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Abstract
Purpose: The objective of this study was to review the literature to find scientific evidence about the mechanisms involved in oro- 
facial sensory interaction, including trigeminal and special sensory modalities.
Views: Conscious sensory perception depends on peripheral external and internal stimuli, which are integrated and processed in 
central neural centres in order to promote the sensory experience through learning and memory. In the orofacial region, besides 
somatosensory inputs, there are special sensory modalities (gustation, olfaction, vision and audition) that interact with trigeminal 
ascendant inputs in a way that makes this area of the body unique. Moreover, the trigeminal nerve may have an important role 
due to the complex functions of this region, including breathing, feeding and detecting threats. In recent decades the development 
of equipment accurate enough to detect sensory thresholds has produced a wide range of evidence about orofacial interaction, 
which allows for the possible development of a unified underlying theory on this issue.
Conclusions: The trigeminal system seems to mediate olfactory and gustative sensations in cortical associative centres, and sensory 
peripheral neural inputs are modulated by physiological and pathological conditions. Future experimental studies should seek to 
clarify the mechanisms involved in this interaction, and the role of pathological states in abnormalities of sensory thresholds and 
perception.
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INTRODUCTION
The investigation of  sensory perception has been 

a field of scientific interest since the end of the 19th cen-
tury. Although there are separated sensory modalities, 
there is also an integrated sensory system that is at least 
a part of the background of conscious perception, which 
began to be scientifically demonstrated in the second half 
of the 20th century. The Gate Control Theory of Melzack 
and Wall (1965) [1] provided clear evidence that different 
somatosensory stimuli (mediated by nerve fibres of small 
or large diameter) interact. The  main observation was 
the  suppression of  pain sensation by tactile and other  
non-painful inputs. Melzack expanded this theory in 
1999 [2] with the concept of the neuromatrix, a complex 
neural network. This concept posited a  more complex 
neural interaction in the  central nervous system which 

involved somatosensory, limbic and thalamocortical 
components, dependent on a time-space stimuli relation. 
Beyond the interaction of somatosensory inputs, Melzack 
argued, there is integration with special sensory modali-
ties which have a role in the neural processing of percep-
tion [2]. 

Evidence-based studies of this interaction began to be 
published, especially on the orofacial area, and found that 
simple perception at the  oral cavity integrates somato-
sensory, gustative and olfactory inputs. Gustative com-
plaints have been reported by patients with trigeminal 
pain [3-7], and taste studies have shown the association 
between taste and smell [8, 9]. The temperature of chem-
ical substances seems to impact olfactory and gustative 
thresholds [10-14], and there is an integration of somato-
sensory and special sensory modalities in the  craniofa-
cial region [15-17]. This review states a unified theory for 
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craniofacial sensory interaction, which plays an import-
ant role in the vital functions of the conscious perception 
of the environment.

The dynamic process of sensory perception  
in the craniofacial area

The trigeminal system is the largest and most complex 
somatosensory system in the human body. There is an in-
tense convergence in it of inputs from the oral and nasal 
mucosa, cornea, facial skin, lips, teeth, nose, dura mater, 
tongue, deep tissues and part of the auditory canal, which 
are processed in the  central nervous system along with 
adjacent somatosensory inputs mediated by other cranial 
nerves (VII, IX, X) [18-21]. Its complexity is closely re-
lated to the evolutionary importance of this body area in 
survival and interaction with the environment and other  
beings  [22]. Its functions include breathing, chewing, 
talking and swallowing, which depend on exteroceptive 
(e.g. vision, odours, oral sensations that coordinate chew-
ing and swallowing with breathing) and interoceptive 
sensory inputs (e.g. levels of glucose, O2, CO2 in the blood 
flow) [18, 21]. 

Conscious and non-conscious efferent responses, 
such as salivation, muscular activity facial mimic, mas-
tication and even hand movements to lead the  food to 
the mouth [23], depend on the sensory system. This last 
one may be the reason for the proximity of  the  inferior 
third of the face and the hand in cortical representation 
of each side, and these responses might be impaired when 
the sensory system presents dysfunctions [24]. Moreover, 
not only does saliva depend on sensory interaction, it also 
facilitates sensory perception in the mouth [25, 26]. Taste 
is a complex interaction between gustative thresholds and 
temperature, odorants and texture of the food [17]; thus, 
any abnormality in this system could affect perception as 
a whole [16, 24, 27]. 

It is important to highlight the dynamic influence that 
sensory perception may present in the contexts of the in-
ternal or external environments. High levels of glycated 
haemoglobin have been associated with facial hypoal-
gesia in patients with diabetes mellitus [28], and there is 
an influence of the circadian cycle on sensory perception, 
depending on hormones and mediators [29, 30]. 

Women have lower sensory thresholds than men [31] 
due to hormonal modulation by oestrogen and pro-
gesterone  [32, 33], neural mechanisms  [34, 35] and 
psychosocial aspects  [36, 37]. The genetic influence of  
the X chromosome is not well-defined and future studies 
are necessary, including in children before the sex matu-
ration. On the other hand, ageing is related to a decrease 
of sensory perception [31, 38-41]; possible mechanisms 
include the decline of immune responses and regulation 
of neurogenesis [42], the use of medication, chronic pro-
cesses, variation in the density and distribution of recep-

tors and ionic channels and the composition of saliva and 
nasal mucus [43].

Cortical maps of  sensory representation are dynamic 
and can change not only with time but also during an activ-
ity [44]. The receptive fields seem to be formed according 
to the simultaneous activation of the ascendant paths am-
plified in central areas by the circuitries of retransmission 
or the inhibitory neurons associated with them [45]. Thus, 
associated with the  convergence of  information there is 
a paradoxically divergent pattern [46, 47]. The descendent 
modulatory circuits permit the passage of some inputs to 
the detriment to others, and these are the pathophysiolog-
ical mechanisms that underlie conscious sensory percep-
tion [48, 49]. It is also possible to observe the  inhibition 
of  pain sensations by the  stimulation of  periaqueductal 
grey substance or motor cortical areas [50].

Clinical and experimental evidence of sensory 
interaction

In recent decades, quantitative sensory testing pro-
tocols had been developed to elucidate the mechanisms 
involved in orofacial pain conditions  [51-54]. Sensory 
abnormalities appear most often after trauma or in neu-
ropathic conditions [6, 7, 24, 55-61]. The association be-
tween trigeminal abnormalities and altered taste percep-
tion has been shown [4, 62, 63], and supports orofacial 
sensory interaction. It is known that an increase in tem-
perature may help in the detection of taste [64].

The unilateral stimulation of the tongue with sodium 
chlorate in patients with an  injury in the  contralateral 
chorda timpani nerve generated bilateral nuclear acti-
vation at the brainstem [65]. Gustative impairment after 
trigeminal surgery indicates the existence of central and 
peripheral sensorial interaction, as supported by animal 
studies  [21, 66]. Injury to the  lingual nerve, which has 
both trigeminal nerve and facial nerve fibres, leads to 
the  faster regeneration of  large fibres to the  detriment 
of  the  smaller ones (pain, temperature and gustation), 
and corresponds to the symptoms of pain and dysgeusia 
in patients [67]. On the other hand, it has also been ob-
served that olfactory threshold decrease impairs the tri-
geminal function at the nasal mucosa [15].

Despite the clear association of abnormal sensitivity 
with neuropathy, other orofacial conditions that are not 
neuropathic also present sensorial changes due to sec-
ondary hyperalgesia and central sensitization  [18]; for 
example, temporomandibular disorders that have mus-
culoskeletal mechanisms causing hyperalgesia and sen-
sitization  [68, 69]. Research on patients with persistent 
idiopathic facial pain has generated controversial re-
sults  [6, 70, 71], and the possible explanations are a di-
agnosis of  exclusion and that there are methodological 
differences in patients’ recruitment for the  studies. This 
suggested that, according to the  aetiology of  the  pain, 
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the  sensory loss pattern is variable. It is also important 
to consider that there are many drugs that are used for 
chronic pain control and that alter sensory thresholds, 
for example carbamazepine, often taken by the patients 
during the studies [63, 72].

The generalized pain of  fibromyalgia is associated 
with several sensorial abnormalities, including taste and 
smell disorders [73], and facial palsy primarily involving 
the  VII nerve is associated with secondary somatosen-
sory differences in the  trigeminal area  [74]. Although 
the  interaction between somatosensory, gustative and 
olfactory inputs has been widely accepted, and despite 
the hypothesis of chemosensory (gustation and olfaction) 
interaction with vision  [47], only recently has it been 
demonstrated, in several studies, that there is interaction 
among somatosensation, gustation, olfaction, audition 
and vision [16, 75, 76]. Patients with trigeminal neuralgia 
who underwent a compression of the trigeminal gangli-
on as treatment experienced auditory and vision com-
plaints  [59], and odours can help in the  determination 
of the location of a sound [77].

The special modalities: vision, audition, 
gustation and olfaction

The chemical senses, represented by gustation and ol-
faction, are highly integrated and comprise the taste sensa-
tion along with somatosensory information from the oral 
and nasal mucosa mediated by the trigeminal nerve [8, 9]. 
Different chemical neurons are specific for different chem-
ical substances, but a single neuron can recognize a wide 
range of chemicals due to multiple signalling cascades [78, 
79]. Chemical transduction depends on the  recogni-
tion of  the molecular structure according to the dilution 
of the component in saliva or nasal mucus [9, 79, 80]. 

Anosmia and hyposmia are common in the  general 
population  [15, 81] and can be associated with various 
conditions such as tumours, infections, nephropathies, 
epilepsy and neurodegenerative diseases [79, 82]. Wom-
en have lower olfactory thresholds and these abnormal-
ities increase with ageing  [81, 83]. Both anosmia and 
hyposmia have also been associated with neurodegenera-
tive diseases (Parkinson’s, Alzheimer’s disease) as predic-
tors [81, 84].

Ageusia and hypogeusia, characterized by loss of taste 
sensation, can be associated with several pain conditions 
at the  oral cavity  [4, 7, 8, 78, 85]. The  electrical activity 
of gustation is processed at the geniculate (VII), petrosus 
(IX) and/or nodosus (X) ganglions and the gustative area 
of the solitary tract at the brainstem [86-88]. Factors such 
as appetite, blood concentrations of  glucose and insulin 
may interfere in gustative perception [89, 90]. The need for 
the distribution of substances at the oral cavity in order to 
favour the detection of taste may be a clue as to the impli-
cations of trigeminal inputs for taste detection [79]. 

Craniofacial sensory interaction 
Sensory receptors are connected to a  highly flexible 

circuitry, capable of discriminating between several types 
of  continuously flowing information from the  environ-
ment. They generate precise responses determined by 
anatomic circuits that are potentiated according to the ex-
position to sensory stimuli, stored as memories [91, 92].  
Consistency of  perception depends on sensory integra-
tion according to the size of receptive fields of neurons, 
the correct inhibition of undesired stimuli and the con-
vergence of data on cortical areas of  association, which 
are more functional than topographic  [21, 46, 93]. To 
understand craniofacial perception, it is essential to 
comprehend its multisensorial functions  [94]. A  large 
proportion of gustative and olfactory sensations are per-
ceived during mastication  [8, 95], and somatosensory 
participation helps in the determination of  the  location 
of  taste at the  tongue, even if there are olfactory inputs 
associated  [96]. Taste has a  somatosensory component 
itself that includes the texture and temperature of  food, 
and spicy (pain and heat), menthol (cold) and carbonat-
ed (small pain fibres) sensations [12, 21, 78]. Saliva has 
an important role and its absence and reduction can in-
terfere in oral sensations [25]. Its quality is also important 
and an imbalance in its components – such as peptides, 
glycoprotein, lipids, enzymes and histamine – can alter 
taste detection [97]. 

Several animal studies have elucidated the  mech-
anisms involved in craniofacial sensorial interaction. 
The  neurectomy of  chorda timpani causes an  increase 
of  salty thresholds in rodents  [98] and the  neurectomy 
of  the  glossopharyngeal nerve increases the  bitter taste 
threshold [99-102]. When the neurectomy of both is per-
formed simultaneously, even if one of them regenerates, 
there is no normalization of  these sensations, showing 
the  interdependence between them for gustation  [103]. 
After the neurectomy of chorda timpani, trigeminal and 
glossopharyngeal nerves, the level of sensory loss is high-
er when the lesion is closer to the peripheral tissues [104]. 
In the last decade it has been demonstrated that the sub-
nucleous oralis of  the  trigeminal complex can also me-
diate gustative inputs  [105]. The  perception of  taste is 
a  mixture the  activity of  excitatory (glutamatergic) and  
inhibitory (gabaergic A) synapses at the  brainstem  
and thalamus involving the trigeminal, facial, glossopha-
ryngeal and vagus afferences [106]. Actually, a large part 
of  gustative processing occurs at the  brainstem due to 
the convergence of inputs conducted by the chorda tim-
pani and glossopharyngeal afferents  [107]. In frogs, de-
pending on the chemical gustative stimuli at the tongue, 
there is an  increase or reduction of antidromic activity, 
though the alteration of membrane potential with elec-
trical stimuli cannot show these findings. This evidence 
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supports peripheral mechanisms in the  interaction be-
tween gustative and somatosensory afferences [108]. 

The rostral nucleus of  the  solitary tract is the  first 
centre of  gustative processing and modulation, followed 
by the parabrachial nucleus. There is evidence for the in-
volvement of delta-opioid receptors in this process [109]. 
The  circuitry of  gustative sensation at the  tongue in-
volves known gustative areas (the central rostral nucleus 
of the solitary tract, synapses with geniculate axons, pro-
jections to the parabrachial nucleus at the pons), but also 
the lateral part of the rostral nucleus of the solitary tract, 
which also receives trigeminal afferents [110], and the ven-
tral area of  the solitary tract and reticular formation, re-
sponsible for the interaction with oral motor reflexes, and 
important for mastication and swallowing [21, 111-113]. 
The evidence indicates that there is also visceral modula-
tion and the influence of previous gustative experiences by 
descendent pathways from the  anterior cortex. The  elec-
trical stimulation of  the  central nucleus of  the  amygdala 
modulates the intensity of the type of gustative input that 
is transmitted by the parabrachial nucleus [114]. Following 
gustative stimulation by a sweet substance there is activa-
tion of chemoreceptors at the nasal epithelium mediated 
by trigeminal paths [115]. It is evident that neurons from 
the solitary tract not only protrude but also receive axons 
from the parabrachial nucleus and that both communicate 
to the contralateral side [116]. 

The parabrachial nucleus connects to the  gustative 
cortex via the parvicellular part of the ventroposterome-
dial nucleus of the thalamus, which sends back inhibito-
ry projections that modulate gustative sensations  [117].  
Axons from the hippocampus project not only to the thal-
amus and hypothalamus but also to the limbic system and 
to the visual, auditory, somatosensory, olfactory and gus-
tative cortexes. They may be responsible for long-term 
potentiation (LTP) resulting in the sensory abnormalities 
observed in clinical studies [118].

During eating, each sensory neuron is apparently 
specific to each stimulus; however, in the central nervous 
system the groups of neurons from analogous sensations 
determine its magnitude, which becomes complex due 
to the convergence of different modalities on these cen-
tres. Animal studies have shown that any taste mixtures 
lead to ambiguous responses  [119], and that the  highly 
concentrated taste modality is the only one that is usually 
clearly identified in these mixtures. Some neurons even 
respond better to the mixture than to the taste modality 
isolated because they are bombarded with action poten-
tials and thus can amplify the highly concentrated taste in 
that mixture [120]. It is known that sweet and bitter tastes 
use segregated circuitries in the CNS but have peripheral 

modulation. Even with this segregated circuitry, the pro-
jections of each taste modality reach areas of association 
that are completely superposed for salty, sour, bitter and 
sweet [9, 121].

The pattern of cortical activation depends on the emo-
tional characteristic of  the  taste modality (pleasant or 
unpleasant), even in flavours designed to activate corti-
cal areas [121]. The model mostly used as an example for 
the gustative interaction is the inhibition of the sweet taste 
when bitter is present. This happens because the cationic 
channel TRPM5, involved in the transmission of sweet-
ness, is inhibited by some bitter substances as such  
quinine due to an acceleration of channel closing [122]. 
This modulation is completely peripheral. The taste buds 
are not uniformly distributed, but depend on the nerve 
(X, IX or VII), which also can impair the  perception 
of  flavour  [123]. Central analgesia by breastfeeding 
is mediated by the  activation by sugars of  the  gusta-
tive paths that activate pain-suppressing areas such as 
the periaqueductal grey substance and the nucleus ra-
phe magnus [124]. 

A simple injury to the  trigeminal fibres has been 
shown in animal studies to alter taste detection and sup-
ports the need of trigeminal integrity for gustative sensi-
tivity [125].

The trigeminal system is also closely connected with 
the  olfactory system  [15, 126], and peripheral adaptive 
mechanisms seem to reduce trigeminal responsiveness in 
anosmia and hyposmia  [15]. This interaction occurs in 
the direct activation of the trigeminal fibres at the nasal 
mucosa by the same odorants [127].

CONCLUSIONS
The trigeminal system seems to mediate olfactory 

and gustative sensations in cortical associative centres, 
which implicates somatosensory inputs in the  deter-
mination of the  location of the stimulus, besides other 
characteristics. This role may be weakened in the occur-
rence of  chronic conditions such as craniofacial pain, 
resulting in a  sensorial imbalance, and dysfunction 
of orofacial perception. Despite the wide range of  evi-
dence so far accumulated, there is a  lack of studies in-
vestigating the integration between vision and audition 
with the  chemosenses (gustation and olfaction) and 
somatosensory inputs, which are promising lines of re-
search for the future. Animal models for the investiga-
tion of cortical maps of isolated and associated sensorial 
modalities in healthy or pathological conditions will 
clarify the still-obscure mechanisms that underlie these 
observations.
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