erythrocytes by displacing the glycolytic enzymes from their inibitory site on Band 3 (Lewis et al, PNAS 2009)

Lowers the pH in RBC?

31P NMR analysis 2,3 DPG region chemical shifts acidification

Analysis in the ITPP region of resonance (-9 to -18ppm) Analysis of mouse blood (104 to 404) pH from 7.5 to 6.5: ITPP added *in vitro* 30mg/mL of blood:

Analysis in the ITPP region of resonance (-9 to -16ppm) Analysis of mouse blood of mice treated by ITPP in vivo1,5 G/Kg ITPP-treated blood in vitro (sample 104)

Evolution of angiogenesis: an important target for novel anticancer therapeutics...... new challenges for *in vivo imaging*

Optical methods : bioluminescence , fluorescence

Whole animal imaging : functions MRI, MRA, DCEMRI, BOLD MRI

Multi modal imaging

In clinical practice:

•angiogenesis imaging in diagnosis, staging and response monitoring
•assessment of angiogenic process /structural / functional and molecular levels, before, during and after antiangiogenic therapy.

Photoacoustic Oxygen Saturation

Tumor oxygen saturation and hemoglobin concentration can be quantified. Overall, the tumor has very high oxygen saturation. ROIs were drawn for the whole tumor (green) and for a more hypoxic center region (blue).

Microvascularization in the F98 rat model of glioma

Grenoble Neurosciences Institute- U836

Blood Oxygen Level Dependent BOLD MRI assessment

Tumor Model and Treatment: Tumor F98-Fischer Rat **Treatment** start: **T0**, 23 days after tumor inoculation: **D23**

MRI parameters:

On 3 Regions of Interest (ROI): Cortex (CX), Striatum (STR) and Tumor

- anatomy with T₂W map
- apparent diffusion constant (ADC) ~ oedema, necrosis
- cerebral blood volume (CBV)
- cerebral blood flow (CBF)
- integrity of the vascular wall ("permeability"):

area under curve after Gd-DOTA injection (AUC_{Gd-DOTA})

- tissue oxygen saturation (SO₂) ~ hypoxia
- cerebral metabolic rate of oxygen (CMRO₂) ~ oxygen consumption

MRI follow-up:

D22T-1, D24T1, D26T3, D28T5

Value intervals for each MRI map

ADC	0/5000 µm²/sec
CBV	0/20 %
CBF	0/400 mL/100g/min
SO2	-150/100 %
AUC _{Gd-DOTA}	0/1 250 000 s.i.
CMRO2	0/100 mL/100g/min
R2prim	0/30 sec-1

* p<0.05 ANOVA, Vehicle vs ITPP * p<0.1 ANOVA, Vehicle vs ITPP

EPR Oxygen Imaging Workshop 2015, Chicago

Real PO2 value Non invasive Trityl iv perfusion

Model	Baseline value	During carbogen breathing	Improvement (%)
9L-Glioma	8.8 ± 1.1	16.6 ± 1.9	89%
Rhabdomyosarcomas	5.3 ± 0.7	8.7 ± 0.6	64%
SiHa - squamous cell carcinoma (cervix)	4.9 ± 1.1	16.0 ± 2.3	227%
MDA-MB-231 Adenocarcinoma (mammary)	3.8 ± 2.0	9.9 ± 0.9	161%
NT2 - Mouse mammary tumor	4.8 ± 3.0	7.9 ± 0.8	65%
FSall - mouse fibrosarcoma	5.3 ± 0.3	8.0 ± 0.3	51%

Stabilization of the elevated pO2 corresponds to stable vessel normalization:

effects on tumor evolution

cnrs

Hypoxia compensation affects tumor cell resistance

D0: B16 Luc cells injection D 7,8 14, 15, 21, 22, 28, 29: ITPP injection

B16F10LucGFP (10⁵ cells; iv)

+ITPP

Irradiation

Synergy on Drug effect

Molecular mechanism:

- 1) pO2 increase
- 2) endothelial PTEN activation
 - stable vessel normalization

Hypoxia compensating strategies are normalizing vessels:

JMolMed

DOI 10.1007/s00109-013-0992-6
ORIGINAL ARTICLE

J Mol Mcd

Stable tumor vessel normalization with pO₂ increase and endothelial PTEN activation by inositol trispyrophosphate brings novel tumor treatment

Claudine Kieda · Bouchra El Hafny-Rahbi ·

Hypoxia compensating strategies are normalizing vessels:

Is ITPP a ligand for PTEN ?

Effect on angiogenesis in hypoxia: Notch4/PTEN mediating stalk cell arrest

The Role of PTEN in TumorAngiogenesis

Decreases cell cycle progression

Associates with cell cycle arrest

Increases APC-CDH1 complex Increased tumor suppressive activity Low nuclear/cytoplasmic ratio

High in cancer cells Associates with increased proliferation Associates with cell cycle arrest Decreases APC-CDH1 complex Decreased tumor suppressive activity

TABLE 2: Clinical trials having shown an impact of the PTEN status on the response to cancer treatment.

Type of cancer	Metastatic form	Treatments
Coloractal		Cetuximab, panitumab
Colorectar	×	Cetuximab (+irinotecan)
44 - Tak		Trastuzumab, lapatinib
Breast		Trastuzumab
	×	Endocrine therapy
Clicklesteres		Gefitinib, erlotinib
Gilobiastorila		Erlotinib + temozolomid
Contrilo		Streptozotocin, doxorubicin, 5-fluorouracil, etoposide/cisplatinum
Gastric	×	Streptozotocin, doxorubicin
Inna		Gefitinib, erlotinib
Lung	×	Gefitinib, erlotinib
Pancreas		Gemcitabine
Esophageal		5-fluoropyrimidine, taxane, platinum, PI3K pathway inhibitor

Important to stabilize PTEN activation

Mechanism of PTEN-PI3K-AKT-MDM2 signaling axis control over HIF1α degradation in cytoplasm under hypoxic conditions via the MDM2 E3 ligase and 26 S proteasome

Shweta Joshi et al. J. Biol. Chem. 2014;289:22785-22797

cnrs

MEF

Lee et al. Nat. Rev. Mol. Cell Biol. 2018

Activity is measured as the inhibitory effect of antibody binding to PIP2

Experiment settings for PTEN phosphatase activity

Activity is measured as the inhibitory effect of antibody binding to PIP3

Surface plasmon resonance analysis of ITPP/PTEN kinetics

ITPP is a ligand for PTEN, allosteric phosphatase activator /inhibitor for PI3K

Hypoxia compensation and immune response Endothelial cells induce tolerance via PD-L1/2 (Tewalt et al. Blood 2012) in HYPOXIA PD1 Ligands expression is controlled by PTEN Anti PD1, anti PD-L1/L2 Anti CTLA4

T-cell

Dendritic cell

PD1/PDL1/2 is hypoxia mediated

PD-L1 is a novel direct target of HIF-1a, and its blockade under hypoxia enhanced MDSC-mediated T cell activation Noman *et al.* JEM 2014

O2 increase: in ECs PTEN is activated and express less PD1 Ligands

Hypoxia compensation and immune response

Endothelial cells induce tolerance via PD-L1/2 in HYPOXIA

Control

treated

20×

40×

O2 increased ECs express less PD1 Ligands

PD-1/PD-L1 pathway is hypoxia dependent

Hypoxia induced PD-L1/2 expression Increases suppression by Tumor cells, Tregs, MDSC and ECs

CBW

in Ecs and tumor cells as melanoma

Other immune checkpoints ?

Opportunities for pharmacological PTEN reactivation after partial or complete loss of *PTEN* expression

Applicable tumour type	Therapeutic intervention
Tumours with complete loss of PTEN	 Administer PTEN-Long protein Administer PTEN nanoparticles
Tumours with monoallelic PTEN deletion or intact PTEN	 Increase PTEN dimerization Use drugs to increase the activity of PTEN transactivators Inhibit PTEN-targeting microRNA Derepress epigenetic silencing or histone deacetylation Target E3 ligase to stabilize PTEN protein
Tumours with monoallelic PTEN mutation	 Administer PTEN-Long protein Administer PTEN nanoparticles Block the dimerization between mutant and wild-type PTEN Edit the PTEN gene to correct mutations or engineer into enhanced PTEN variants

Conclusion

The angiogenesis normalization-induced activation of endothelial PTEN opens the perspective of compensating the tumor suppressor default in tumors Bouchra Rahbi Catherine Grillon Nathalie Lamerant Alan Guichard David Gosset

Guillaume Collet Krzysztof Szade Witold Nowak Krzysztof Klimkiewicz Anna Tejchmann

Jozef Dulak Alicja Jozkowicz

Danuta Dus Maria Paprocka

Daisuke Sugiyama

Jean-Michel Pouvesle Eric Robert

Salem Chouaib

Thank YOU

Howard Halpern Martyna Elas

Bernard Gallez

Nicolas Coquery Emmanuel Barbier

CB

Aleksandra Bielawska-Pohl Karol Szczepanek Klaudia Skrzypek Kazimierz Weglarczyk

Jean-Marie Lehn Claude Nicolau Michèle Mitterrand Loick Ridou Fabienne Fasani Patrice Robert

Klaudia Brodaczewska Cezary Szczylik Imran Khan Aleksandra Klemba Agnieszka Synowiec

Halina Waś Aleksandra Majewska Aleksandra Filipiak Aleksandra Olszewska Agata Borkowska Renata Koprianiuk Kinga Wilgus

NATIONAL SCIENCE CENTRE

WOJSKOWY INSTYTUT MEDYCZNY Military Institute of Medicine