REVIEW PAPER
Comparison of the effectiveness of electrolysis and microelectrolysis in the treatment of musculoskeletal pain: a systematic review
 
More details
Hide details
1
Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
 
 
Submission date: 2020-11-18
 
 
Acceptance date: 2021-01-25
 
 
Publication date: 2023-03-21
 
 
Physiother Quart. 2023;31(1):73-89
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Musculoskeletal pain (MSP) is a frequent reason for consultation; its high prevalence is a concern. Recently, different electrolysis modalities have appeared to reduce MSP, although studies supporting their use and comparing them are limited. This study compared the effectiveness of electrolysis modalities in MSP treatment.

Methods:
The PubMed, Scopus, Web of Science, CINAHL, and ScienceDirect electronic databases were searched for randomized clinical trials (RCTs) (last update: September 4, 2020). Three independent researchers reviewed titles and abstracts to determine article eligibility. Risk of bias and quality were assessed with the Cochrane risk of bias tool and the PEDro scale. Pain reduction was the main outcome and changes in range of motion or disability/functionality constituted secondary results.

Results:
Overall, 15 RCTs were obtained after eliminating duplicates and applying the selection criteria. Musculoskeletal conditions treated with electrolysis or microelectrolysis included myofascial pain (n = 3), patellar tendinopathy (n = 2), plantar fasciitis (n = 2), pubalgia (n = 1), subacromial impingement (n = 3), epicondylitis (n = 1), calcaneal tendinopathy (n = 2), and whiplash syndrome (n = 1). The studies had a low risk of bias and an average PEDro score of 9. They revealed pain reduction for electrolysis and microelectrolysis at the end of treatment and follow-up evaluations (p < 0.005), and functionality improvement for all experimental groups (p < 0.005).

Conclusions:
Electrolysis and microelectrolysis treatments reduce pain and improve functionality in MSP conditions. Although both techniques are effective, comparative studies are suggested to determine therapeutic differences and user preferences.

 
REFERENCES (92)
1.
Lezin N, Watkins-Castillo S. The impact of musculoskeletal disorders on Americans – opportunities for action. Bone and Joint Initiative USA; 2016. Available from: http://www.boneandjointburden.....
 
2.
MacKichan F, Wylde V, Dieppe P. The assessment of musculoskeletal pain in the clinical setting. Rheum Dis Clin North Am. 2008;34(2):311–330; doi: 10.1016/j.rdc.2008.03.002.
 
3.
Douglas H, Georgiou A, Westbrook J. Social participation as an indicator of successful aging: an overview of concepts and their associations with health. Aust Health Rev. 2017;41(4):455–462; doi: 10.1071/AH16038.
 
4.
Booth J, Moseley GL, Schiltenwolf M, Cashin A, Davies M, Hübscher M. Exercise for chronic musculoskeletal pain: a biopsychosocial approach. Musculoskeletal Care. 2017;15(4):413–421; doi: 10.1002/msc.1191.
 
5.
Ji R-R, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology. 2018;129(2):343–366; doi: 10.1097/ALN.0000000000002130.
 
6.
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–1858; doi: 10.1016/S0140-6736(18)32279-7.
 
7.
GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–1259; doi: 10.1016/S0140-6736(17)32154-2.
 
8.
Lin I, Wiles L, Waller R, Goucke R, Nagree Y, Gibberd M, et al. What does best practice care for musculoskeletal pain look like? Eleven consistent recommendations from high-quality clinical practice guidelines: systematic review. Br J Sports Med. 2020;54(2):79–86; doi: 10.1136/bjsports-2018-099878.
 
9.
Kennedy PC, Purtill H, O’Sullivan K. Musculoskeletal pain in primary care physiotherapy: associations with demographic and general health characteristics. Musculoskelet Sci Pract. 2018;35:61–66; doi: 10.1016/j.msksp.2018.03.001.
 
10.
Abdel Shaheed C, Maher CG, Williams KA, Day R, McLachlan AJ. Efficacy, tolerability, and dose-dependent effects of opioid analgesics for low back pain: a systematic review and meta-analysis. JAMA Intern Med. 2016;176(7):958–968; doi: 10.1001/jamainternmed.2016.1251.
 
11.
Sullivan MD, Howe CQ. Opioid therapy for chronic pain in the United States: promises and perils. Pain. 2013;154(Suppl. 1):S94–S100; doi: 10.1016/j.pain.2013.09.009.
 
12.
Samuel SR, Maiya GA. Application of low frequency and medium frequency currents in the management of acute and chronic pain – a narrative review. Indian J Palliat Care. 2015;21(1):116–120; doi: 10.4103/0973-1075.150203.
 
13.
Vance CGT, Dailey DL, Rakel BA, Sluka KA. Using TENS for pain control: the state of the evidence. Pain Manag. 2014;4(3):197–209; doi: 10.2217/pmt.14.13.
 
14.
Dolhem R. The history of electrostimulation in rehabilitation medicine [in French]. Ann Readapt Med Phys. 2008;51(6):427–431; doi: 10.1016/j.annrmp.2008.04.004.
 
15.
Rampazo da Silva ÉP, da Silva VR, Bernardes AS, Matuzawa FM, Liebano RE. Study protocol of hypoalgesic effects of low frequency and burst-modulated alternating currents on healthy individuals. Pain Manag. 2018;8(2):71–77; doi: 10.2217/pmt-2017-0058.
 
16.
Rodríguez Martín JM. Galvanism [in Spanish]. In: Rodríguez Martín JM, Electrotherapy in physiotherapy [in Spanish], 3rd ed. Madrid: Editorial Médica Panamericana; 2014; 125–147.
 
17.
Cameron MH. Electrical current devices, waveforms, and parameters. In: Cameron MH, Physical agents in rehabilitation: an evidence-based approach to practice. St. Louis: Elsevier; 2017; 220–224.
 
18.
Lopez-Martos R, Gonzalez-Perez L-M, Ruiz-Canela-Mendez P, Urresti-Lopez F-J, Gutierrez-Perez J-L, Infante-Cossio P. Randomized, double-blind study comparing percutaneous electrolysis and dry needling for the management of temporomandibular myofascial pain. Med Oral Patol Oral Cir Bucal. 2018;23(4):e454–e462; doi: 10.4317/medoral.22488.
 
19.
Fernández-Rodríguez T, Fernández-Rolle Á, Truyols-Domínguez S, Benítez-Martínez JC, Casaña-Granell J. Prospective randomized trial of electrolysis for chronic plantar heel pain. Foot Ankle Int. 2018;39(9):1039–1046; doi: 10.1177/1071100718773998.
 
20.
Mattiussi G, Moreno C. Treatment of proximal hamstring tendinopathy-related sciatic nerve entrapment: presentation of an ultrasound-guided “Intratissue Percutaneous Electrolysis” application. Muscles Ligaments Tendons J. 2016;6(2):248–252; doi: 10.11138/mltj/2016.6.2.248.
 
21.
Abat F, Gelber PE, Polidori F, Monllau JC, Sanchez-Ibañez JM. Clinical results after ultrasound-guided intratissue percutaneous electrolysis (EPI®) and eccentric exercise in the treatment of patellar tendinopathy. Knee Surg Sports Traumatol Arthrosc. 2015;23(4):1046–1052; doi: 10.1007/s00167-014-2855-2.
 
22.
Ronzio OA, Villa CA, Gómez D, Valentim da Silva RM, Gill JP, d’Almeida S, et al. Effects in pressure-pain threshold of percutaneous galvanic microcurrent in the trapezius trigger points. Physiotherapy. 2015;101(Suppl. 1):e1297–e1298; doi: 10.1016/j.physio.2015.03.1214.
 
23.
De la Barra Ortiz HA, Cancino JO, Peña FS, León FS, Do­noso EM, Gaete VT. Effectiveness of percutaneous microelectrolysis and ultrasound in decreasing pain in myofascial trigger points: evaluation through algometry and visual analogue scale. Physiother Quart. 2020;28(3):1–8; doi: 10.5114/pq.2020.95768.
 
24.
Valentim da Silva RM, de Souza Costa L, da Silva Coldibeli E, do Rosário Soares Fernandes M, Froes Meyer P, Ronzio OA. Effects of Microelectrólisis Percutaneous® on pain and functionality in patients with calcaneal tendinopathy. Man Ther Posturology Rehabil J. 2014;12:185–190; doi: 10.17784/mtprehabjournal.2014.12.188.
 
25.
Murata Y, Osakabe M. The Bunsen-Roscoe reciprocity law in ultraviolet-B-induced mortality of the two-spotted spider mite Tetranychus urticae. J Insect Physiol. 2013;59(3):241–247; doi: 10.1016/j.jinsphys.2012.11.008.
 
26.
D’Almeida SM, Valentim da Silva RM, Ronzio OA. Surveillance on safety and complications four years after the introduction of Percutaneous Microelectrolisis (MEP®) Sport technique as a physical therapy practice. Fisioter Pesqui. 2019;26(2):213–218; doi: 10.1590/1809-2950/18038726022019.
 
27.
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535; doi: 10.1136/bmj.b2535.
 
28.
Van Loveren C, Aartman IHA. The PICO (Patient-Intervention-Comparison-Outcome) question [in Duch]. Ned Tijdschr Tandheelkd. 2007;114(4):172–178.
 
29.
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan – a web and mobile app for systematic reviews. Syst Rev. 2016;5:210; doi: 10.1186/s13643-016-0384-4.
 
30.
Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–721; doi: 10.1093/ptj/83.8.713.
 
31.
De Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–133; doi: 10.1016/s0004-9514(09)70043-1.
 
32.
Savović J, Weeks L, Sterne JAC, Turner L, Altman DG, Moher D, et al. Evaluation of the Cochrane Collaboration’s tool for assessing the risk of bias in randomized trials: focus groups, online survey, proposed recommendations and their implementation. Syst Rev. 2014;3:37; doi: 10.1186/2046-4053-3-37.
 
33.
Stovold E, Beecher D, Foxlee R, Noel-Storr A. Study flow diagrams in Cochrane systematic review updates: an adapted PRISMA flow diagram. Syst Rev. 2014;3:54; doi: 10.1186/2046-4053-3-54.
 
34.
Arias-Buría JL, Truyols-Domínguez S, Valero-Alcaide R, Salom-Moreno J, Atín-Arratibel MA, Fernández-de-Las-Peñas C. Ultrasound-guided percutaneous electrolysis and eccentric exercises for subacromial pain syndrome: a randomized clinical trial. Evid Based Complement Alternat Med. 2015;2015:315219; doi: 10.1155/2015/315219.
 
35.
Rodríguez-Huguet M, Góngora-Rodríguez J, Rodríguez-Huguet P, Ibañez-Vera AJ, Rodríguez-Almagro D, Martín-Valero R, et al. Effectiveness of percutaneous electrolysis in supraspinatus tendinopathy: a single-blinded randomized controlled trial. J Clin Med. 2020;9(6):1837; doi: 10.3390/jcm9061837.
 
36.
Moreno C, Mattiussi G, Núñez FJ, Messina G, Rejc E. Intratissue percutaneous electrolysis combined with active physical therapy for the treatment of adductor longus enthesopathy-related groin pain: a randomized trial. J Sports Med Phys Fitness. 2017;57(10):1318–1329; doi: 10.23736/S0022-4707.16.06466-5.
 
37.
De Miguel Valtierra L, Salom Moreno J, Fernández-de-Las-Peñas C, Cleland JA, Arias-Buría JL. Ultrasound-guided application of percutaneous electrolysis as an adjunct to exercise and manual therapy for subacromial pain syndrome: a randomized clinical trial. J Pain. 2018;19(10):1201–1210; doi: 10.1016/j.jpain.2018.04.017.
 
38.
Rodríguez-Huguet M, Góngora-Rodríguez J, Lomas-Vega R, Martín-Valero R, Díaz-Fernández Á, Obrero-Gaitán E, et al. Percutaneous electrolysis in the treatment of lateral epicondylalgia: a single-blind randomized controlled trial. J Clin Med. 2020;9(7):2068; doi: 10.3390/jcm9072068.
 
39.
Abat F, Sánchez-Sánchez JL, Martín-Nogueras AM, Calvo-Arenillas JI, Yajeya J, Méndez-Sánchez R, et al. Randomized controlled trial comparing the effectiveness of the ultrasound-guided galvanic electrolysis technique (USGET) versus conventional electro-physiotherapeutic treatment on patellar tendinopathy. J Exp Orthop. 2016;3(1):34; doi: 10.1186/s40634-016-0070-4.
 
40.
Iborra-Marcos Á, Ramos-Álvarez JJ, Rodriguez-Fabián G, Del Castillo-González F, López-Román A, Polo-Portes C, et al. Intratissue percutaneous electrolysis vs corticosteroid infiltration for the treatment of plantar fasciosis. Foot Ankle Int. 2018;39(6):704–711; doi: 10.1177/1071100718754421.
 
41.
Ronzio OA, da Silva Coldibeli E, Soares Fernandes MDR, Froes Meyer P, da Silva RMV. Effects of percutaneous microelectrolysis (MEP®) on pain, ROM and morning stiffness in patients with Achilles tendinopathy. Eur J Physiother. 2017;19(Suppl. 1):62–63; doi: 10.1080/21679169.2017.1381321.
 
42.
García Naranjo J, Barroso Rosa S, Loro Ferrer JF, Limiñana Cañal JM, Suarez Hernández E. A novel approach in the treatment of acute whiplash syndrome: ultrasound-guided needle percutaneous electrolysis. A randomized controlled trial. Orthop Traumatol Surg Res. 2017;103(8):1229–1234; doi: 10.1016/j.otsr.2017.09.012.
 
43.
Guelfi M, Pantalone A, Vanni D, Abate M, Guelfi MGB, Salini V. Long-term beneficial effects of platelet-rich plasma for non-insertional Achilles tendinopathy. Foot Ankle Surg. 2015;21(3):178–181; doi: 10.1016/j.fas.2014.11.005.
 
44.
Rudavsky A, Cook J. Physiotherapy management of patellar tendinopathy (jumper’s knee). J Physiother. 2014;60(3):122–129; doi: 10.1016/j.jphys.2014.06.022.
 
45.
Cook JL, Rio E, Purdam CR, Docking SI. Revisiting the continuum model of tendon pathology: what is its merit in clinical practice and research? Br J Sports Med. 2016;50(19):1187–1191; doi: 10.1136/bjsports-2015-095422.
 
46.
McCreesh K, Lewis J. Continuum model of tendon pathology – where are we now? Int J Exp Pathol. 2013;94(4):242–247; doi: 10.1111/iep.12029.
 
47.
Maffulli N, Longo UG, Denaro V. Novel approaches for the management of tendinopathy. J Bone Joint Surg Am. 2010;92(15):2604–2613; doi: 10.2106/JBJS.I.01744.
 
48.
Riley GP, Goddard MJ, Hazleman BL. Histopathological assessment and pathological significance of matrix degeneration in supraspinatus tendons. Rheumatology. 2001;40(2):229–230; doi: 10.1093/rheumatology/40.2.229.
 
49.
Pitsillides A, Stasinopoulos D. Cyriax friction massage – suggestions for improvements. Medicina. 2019;55(5):185; doi: 10.3390/medicina55050185.
 
50.
Joseph MF, Taft K, Moskwa M, Denegar CR. Deep friction massage to treat tendinopathy: a systematic review of a classic treatment in the face of a new paradigm of understanding. J Sport Rehabil. 2012;21(4):343–353; doi: 10.1123/jsr.21.4.343.
 
51.
Wang C-J. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res. 2012;7:11; doi: 10.1186/1749-799X-7-11.
 
52.
Vahdatpour B, Forouzan H, Momeni F, Ahmadi M, Taheri P. Effectiveness of extracorporeal shockwave therapy for chronic Achilles tendinopathy: a randomized clinical trial. J Res Med Sci. 2018;23:37; doi: 10.4103/jrms.JRMS_413_16.
 
53.
De Lucas B, Pérez LM, Bernal A, Gálvez BG. Ultrasound therapy: experiences and perspectives for regenerative medicine. Genes. 2020;11(9):1086; doi: 10.3390/genes11091086.
 
54.
López-de-Celis C, Barra-López M-E, González-Rueda V, Bueno-Gracia E, Rodríguez-Rubio P-R, Tricás-Moreno JM. Effectiveness of diacutaneous fibrolysis for the treatment of chronic lateral epicondylalgia: a randomized clinical trial. Clin Rehabil. 2018;32(5):644–653; doi: 10.1177/0269215517738114.
 
55.
Page MJ, Green S, Kramer S, Johnston RV, McBain B, Chau M, et al. Manual therapy and exercise for adhesive capsulitis (frozen shoulder). Cochrane Database Syst Rev. 2014;8:CD011275; doi: 10.1002/14651858.CD011275.
 
56.
Kumbhare DA, Elzibak AH, Noseworthy MD. Assessment of myofascial trigger points using ultrasound. Am J Phys Med Rehabil. 2016;95(1):72–80; doi: 10.1097/PHM.0000000000000376.
 
57.
Rozenfeld E, Finestone AS, Moran U, Damri E, Kalich­man L. Test-retest reliability of myofascial trigger point detection in hip and thigh areas. J Bodyw Mov Ther. 2017;21(4):914–919; doi: 10.1016/j.jbmt.2017.03.023.
 
58.
Alvarez DJ, Rockwell PG. Trigger points: diagnosis and management. Am Fam Physician. 2002;65(4):653–660.
 
59.
Miao Q, Qiang J-H, Jin Y-L. Effectiveness of percutaneous neuromuscular electrical stimulation for neck pain relief in patients with cervical spondylosis. Medicine. 2018;97(26):e11080; doi: 10.1097/MD.0000000000011080.
 
60.
White PF, Craig WF, Vakharia AS, Ghoname E, Ahmed HE, Hamza MA. Percutaneous neuromodulation therapy: does the location of electrical stimulation effect the acute analgesic response? Anesth Analg. 2000;91(4):949–954; doi: 10.1097/00000539-200010000-00034.
 
61.
White PF, Ghoname EA, Ahmed HE, Hamza MA, Craig WF, Vakharia AS. The effect of montage on the analgesic response to percutaneous neuromodulation therapy. Anesth Analg. 2001;92(2):483–487; doi: 10.1097/00000539-200102000-00038.
 
62.
Chipchase LS, Williams MT, Robertson VJ. A national study of the availability and use of electrophysical agents by Australian physiotherapists. Physiother Theory Pract. 2009;25(4):279–296; doi: 10.1080/09593980902782611.
 
63.
Bjordal JM, Ronzio O, Baxter GD, Sluka KA. On “The American Physical Therapy Association’s top five Choosing Wisely recommendations.” White NT, Delitto A, Manal TJ, Miller S. Phys Ther. doi: 10.2522/ptj.20140287. Phys Ther. 2015;95(2):275–278; doi: 10.2522/ptj.2015.95.2.275.
 
64.
Forney MC, Delzell PB. Musculoskeletal ultrasonography basics. Cleve Clin J Med. 2018;85(4):283–300; doi: 10.3949/ccjm.85a.17014.
 
65.
Serafin-Król M, Maliborski A. Diagnostic errors in musculoskeletal ultrasound imaging and how to avoid them. J Ultrason. 2017;17(70):188–196; doi: 10.15557/JoU.2017.0028.
 
66.
Chiarotto A, Maxwell LJ, Ostelo RW, Boers M, Tugwell P, Terwee CB. Measurement properties of Visual Analogue Scale, Numeric Rating Scale, and Pain Severity subscale of the Brief Pain Inventory in patients with low back pain: a systematic review. J Pain. 2019;20(3):245–263; doi: 10.1016/j.jpain.2018.07.009.
 
67.
Heller GZ, Manuguerra M, Chow R. How to analyze the visual analogue scale: myths, truths and clinical relevance. Scand J Pain. 2016;13:67–75; doi: 10.1016/j.sjpain.2016.06.012.
 
68.
Alghadir AH, Anwer S, Iqbal A, Iqbal ZA. Test-retest reliability, validity, and minimum detectable change of visual analog, numerical rating, and verbal rating scales for measurement of osteoarthritic knee pain. J Pain Res. 2018;11:851–856; doi: 10.2147/JPR.S158847.
 
69.
Shafshak TS, Elnemr R. The visual analogue scale versus numerical rating scale in measuring pain severity and predicting disability in low back pain. J Clin Rheumatol. 2021;27(7):282–285; doi: 10.1097/RHU.0000000000001320.
 
70.
Rossettini G, Carlino E, Testa M. Clinical relevance of contextual factors as triggers of placebo and nocebo effects in musculoskeletal pain. BMC Musculoskelet Disord. 2018;19(1):27; doi: 10.1186/s12891-018-1943-8.
 
71.
Rossettini G, Palese A, Geri T, Mirandola M, Tortella F, Testa M. The knowledge of contextual factors as triggers of placebo and nocebo effects in patients with musculoskeletal pain: findings from a national survey. Front Psychiatry. 2019;10:478; doi: 10.3389/fpsyt.2019.00478.
 
72.
Ortega-Castillo M, Medina-Porqueres I. Effectiveness of the eccentric exercise therapy in physically active adults with symptomatic shoulder impingement or lateral epicondylar tendinopathy: a systematic review. J Sci Med Sport. 2016;19(6):438–453; doi: 10.1016/j.jsams.2015.06.007.
 
73.
McCormack JR, Underwood FB, Slaven EJ, Cappaert TA. Eccentric exercise versus eccentric exercise and soft tissue treatment (Astym) in the management of insertional Achilles tendinopathy. Sports Health. 2016;8(3):230–237; doi: 10.1177/1941738116631498.
 
74.
Lim HY, Wong SH. Effects of isometric, eccentric, or heavy slow resistance exercises on pain and function in individuals with patellar tendinopathy: a systematic review. Physiother Res Int. 2018;23(4):e1721; doi: 10.1002/pri.1721.
 
75.
Frizziero A, Vittadini F, Fusco A, Giombini A, Masiero S. Efficacy of eccentric exercise in lower limb tendinopathies in athletes. J Sports Med Phys Fitness. 2016;56(11):1352–1358.
 
76.
Steuri R, Sattelmayer M, Elsig S, Kolly C, Tal A, Taeymans J, et al. Effectiveness of conservative interventions including exercise, manual therapy and medical management in adults with shoulder impingement: a systematic review and meta-analysis of RCTs. Br J Sports Med. 2017;51(18):1340–1347; doi: 10.1136/bjsports-2016-096515.
 
77.
Xia P, Wang X, Lin Q, Cheng K, Li X. Effectiveness of ultrasound therapy for myofascial pain syndrome: a systematic review and meta-analysis. J Pain Res. 2017;10:545–555; doi: 10.2147/JPR.S131482.
 
78.
World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–2194; doi: 10.1001/jama.2013.281053.
 
79.
Eechaute C, Vaes P, Van Aerschot L, Asman S, Duquet W. The clinimetric qualities of patient-assessed instruments for measuring chronic ankle instability: a systematic review. BMC Musculoskelet Disord. 2007;8:6; doi: 10.1186/1471-2474-8-6.
 
80.
Ohrbach R, Granger C, List T, Dworkin S. Preliminary development and validation of the Jaw Functional Limitation Scale. Community Dent Oral Epidemiol. 2008;36(3):228–236; doi: 10.1111/j.1600-0528.2007.00397.x.
 
81.
Acharya GU, Kumar A, Rajasekar S, Samuel AJ. Reliability and validity of Kannada version of Victorian Institute of Sports Assessment for patellar tendinopathy (VISA-P-K) questionnaire. J Clin Orthop Trauma. 2019;10(Suppl. 1):189–192; doi: 10.1016/j.jcot.2018.08.017.
 
82.
Robinson JM, Cook JL, Purdam C, Visentini PJ, Ross J, Maffulli N, et al. The VISA-A questionnaire: a valid and reliable index of the clinical severity of Achilles tendinopathy. Br J Sports Med. 2001;35(5):335–341; doi: 10.1136/bjsm.35.5.335.
 
83.
Hale SA, Hertel J. Reliability and sensitivity of the Foot and Ankle Disability Index in subjects with chronic ankle instability. J Athl Train. 2005;40(1):35–40.
 
84.
Raven EEJ, Haverkamp D, Sierevelt IN, van Montfoort DO, Pöll RG, Blankevoort L, et al. Construct validity and reliability of the Disability of Arm, Shoulder and Hand questionnaire for upper extremity complaints in rheumatoid arthritis. J Rheumatol. 2008;35(12):2334–2338; doi: 10.3899/jrheum.080067.
 
85.
Briggs KK, Lysholm J, Tegner Y, Rodkey WG, Kocher MS, Steadman JR. The reliability, validity, and responsiveness of the Lysholm score and Tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. Am J Sports Med. 2009;37(5):890–897; doi: 10.1177/0363546508330143.
 
86.
Briggs KK, Kocher MS, Rodkey WG, Steadman JR. Reliability, validity, and responsiveness of the Lysholm knee score and Tegner activity scale for patients with meniscal injury of the knee. J Bone Joint Surg Am. 2006;88(4):698–705; doi: 10.2106/JBJS.E.00339.
 
87.
Roy J-S, MacDermid JC, Woodhouse LJ. Measuring shoulder function: a systematic review of four questionnaires. Arthritis Rheum. 2009;61(5):623–632; doi: 10.1002/art.24396.
 
88.
Breckenridge JD, McAuley JH. Shoulder Pain and Disability Index (SPADI). J Physiother. 2011;57(3):197; doi: 10.1016/S1836-9553(11)70045-5.
 
89.
Hoving JL, O’Leary EF, Niere KR, Green S, Buchbinder R. Validity of the neck disability index, Northwick Park neck pain questionnaire, and problem elicitation technique for measuring disability associated with whiplash-associated disorders. Pain. 2003;102(3):273–281; doi: 10.1016/s0304-3959(02)00406-2.
 
90.
Mathis RA, Taylor JD, Odom BH, Lairamore C. Reliability and validity of the Patient-Specific Functional Scale in community-dwelling older adults. J Geriatr Phys Ther. 2019;42(3):67–72; doi: 10.1519/JPT.0000000000000188.
 
91.
Manuel M, Zytnicki D. Alpha, beta and gamma motoneurons: functional diversity in the motor system’s final pathway. J Integr Neurosci. 2011;10(3):243–276; doi: 10.1142/S0219635211002786.
 
92.
Mendell LM, Collins WF 3rd, Munson JB. Retrograde determination of motoneuron properties and their synaptic input. J Neurobiol. 1994;25(6):707–721; doi: 10.1002/neu.480250610.
 
ISSN:2544-4395
Journals System - logo
Scroll to top