ORIGINAL PAPER
Effect of a short ischaemic preconditioning protocol on 100-m front crawl performance
 
More details
Hide details
1
Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
 
2
Research Centre in Sport Science, Health Sciences and Human Development, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
 
3
Institute of Parasitology, McGill University, Montreal, Canada
 
 
Submission date: 2020-02-18
 
 
Acceptance date: 2020-05-17
 
 
Publication date: 2021-02-17
 
 
Hum Mov. 2021;22(3):70-76
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
The aim of our study was to analyse the effect of a single-cycle ischaemic preconditioning (IPC) protocol on performance in the 100-m front crawl swimming modality.

Methods:
Overall, 16 swimmers were recruited: 8 female athletes (12.9 ± 0.88 years) and 8 male athletes (13.1 ± 0.88 years). In a randomized crossover design, all participants performed a 100-m front crawl sprint preceded by an IPC or placebo cycle. In the IPC trial, a pneumatic cuff was attached to the proximal thigh and was inflated at a pressure equivalent to 80% of arterial occlusion and remained inflated for 5 min (ischaemia); in the placebo trial, the cuff remained inflated for the same amount of time, but at low external pressure levels (20 mm Hg). The volunteers started the test 5 min after cuff pressure release (reperfusion).

Results:
It was not possible to verify significant differences within the time (seconds) required to complete the test between the IPC and placebo interventions (75.68 ± 7.2 and 75.75 ± 8.1 s, respectively; p = 0.916).

Conclusions:
Therefore, we can conclude that the tested IPC protocol does not seem to be sufficient to provide performance improvement in 100-m front crawl in young athletes.

 
REFERENCES (33)
1.
Aspenes ST, Karlsen T. Exercise-training intervention studies in competitive swimming. Sports Med. 2012;42(6):527–543; doi: 10.2165/11630760-000000000-00000.
 
2.
Hardt J, Benjanuvatra N, Blanksby B. Do footedness and strength asymmetry relate to the dominant stance in swimming track start? J Sports Sci. 2009;27(11):1221–1227; doi: 10.1080/02640410903220336.
 
3.
Lisbôa FD, Turnes T, Cruz RSO, Raimundo JAG, Pereira GS, Caputo F. The time dependence of the effect of ischemic preconditioning on successive sprint swimming performance. J Sci Med Sport. 2017;20(5):507–511; doi: 10.1016/j.jsams.2016.09.008.
 
4.
Jean-St-Michel E, Manlhiot C, Li J, Tropak M, Michelsen MM, Schmidt MR, et al. Remote preconditioning improves maximal performance in highly trained athletes. Med Sci Sports Exerc. 2011;43(7):1280–1286; doi: 10.1249/MSS.0b013e318206845d.
 
5.
Ferreira TN, Sabino-Carvalho JLC, Lopes TR, Ribeiro IC, Succi JE, Da Silva AC, et al. Ischemic preconditioning and repeated sprint swimming: a placebo and nocebo study. Med Sci Sports Exerc. 2016;48(10):1967–1975; doi: 10.1249/MSS.0000000000000977.
 
6.
Sharma V, Marsh R, Cunniffe B, Cardinale M, Yellon DM, Davidson SM. From protecting the heart to improving athletic performance – the benefits of local and remote ischaemic preconditioning. Cardiovasc Drugs Ther. 2015;29(6):573–588; doi: 10.1007/s10557-015-6621-6.
 
7.
Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation. 1991;84(1):350–356; doi: 10.1161/01.CIR.84.1.350.
 
8.
Pang CY, Yang RZ, Zhong A, Xu N, Boyd B, Forrest CR. Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovasc Res. 1995;29(6):782–788; doi: 10.1016/S0008-6363(96)88613-5.
 
9.
De Groot PCE, Thijssen DHJ, Sanchez M, Ellenkamp R, Hopman MTE. Ischemic preconditioning improves maximal performance in humans. Eur J Appl Physiol. 2010;108(1):141–146; doi: 10.1007/s00421-009-1195-2.
 
10.
Clevidence MW, Mowery RE, Kushnick MR. The effects of ischemic preconditioning on aerobic and anaerobic variables associated with submaximal cycling performance. Eur J Appl Physiol. 2012;112(10):3649–3654; doi: 10.1007/s00421-012-2345-5.
 
11.
Bailey TG, Jones H, Gregson W, Atkinson G, Cable NT, Thijssen DHJ. Effect of ischemic preconditioning on lactate accumulation and running performance. Med Sci Sports Exerc. 2012;44(11):2084–2089; doi: 10.1249/MSS.0b013e318262cb17.
 
12.
Gibson N, Mahony B, Tracey C, Fawkner S, Murray A. Effect of ischemic preconditioning on repeated sprint ability in team sport athletes. J Sports Sci. 2015;33(11):1182–1188; doi: 10.1080/02640414.2014.988741.
 
13.
Gibson N, White J, Neish M, Murray A. Effect of ischemic preconditioning on land-based sprinting in team-sport athletes. Int J Sports Physiol Perform. 2013;8(6):671–676; doi: 10.1123/ijspp.8.6.671.
 
14.
Salvador AF, De Aguiar RA, Lisbôa FD, Pereira KL, de O. Cruz RS, Caputo F. Ischemic preconditioning and exercise performance: a systematic review and meta-analysis. Int J Sports Physiol Perform. 2016;11(1):4–14; doi: 10.1123/ijspp.2015-0204.
 
15.
Ghosh S, Standen NB, Galiñanes M. Preconditioning the human myocardium by simulated ischemia: studies on the early and delayed protection. Cardiovasc Res. 2000;45(2):339–350; doi: 10.1016/S0008-6363(99)00353-3.
 
16.
Beaven CM, Cook CJ, Kilduff L, Drawer S, Gill N. Intermittent lower-limb occlusion enhances recovery after strenuous exercise. Appl Physiol Nutr Metab. 2012;37(6):1132–1139; doi: 10.1139/h2012-101.
 
17.
Marocolo M, Billaut F, da Mota GR. Ischemic preconditioning and exercise performance: an ergogenic aid for whom? Front Physiol. 2018;9:1874; doi: 10.3389/fphys.2018.01874.
 
18.
Paradis-Deschênes P, Joanisse DR, Billaut F. Sex-specific impact of ischemic preconditioning on tissue oxygenation and maximal concentric force. Front Physiol. 2017;7:674; doi: 10.3389/fphys.2016.00674.
 
19.
Lampadari V, Thanopoulos V, Dopsaj M, Rozi G. Effects of age and gender in physiological responses, mechanics and performance of master swimmers. Hum Mov. 2019;20(1):17–23; doi: 10.5114/hm.2019.79393.
 
20.
Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M Jr, et al. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc. 2012;44(3):406–412; doi: 10.1249/MSS.0b013e318233b4bc.
 
21.
Neto RG, Silva JCG, Umbelino RKC, Silva HG, Neto EAP, Oliota-Ribeiro LS, et al. Are there differences in auscultatory pulse in total blood flow restriction between positions, limbs and body segments? Rev Bras Cineantropom Desempenho Hum. 2018;20(5):381–390; doi: 10.5007/1980-0037.2018v20n5p381.
 
22.
Fatela P, Reis JF, Mendonca GV, Avela J, Mil-Homens P. Acute effects of exercise under different levels of blood-flow restriction on muscle activation and fatigue. Eur J Appl Physiol. 2016;116(5):985–995; doi: 10.1007/s00421-016-3359-1.
 
23.
Zamunér AR, Moreno MA, Camargo TM, Graetz JP, Rebelo ACS, Tamburús NY, et al. Assessment of subjective perceived exertion at the anaerobic threshold with the Borg CR-10 scale. J Sports Sci Med. 2011;10(1):130–136.
 
24.
Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):50–57; doi: 10.1123/ijspp.1.1.50.
 
25.
Paixão RC, da Mota GR, Marocolo M. Acute effect of ischemic preconditioning is detrimental to anaerobic performance in cyclists. Int J Sports Med. 2014;35(11):912–915; doi: 10.1055/s-0034-1372628.
 
26.
Figueiredo P, Rouard A, Vilas-Boas JP, Fernandes RJ. Upper- and lower-limb muscular fatigue during the 200-m front crawl. Appl Physiol Nutr Metab. 2013;38(7):716–724; doi: 10.1139/apnm-2012-0263.
 
27.
Pageaux B. Perception of effort in exercise science: definition, measurement and perspectives. Eur J Sport Sci. 2016;16(8):885–894; doi: 10.1080/17461391.2016.1188992.
 
28.
Loenneke JP, Wilson GJ, Wilson JM. A mechanistic approach to blood flow occlusion. Int J Sports Med. 2010;31(1):1–4; doi: 10.1055/s-0029-1239499.
 
29.
Armstrong N, Barker AR, McManus AM. Muscle metabolism changes with age and maturation: how do they relate to youth sport performance? Br J Sports Med. 2015;49(13):860–864; doi: 10.1136/bjsports-2014-094491.
 
30.
Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187–197; doi: 10.1016/j.cmet.2006.01.012.
 
31.
Eynon N, Alves AJ, Meckel Y, Yamin C, Ayalon M, Sagiv M, et al. Is the interaction between HIF1A P582S and ACTN3 R577X determinant for power/sprint performance? Metabolism. 2010;59(6):861–865; doi: 10.1016/j.metabol.2009.10.003.
 
32.
Doma K, Leicht AS, Boullosa D, Woods CT. Lunge exercises with blood-flow restriction induces post-activation potentiation and improves vertical jump performance. Eur J Appl Physiol. 2020;120(3):687–695; doi: 10.1007/s00421-020-04308-6.
 
33.
Arabatzi F, Patikas D, Zafeiridis A, Giavroudis K, Kannas T, Gourgoulis V, et al. The post-activation potentiation effect on squat jump performance: age and sex effect. Pediatr Exerc Sci. 2014;26(2):187–194; doi: 10.1123/pes.2013-0052.
 
ISSN:1899-1955
Journals System - logo
Scroll to top