eISSN: 2084-9834
ISSN: 0034-6233
Reumatologia/Rheumatology
Bieżący numer Archiwum O czasopiśmie Suplementy Bazy indeksacyjne Prenumerata Kontakt Zasady publikacji prac
NOWOŚĆ
Portal dla reumatologów!
www.ereumatologia.pl
SCImago Journal & Country Rank



 
6/2012
vol. 50
 
Poleć ten artykuł:
Udostępnij:
więcej
 
 
streszczenie artykułu:
Artykuł przeglądowy

Budowa i czynność prawidłowej błony maziowej

Anna Hyc, Anna Iwan, Stanisław Moskalewski

Reumatologia 2012; 50, 6: 501–506
Data publikacji online: 2012/12/21
Pełna treść artykułu
Pobierz cytowanie
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Błona maziowa odpowiada za produkcję i resorpcję płynu stawowego oraz za odżywianie i smarowanie chrząstki stawowej. Zbudowana jest z bogato unaczynionej tkanki łącznej wysłanej od strony jamy stawowej synowiocytami A i B (ryc. 1). Pochodzące ze szpiku kostnego synowiocyty A są makrofagami, ich rola polega na absorpcji i degradacji patogenów i resztek z jamy stawowej. Synowiocyty B są fibroblastami pochodzenia lokalnego, mającymi unikatowe wypustki

cytoplazmatyczne, nazwane dendrytycznymi z uwagi na liczne roz­gałęzienia. Produkują składniki macierzy międzykomórkowej. Kontrolują za pomocą wypustek skład płynu stawowego i odpowiadają za jego właściwości: lepkość i zdolność smarowania powierzchni stawowej poprzez syntezę kwasu hialuronowego i lubrycyny.

Synovial membrane produces and absorbs the components of synovial fluid and is responsible for nutrition and lubrication of articular cartilage. It is composed of a synovial lining and highly vascularized subsynovium. The synovial lining, also called the synovial intima, consists of two types of synoviocytes: macrophage-like type A cells and fibroblast-like B cells (Fig. 1). Derived from bone marrow, type A synoviocytes are responsible for absorption and degradation of pathogens and waste from the joint cavity. Locally derived type B synoviocytes contains unique cytoplasmic, irregular, dendritic processes. They are responsible for production of extracellular matrix components. They control the quality of the synovial fluid with the use of processes and regulate its properties: viscosity and ability to lubricate articular cartilage surfaces via hyaluronic acid and lubricin synthesis.
słowa kluczowe:

błona maziowa, synowiocyt, kwas hialuronowy, lubrycyna

referencje:
Gardner E, Gray DJ, O'Rahilly R. Joints. In: Anatomy. WB Saunders Company (ed.). Philadelphia, London 1960; 25-38.
Iwanaga T, Shikichi M, Kitamura H, et al. Morphology and functional roles of synoviocytes in the joint. Arch Histol Cytol 2000; 63: 17-31.
Berumen-Nafarrate E, Leal-Berumen I, Luevano E, et al. Synovial tissue and synovial fluid. J Knee Surg 2002; 15: 46-48.
Levick JR, Price FM, Mason RM. Synovial matrixsynovial fluid system of joints. In: Extracellular Matrix. Vol 1. Comper WD (ed.). Harwood Academic Publishers, Amsterdam 1996; 328-376.
Wilkinson LS, Pitsillides AA, Worrall JG, et al. Light microscopic characterization of the fibroblast-like synovial intimal cell (synoviocyte). Arthritis Rheum 1992; 35: 1179-1184.
Key JA. The synovial membrane of joints and bursae. In: Special cytology. Vol 1. Cowdry EV (ed.). Paul B Hoeber Inc, New York 1928; 735-766.
Małdyk E, Polowiec Z, Abgarowicz T i wsp. Histologiczne badania porównawcze prawidłowych błon maziowych stawów kolanowych u ludzi młodych i u osób powyżej 60 roku życia. Reumatologia 1974; 12: 313-320.
Barland P, Novikoff AB, Hamerman D. Electron microscopy of the human synovial membrane. J Cell Biol 1962; 14: 207-215.
Revell PA, al-Saffar N, Fish S, et al. Extracellular matrix of the synovial intimal cell layer. Ann Rheum Dis 1995; 54: 404-407.
Nishijima T. The fine structure of the synovial membrane of the knee joint in rats with special reference to regional differences. J Jap Orthop Ass 1981; 55: 601-613.
Graabaek PM. Characteristics of the two types of synoviocytes in rat synovial membrane. An ultrastructural study. Lab Invest 1984; 50: 690-702.
Kitamura HP, Yanase H, Kitamura H, et al. Unique localization of protein gene product 9.5 in type B synoviocytes in the joints of the horse. J Hisochem Cytochem 1999; 47: 343-351. 
Jilani M, Ghadially FN. An ultrastructural study of age-associated changes in the synovial membrane. J Anat 1986; 146: 201-215.
Dijkstra CD, Dopp EA, Vogels IM, et al. Macrophages and dendritic cells in antigen-induced arthritis. Scand J Immunol 1987; 26: 513-523.
Shikichi M, Kitamura HP, Yanase H, et al. Three-dimensional ultrastructure of synoviocytes in the horse joint as revealed by the scanning electron microscope. Arch Histol Cytol 1999; 62: 219-229.
Nozawa-Inoue K, Amizuka N, Ikeda N, et al. Synovial mambrane in the temporomandibular joint - its morphology, function and development. Arch Histol Cytol 2003; 66: 289-306.
Moghaddami M, Celland LG, Mayrhofer G. MHC II+ CD45+ cells from synovium-rich tissues of normal rats: phenotype, comparison with macrophage and dendritic cell lineages and differentiation into mature dendritic cells in vitro. Int Immunol 2005; 17: 1103-1115.
Moghaddami M, Mayrhofer G, Celland LG. MHC class II compartment, endocytosis and phagocytic activity of macrophages and putative dendritic cells isolated from normal tissues rich in synovium. Int Immunol 2005; 17: 1117-1130.
Senda H, Sakuma E, Wada I, et al. Ultrastructural study of cells at the synovium cartilage junction: response of synovial cells of the rat knee to intra-articularly injected latex particles. Kaibogaku Zasshi 1999; 74: 525-535.
Edwards JC. Fibroblast biology: Development and differentiation of synovial fibroblasts in arthritis. Arthritis Res 2000; 2: 344-347.
Wilkinson LS, Edwards JCW, Poston RN, et al. Expression of vascular cell adhesion molecule-1 in normal and inflamed synovium. Lab Invest 1993; 68: 82-88.
Valentia X, Higgins JM, Kiener HP, et al. Cadherin-11 provides specific cellular adhesion between fibroblast-like synoviocytes. J Exp Med 2004; 200: 1673-1679.
Yamada K, Nozawa-Inoue K, Kawano Y, et al. The expression of estrogen receptor  (ER) in the rat temporomandibular joint. Anat Rec 2003; 274A: 934-941.
Stevens CR, Mapp PI, Revell PA. A monoclonal antibody (Mab 67) marks type B synoviocytes. Rheumatol Int 1990; 10: 103-106.
Nozawa-Inoue K, Oshima H, Kawano Y, et al. Immunocytochemical demonstration of heat shock protein 25 in the rat temporomandibular joint. Arch Histol Cytol 1999; 62: 483-491.
Hyc A, Osiecka-Iwan A, Niderla-Bielińska J, et al. Influence of LPS, TNF, TGF-ß1 and IL-4 on the expression of MMPs, TIMPs and selected cytokines in rat synovial membranes incubated in vitro. Int J Mol Med 2011; 27: 127-137.
Hui AY, McCarty WJ, Masuda K, et al. Asystens biology approach to synovial joint lubrication in health, injury, and disease. WIREs Syst biol Med 2012; 4: 15-37.
Yoshida M, Sai S, Marumo K, et al. Expression analysis of three isoforms of hyaluronan synthase and hyaluronidase in synovium of knees in osteoarthritis and rheumatoid arthritis by guantitative real-time reverse transciptase polymerase chain reaction. Arthritis Res Ther 2003; 6: 514-520.
Ward AC, Dowthwaite GP, Pitsillidess AA. Hyaluronan in joint cavitation. Biochem Soc Trans 1999; 27: 128-135.
Anggiansah CL, Scott D, Poli A, et al. Regulation of hyaluronan secretion into rabbit synovial joints in vitro by protein kinase C. J Physiol 2003; 2: 631-640.
Levick JR, Mason RM, Coleman PJ, et al. Physiology of synovial fluid and trans-synovial flow. In: Biology of the Synovial Joint. Archer CW, Caterson B, Benjamin M, Ralphs JR (ed.). Harwood Academic, Amsterdam 1999; 235-252.
Sabaratnam S, Coleman PJ, Mason RM, et al. Interstitial matrix proteins determine hyaluronan reflection and fluid retention in rabbit joints: effect of protease. J Physiol 2007; 57: 291-299.
Levick JR. Flow through interstitium and other fibrous matrces. Exp Physiol 1987; 72: 409-438.
Lu Y, Levick JR, Wang W. Synovial fluid retention in pressurised joint cavities is achieved by hyaluronan concentration polarisation. Microcirculation 2005; 12: 581-595.
Chang DP, Abu-Lail NI, Coles JM, et al. Friction force microscopy of lubricin and hyaluronic acid between hydrophobic and hydrophylic surfaces. Soft Matter 2009; 5: 3438-3445.
Hyc A, Osiecka-Iwan A, Niderla-Bielinska J, et al. Pro- and anti-inflammatory cytokines increase hyaluronan production by rat synovial membrane in vitro. Int J Mol Med 2009; 24: 579-585.
Ohno S, Tanimoto K, Fujimoto K, et al. Molecular cloning of rabbit hyaluronan synthases and their expression patterns in synovial membrane and articular cartilage. Biochim Biophys Acta 2001; 1520: 71-78.
Itano N, Kimata K. Molecular cloning of human hyaluronan synthase. Biochem Biophys Res Commun 1996; 222: 816-820.
Csoka AB, Frost GI, Stern R. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol 2001; 20: 499-508.
Harada H, Takahashi M. CD44-dependent intracellular and extra­cellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J Biol Chem 2007; 8: 5597-5607.
Hajjaji H, Cole AA, Manicourt D-H. Chondrocytes, synoviocytes and dermal fibroblasts all express PH-20, a hyaluronidase active at neutral pH. Arthritis Res Ther 2004; 7: 756-768.
Jay GD, Tantrvashi U, Britt DE, et al. Homology of lubricin and superficial zone protein (SZP): products of megakaryocyte stimulating factor (MSF) gene expression by human synovial fibroblasts and articular chondrocytes localized to chromosome 1q25. J Orthop Res 2001; 19: 677-687.
Schumacher BL, Block JA, Schmid TM, et al. A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch Biochem Biophys 1994; 311: 144-152.
Moskalewski S, Jankowska-Steifer E. Hydrostatyczne i graniczne smarowanie stawów-natura smaru granicznego. Ortopedia Traumatologia Rehabilitacja 2012; 14: 13-21.
Rhee DK, Marcelino J, Baker MacA, et al. The secreted glycoprotein lubricin protect cartilage surface and inhibit synovial cell overgrowth. J Clin Invest 2005; 115: 622-631.
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe