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abstRaCt
Cigarette smoke is a complex mixture of more than 6000 chemical compounds, including high concentra-
tions of free radicals and other oxidants. Cigarette smoke is also a source of free radicals. It is known that free 
radicals and lipid peroxidation have roles in pathogenesis of cardiovascular and pulmonary disease such as 
coronary artery disease and chronic obstructive pulmonary disease. Cigarette smoking is the major cause of 
preventable morbidity and mortality in Poland and constitutes a major risk factor for atherosclerotic vascular 
disease. It is believed that smoking causes increased oxidative stress because of several mechanisms, including 
direct damage by radicals. Moreover, numerous studies have indicated greater levels of oxidative stress in ciga-
rette smokers, which is most likely attributable to the high concentration of reactive oxygen species in cigarette 
smoke. Homeostasis of an organism and its proper functioning are determined by the oxidative-antioxidant 
balance. Its disorder is most often associated with overproduction of reactive oxygen species that cause oxida-
tive stress. It is a condition where an imbalance exists between the production of reactive oxygen species and 
the body’s ability to neutralize these intermediates, resulting in cellular damage. Cigarette smoke is known to 
be both a source and an inducer of cellular oxidative stress, which is a factor in many smoking-related diseases, 
and this oxidative stress initiates a variety of pathological processes which contribute to disease development. 
According to the World Health Organization, active smoking is one of the leading causes of death among 
people in the world through diseases caused by the toxic components of tobacco smoke.
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stReszCzenie
Dym papierosowy to złożona mieszanina ponad 6000 związków chemicznych, zawierająca wysokie stężenie 
wolnych rodników i innych utleniaczy. Dym papierosowy jest głównym źródłem wolnych rodników. Wiado-
mo, że wolne rodniki i peroksydacja lipidów odgrywają ważną rolę w patogenezie chorób sercowo-naczynio-
wych i płuc, takich jak choroba wieńcowa czy przewlekła obturacyjna choroba płuc. Palenie papierosów jest 
główną przyczyną zachorowalności i śmiertelności, której można zapobiegać w Polsce i stanowi główny czyn-
nik ryzyka wystąpienia miażdżycowej choroby naczyń. Uważa się, że palenie papierosów powoduje zwiększony 
stres oksydacyjny z powodu kilku mechanizmów, w tym bezpośredniego uszkodzenia przez rodniki. Ponadto 
liczne badania wskazują na wyższy poziom stresu oksydacyjnego u palaczy papierosów, co najprawdopo-
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intRoduCtion

Homeostasis of an organism and its proper functioning 
are determined by the oxidative-antioxidant balance. This 
disorder most often occurs as a result of the overproduc-
tion of reactive oxygen species (ROS). It is a condition 
where an imbalance exists between the production of 
ROS and the body’s ability to neutralize these intermedi-
ates, resulting in cellular damage. There are many factors 
that may increase the risk of long-term oxidative stress, 
mainly cigarette smoking. Treatment of oxidative stress 
is still controversial even among experienced doctors. 
Oxidative stress does not give clear symptoms. They can 
be easily attributed to another disease or infection. The 
organs particularly exposed to oxidative stress are: the 
respiratory system, the circulatory system, the brain and 
the organ of vision [1–9]. Important elements in rebal-
ancing the body are hydration, a diet rich in vegetables 
and fruits, and physical activity.

A better understanding of the processes underlying 
the initiation and development of oxidative stress could 
improve the results of treatment. Influence of the type of 
smoked cigarettes could play a primary role.

oxidative stRess and smoKing

Cigarette smoke is known to be both a source and an 
inducer of cellular oxidative stress, which is a factor in 

many smoking related diseases [2, 6–8]. Oxidative stress 
initiates a variety of pathological processes which contrib-
ute to disease development.

According to the World Health Organization (WHO), 
active smoking is one of the leading causes of death 
among people in the world through diseases caused by 
the toxic components of tobacco smoke.

Tobacco smoke, which is a mixture of nearly 6,000 
chemical compounds, is classified as a direct toxic agent 
with proven carcinogenic properties. Among the thou-
sands of toxic compounds identified so far in cigarette 
smoke there are free radicals [10, 11]. Smoking may en-
hance oxidative stress not only through the production of 
reactive oxygen radicals in smoke but also through weak-
ening of the antioxidant defense systems.

FRee RadiCals

Free radicals are one of the groups of toxic substanc-
es found in cigarette smoke. They arise as a result of 
combustion processes, i.e. vigorous oxidation, and py-
rolysis processes, i.e. thermal decomposition. Both of 
the above-mentioned processes take place during the 
smoking of a cigarette, in the area known as the glow 
cone.

Free radicals, i.e. atoms or groups of atoms containing 
one or more unpaired electrons, are significant constitu-
ents of tobacco smoke that contribute to its toxic proper-

dobniej przypisuje się wysokiemu stężeniu reaktywnych form tlenu w dymie papierosowym. O homeostazie 
organizmu i jego prawidłowym funkcjonowaniu decyduje równowaga oksydacyjno-przeciwutleniająca. Jej za-
burzenie jest najczęściej związane z nadprodukcją reaktywnych form tlenu, które wywołują stres oksydacyjny. 
Jest to stan, w którym istnieje brak równowagi między produkcją reaktywnych form utleniających a zdolnością 
organizmu do neutralizacji tych związków pośrednich, co prowadzi do uszkodzenia komórek. Wiadomo, że 
dym papierosowy jest zarówno źródłem, jak i induktorem komórkowego stresu oksydacyjnego, który jest 
czynnikiem w wielu chorobach związanych z paleniem. Stres oksydacyjny inicjuje różnorodne procesy pato-
logiczne, które przyczyniają się do rozwoju choroby. Według Światowej Organizacji Zdrowia aktywne palenie 
jest jedną z głównych przyczyn zgonu ludzi na świecie poprzez choroby wywołane toksycznymi składnikami 
dymu tytoniowego.
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ties. Radicals are generated during complex pyrolysis and 
combustion reactions in burning a cigarette cone. 

Free radicals are found in both the partial smoke 
phase (often referred to as tar) and the gas phase. Firstly, 
both the particulate and gas phases of the cigarette smoke 
are direct and rich sources of exogenous free radicals of 
many different species.

Considerable in vivo studies support the role of free 
radical reactions in atherogenesis and atherosclerotic re-
lated coronary heart disease. Free radicals are involved 
throughout the atherogenic process, from endothelial 
dysfunction to the rupture of a lipid-rich atherosclerotic 
plaque, which further leads to acute myocardial infarction 
or sudden death [12].

mitoChondRial ReaCtive oxygen speCies

Mitochondria and NAD(P)H oxidase are major ROS 
sources which contribute to atherogenesis. Perhaps they 
do not alone account for all ROS produced and other cell 
enzyme systems may also provide a source of oxidative 
stress.

A recent study showed that cigarette smoke induced 
mitochondrial ROS production, transcription factor ac-
tivation, upregulation of inflammatory markers, DNA 
damage and apoptosis in endothelial cells [13].

Mitochondrial enzymes produce superoxide anions at 
physiological levels and can become pathologic due to mi-
tochondrial dysfunction leading to excess ROS production 
or due to failure of antioxidant mechanisms. Madamanchi 
and Runge observed accelerated atherosclerosis and ele-
vated mitochondrial ROS in experiments involving the de-
letion of antioxidant systems in ApoE-KO mice, suggest-
ing a role for mitochondrial ROS in atherogenesis [14].

Mitochondria are also important sources of ROS in 
the cardiovascular system. There is growing evidence that 
cigarette smoke constituents impair mitochondrial func-
tion and elicit mitochondrial oxidative stress in various 
cell types [15–20], including cardiovascular tissues [21].

Research has shown that acrolein, a major toxicant 
in cigarette smoke, causes oxidative mitochondrial dam-
age [16]. In vitro treatment with cigarette smoke extract 
(CSE) caused loss of cellular ATP and rapid depolariza-
tion of mitochondrial membrane potential, followed by 
apoptotic cell death [17]. In smokers a higher level of ox-
idative mtDNA damage has been observed [21–23]. These 
data support the hypothesis that cigarette smoke-induced 
mitochondrial damage and dysfunction may contribute to 
an increased risk for cardiovascular disease in smokers.

It was also observed that in addition to cigarette 
smoke, electronic cigarette (ecig) aerosols and copper 
nanoparticles induce mitochondrial ROS production, mi-
tochondrial stress (reduced stability of OxPhos electron 

transport chain complex IV subunit) and DNA fragmen-
tation in lung fibroblasts [24].

It is worth emphasizing that mitochondria consume 
90% of the oxygen used by the body, and 1–2% of the oxy-
gen metabolized by the mitochondria is converted to ROS 
[25]. Therefore, mitochondria are the most important cel-
lular source of ROS and may be susceptible to oxidative 
damage. Impaired mitochondrial function may lead to 
impaired electron transport and enhanced production of 
ROS. Increased mitochondrial mass may also lead to the 
increased production of ROS.

oxidative stRess and atheRosCleRosis

Atherosclerosis is a chronic inflammatory disease charac-
terized by accumulation of lipids and inflammatory cells 
in the walls of medium sized and large arteries [26].

The pathogenesis of atherosclerosis involves activa-
tion of pro-inflammatory signaling pathways, expression 
of cytokine/chemokine, and increased oxidative stress. 
Growing evidence indicates that chronic and acute over-
production of ROS under pathophysiologic conditions 
is integral to the development of cardiovascular diseases 
(CVD).

ROS mediate various signaling pathways that underlie 
vascular inflammation in atherogenesis from the initia-
tion of fatty streak development through lesion progres-
sion to ultimate plaque rupture. 

ROS production in the vessel wall is increased in all 
conditions considered risk factors for atherosclerotic 
CVD such as hypertension, diabetes, smoking, and dys-
lipidemia [27]. 

Thus, hypercholesterolemia, diabetes, hypertension, 
smoking, aging, and nitrate intolerance all increase pro-
duction of ROS, and these have been shown to initiate 
several processes involved in atherogenesis, including 
expression of adhesion molecule, stimulation of vascular 
smooth muscle proliferation and migration, apoptosis in 
the endothelium, oxidation of lipids, activation of matrix 
metalloproteinases, and altered vasomotor activity. 

Pathological and epidemiological evidence suggests 
that proinflammatory cytokines play a central role or-
chestrating the pathological processes underlying the de-
velopment of the atherosclerotic plaque. The aforemen-
tioned findings clearly demonstrate that cigarette smoke 
components are able to elicit a proatherogenic microenvi-
ronment in the vascular wall in the absence of circulating 
factors and immunocytes. 

Various animal models of oxidative stress support the 
notion that ROS have a causal role in atherosclerosis and 
other cardiovascular diseases. Human investigations also 
support the oxidative stress hypothesis of atherosclerosis. 
A main source of ROS in vascular cells is the reduced 
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nicotinamide adenine dinucleotide/nicotinamide ade-
nine dinucleotide phosphate NAD(P)H oxidase system. 
In short, oxidative stress and inflammation, which are 
markers of atherosclerosis, promote the progression of 
atherosclerosis (Figure 1).

low-density lipopRotein and oxidative 
stRess

The initial event in the development of atherosclerosis is 
endothelial injury. This causes infiltration into and accu-
mulation of low-density lipoprotein (LDL) cholesterol in 
the subendothelial space. LDL becomes oxidized to form 
oxidized LDL (ox-LDL) in pathologic states [28]. Clinical 
and epidemiological studies show that increased levels of 
LDL cholesterol promote premature atherosclerosis. The 
most plausible and biologically relevant modification of 

LDL is oxidation. LDL can be oxidatively modified by all 
major cells of the arterial wall [29, 30]. Oxidized LDL has 
several biological effects [29–34]; it is pro-inflammatory, 
it causes inhibition of endothelial nitric oxide synthase 
(eNOS), it promotes vasoconstriction and adhesion, stim-
ulates cytokines such as interleukin-1 (IL-1) and increases 
platelet aggregation. In addition, ox-LDL stimulates vascu-
lar SMC proliferation [34]. Thus, intimal thickening fur-
ther reduces the lumen of blood vessels, leading to further 
potentiation of hypertension and atherosclerosis.

According to the theory of oxidative stress, atheroscle-
rosis is the result of the oxidative modification of LDLs in 
the arterial wall by ROS.

Growth factors released by these cells as well as ROS 
stimulate smooth muscle cell migration and collagen dep-
osition, leading to the development of an atheromatous 
plaque.

FiguRe 1. Effects of cigarette smoking and oxidative stress
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ROS also induce release of matrix metalloproteinases 
(MMPs) that degrade the fibrous wall of the atheroma-
tous plaque and basement membrane of the endothelial 
cells, resulting in physical disruption of the plaque. 

F2-isopRostanes and oxidative stRess

More direct evidence for the role of oxidative stress in 
atherosclerosis comes from studies with apoE−/− mice, 
an accepted model of atherosclerosis with high choles-
terol concentration, increased lipid peroxidation, low 
nitric oxide bioavailability and spontaneous develop-
ment of atherosclerosis similar to that found in humans. 
F2-isoprostanes, prostaglandin-like products of the free 
radical-catalyzed peroxidation of arachidonic acid and 
an established biomarker of in vivo lipid peroxidation 
[35–37], have been found to localize in foam cells in ath-
erosclerotic lesions of humans [38, 39] as well as animals, 
and are significantly increased in the tissue, plasma, and 
urine of apoE knockout mice. In addition to serving as 
biomarkers of in vivo oxidative stress, F2-isoprostanes, in-
cluding 8-epiPGF2, exert pathophysiological effects such 
as vasoconstriction [37].

endothelium and oxidative stRess

The production of free oxidative radicals is believed to 
induce endothelial dysfunction, an initial step of ather-
ogenesis.

Evidence suggests that common risk factors for athero-
sclerosis increase the risk of the production of free ROS, not 
only from the endothelial cells, but also from the smooth 
muscle cells and the adventitial cells. Importantly, several 
processes are triggered by those risk factors, including the 
expression of adhesion molecules, the proliferation and mi-
gration of smooth muscle cells, the apoptosis of endothelial 
cells, the oxidation of lipids, the activation of metallopro-
teinases and the alteration of vasomotor activity [31, 40].

Because of the unique localization between circulating 
blood and the vessel wall, the endothelium has been sug-
gested to play a crucial role in development and progres-
sion of atherosclerosis. Therefore, endothelial dysfunction 
is clearly associated with the disease process. Among fac-
tors that damage the endothelium, reactive oxygen species 
are increasingly recognized as the major factor responsible 
for compromising endothelial cell function [41, 42].

Endothelial dysfunction predisposes to long-term 
atherosclerotic lesions and has been proposed as an im-
portant diagnostic and prognostic factor for coronary 
syndromes [43].

Furthermore, the reduction of endothelial produced 
NO and O2

− is able to blunt normal endothelial dysfunction 
as a result of the decreased endothelial NO production. The 

increased production of ROS reduces the production and 
consequently the bioavailability of NO, leading to vasocon-
striction, platelet aggregation and adhesion of neutrophils 
to the endothelium. In fact, oxidative stress by hydrogen 
peroxide (H2O2) increases phosphorylation of tyrosine ki-
nases, which leads to stronger binding of neutrophil cells 
on the endothelium and alteration of vessel permeability. 
Another mechanism through which oxidative stress (by 
H2O2) affects atherogenesis is the production of transcrip-
tion factors such as nuclear factor kappaB (NF-kappaB) 
and activator protein 1 (AP-1), which participate in the 
expression of adhesion molecules such as vascular cellu-
lar adhesion molecules (VCAM-1), intracellular adhesion 
molecules (ICAM-1), E-selectin and other cytokines.

A large number of studies in experimental animals 
have shown that the common risk factors for atheroscle-
rosis increase production of free oxygen radicals, not only 
by endothelial cells but also by vascular smooth muscle 
cells (VSMCs) and adventitial cells [44].

Orosz et al. in 2007 reported that both in vivo chron-
ic cigarette smoke exposure and in vitro treatment with 
aqueous CSE elicit significant endothelial dysfunction in 
rat carotid arteries, which could be reversed by inhibition 
of the NAD(P)H oxidase [45]. 

In addition to the increased levels of O2
− and H2O2 

which have been implicated in proatherogenic vascular 
phenotypic alterations [46–48], including induction of 
proinflammatory gene expression [49–55], a large body 
of experimental evidence accumulated over the past  
15 years indicates that peroxynitrite (ONOO–) generation 
from NO and O2

− represents a major threat to the func-
tional integrity of the vascular endothelium [56–59].

Orosz et al. also found that both endothelial cells and 
VSMCs exhibited up-regulated O2

− generation in vessels 
of cigarette smoke-exposed animals [45].

Also additional studies have reported that ecig ex-
posed human lung vascular endothelial cells and umbili-
cal vein endothelial cells develop oxidative stress [60, 61] 
with increased inflammation, cytotoxicity and endothelial 
cell permeability [60–64].

According to Aoshiba et al. [65], cigarette smoke ex-
posure imposes oxidative stress primarily on bronchiolar 
epithelial and alveolar type II cells.

nad(p)h oxidase

Cigarette smoke contains more than 4000 known com-
ponents, and at present it is unclear which components 
activate NAD(P)H oxidase.

It is now well established that NAD(P)H oxidase is 
a major source of ROS in vascular cells and increased 
NAD(P)H oxidase activity is responsible for enhanced 
endothelial O2

.– production in aging and in pathophys-



94 Alergologia Polska – Polish Journal of Allergology, April–June 2022

Artur Nowak, Rafał Pawliczak

iological conditions associated with accelerated vascular 
aging [66], such as hyperhomocysteinemia [56] and hy-
pertension [67, 68].

CigaRette smoKe and oxidative stRess

Cigarette smoking is the major cause of morbidity and 
mortality in Poland and constitutes a major risk factor for 
atherosclerotic vascular disease. It is believed that smok-
ing causes increased oxidative stress because of several 
mechanisms, including direct damage by radical species 
and the inflammatory response caused by cigarette smok-
ing [69].

Cigarette smoke can be divided into 2 phases – par-
ticulate matter and gas phase smoke – which contain 
high concentrations of ROS, NO, peroxynitrite and free 
radicals of organic compounds [70]. In addition to these 
short-lived, highly reactive substances, inhaled particles 
encountered in cigarette smoke, especially in the presence 
of ROS [71], may evoke an inflammatory response in the 
lung, activating immunocytes to produce ROS and pro-
moting the production of proinflammatory cytokines.

Clinical studies and animal studies show that cigarette 
smoke produces generalized endothelial dysfunction in 
virtually every vascular bed [72–77], which is usually 
an indicator of increased oxidative stress. Studies have 
shown that cigarette smoke activates leukocytes to release 
reactive oxygen and nitrogen species and secrete pro-in-
flammatory cytokines, increases the adherence of mono-
cytes to the endothelium and elicits airway inflammation.

Although the precise molecular basis of smoking-in-
duced vascular injury remains unclear, increasing evi-
dence supports the hypothesis that oxidative-nitrosative 
stress and inflammation provide the pathophysiological 
link between cigarette smoking and coronary artery dis-
ease (CAD) [72, 78].

Cigarette smoke contains reactive oxidants, which can 
enter the bloodstream and cause macromolecular dam-
age in the endothelial cells. Cigarette smoking also elicits 
marked activation of platelets, which can also contribute 
to the oxidative vascular damage in smokers. Circulating 
cigarette smoke constituents were also shown to induce 
and activate ROS producing enzyme systems within the 
vascular wall.

Marangon et al. [79] have focused on oxidative stress 
as a potentially clinically relevant factor where cigarette 
smoke is associated with cancer and atherogenesis. They 
noted that smokers are exposed to a triple threat: first 
as they actively smoke cigarettes, second because of un-
healthy nutrition with reduced intake of antioxidants, and 
finally because of consumption of large amounts of alco-
hol during smoking [80], which increases oxidative stress 
and reduces antioxidant protection.

The study of Kamcewa et al. showed that active smok-
ers who smoke more than 40 cigarettes per day have high-
er oxidative stress than those who smoke 1–20 cigarettes 
per day or do not smoke, which means the number of 
cigarettes smoked is a significant risk factor for increased 
oxidative stress [81].

Moreover, research by MacNee et al. showed that ciga-
rette smokers have a higher level of oxidative stress [2, 3],  
which can most likely be attributed to the high concentra-
tion of ROS in cigarette smoke [4].

CoRonaRy vessels and oxidative stRess

Csiszar et al. have published considerable evidence that 
cardiovascular aging in various tissues is associated with 
increased oxidative-nitrosative stress and impaired bio-
availability of vasoprotective NO [58, 59, 82–84]. Based 
on their research, we can assume that aged arteries are 
more susceptible to cigarette smoke-induced oxidative 
stress and also more sensitive to the pro-inflammatory 
effects of cigarette smoke.

Kunitomo’s study proved that smoking accelerates 
atherogenesis in the aorta of apoE- deficient mice and 
this acceleration can be ameliorated by administration of 
vitamin E [85].

Lander et al. found that in coronary arteries expres-
sion of TNF-α, which orchestrates pro-atherogenic vas-
cular phenotypic changes [86], is frequently up-regulated 
in conditions associated with increased O2

− and ONOO– 
production, such as hyperhomocysteinemia [56], aging 
[82] and hypertension.

Their research also showed that in vivo exposure of 
rats to cigarette smoke provokes an increase in the ex-
pression of pro-inflammatory cytokines (including IL-6, 
TNF-α and IL-1β) and cytokine sensitive inflammatory 
mediators (iNOS) in the vascular wall [45].

Meanwhile Lander et al. in their research found that 
NF-κB is activated by increased levels of ROS in many cell 
types [86–92], providing an important link between ox-
idative stress and pro-inflammatory cytokine expression 
in blood vessels. NF-κB is thought to induce the tran-
scription of a large range of genes implicated in inflam-
mation, including cytokines [93–95] which predispose 
arteries to atherosclerosis [96].

A recent study conducted by Van den Berg et al. also 
showed that NF-κB activity in peripheral blood mononu-
clear cells of smokers compared to non-smokers is signif-
icantly higher [97]. 

iQos and oxidative stRess

Observations by Yoko et al. indicated that IQOS in-
duces an oxidative stress response in rat AECs, which 



Alergologia Polska – Polish Journal of Allergology, April–June 2022 95

Cigarette smoking and oxidative stress

suggests that heat-not-burn (HNB) cigarettes have the 
potential to induce oxidative stress in the airways and 
cause development of oxidative stress-related respira-
tory diseases [98].

As oxidative stress is involved in the occurrence and 
development of various respiratory diseases including 
COPD, idiopathic pulmonary fibrosis and lung cancer 
[99], it was also shown that HNB cigarettes can lead to 
these diseases by inducing oxidative stress in AECs, while 
Sohal et al. found that IQOS aerosol and conventional 
cigarette smoke have a similar potential to increase ox-
idative stress, inflammation, airway remodeling and the 
extracellular acidification rate [100].

Based on the above research, we can speculate that 
IQOS might induce oxidative stress at similar levels as 
conventional cigarette exposure, but induction of other 
stresses might be higher with conventional cigarettes than 
with IQOS.

noxs 

NOXs represent an important and widely expressed en-
zyme family with ROS generation as its primary function. 
Vendrov et al. reported that NOX-4 mediates cardiovas-
cular disease in hyperlipidemic mice and expression of 
NOX-4 in the wall of the human artery is related to ath-
erosclerotic severity [101].

NOX-4 expression and activity during the aging pro-
cess enhance cellular and mitochondrial oxidative stress, 
vascular inflammation, dysfunction, and atherosclerosis. 
Lozhkin et al. observed the enhanced expression and ac-
tivation of NOX-4 in Apoe−/− mice, which they ascribed 
to the pro-inflammatory phenotype in the VSMCs that 
was induced by an age-related increase in transforming 
growth factor β1, thus enhancing atherosclerosis [102].

ConClusions

Cigarette smoke is a major source of oxidative stress, 
which is one of the main factors contributing to the devel-
opment of atherosclerosis. Oxidative stress undoubtedly 
plays an important role in the development of diseases 
such as COPD, lung cancer and atherosclerosis. Sever-
al studies have shown that elevated ROS levels affect the 
development of atherosclerosis. The development of 
atherosclerosis is a multifactorial process in which both 
elevated plasma cholesterol levels and proliferation of 
smooth muscle cells play central roles [32]. Free radicals 
are involved throughout the atherogenic process, from 
endothelial dysfunction to the rupture of a lipid-rich ath-
erosclerotic plaque. These free radicals could potentially 
arise directly from cigarette smoke and indirectly from 
endogenous sources as well.

There are still studies ongoing that will allow us to 
identify newer therapeutic modalities selectively tar-
geting oxidative stress in atherosclerosis and other 
conditions. Therefore, we believe that the evaluation of 
oxidative stress would be useful in the diagnosis of ath-
erosclerosis.
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