REVIEW PAPER
Genetic influence on football performance - a systematic review
 
More details
Hide details
1
University of Coimbra, Research Unit for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
 
2
Interdisciplinary Centre for the Study of Human Performance, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
 
3
Division of Sport and Exercise Sciences, School of Human and Health Sciences, University of Huddersfield, Huddersfield, United Kingdom
 
4
Interactive Technologies Institute, Department of Physical Education and Sport, University of Madeira, Funchal, Portugal
 
5
Research Group in Sports Science and Physical Activity, Faculty of Health Sciences, Sports Science Program, University of Applied and Environmental Sciences, Bogota, Colombia
 
6
Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
 
 
Submission date: 2019-12-09
 
 
Acceptance date: 2020-02-21
 
 
Publication date: 2020-07-23
 
 
Hum Mov. 2020;21(4):1-17
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
To systematically review and organise the available literature devoted to the topic of genetics and performance in football

Methods:
A systematic search was conducted in accordance with the PRISMA guidelines in Web of Science, SPORTDiscus, and PubMed for original research published before October 2019. The following keywords were entered: ‘Soccer’ OR ‘Football’ AND ‘Genetic’ OR ‘Epigenic’ OR ‘Powergene’ OR ‘Genomic’ OR ‘Genotype’ OR ‘Polymorphism’ OR ‘Genetic marker’. Articles were screened by using pre-defined selection criteria, and methodological quality was assessed independently by 2 authors.

Results:
The electronic searches yielded 872 articles, and after the screening process, a total of 38 studies met the eligibility criteria and were subsequently included for review.

Conclusions:
The reviewed studies identified the most frequently addressed topics in this area of research: (1) performance-related genes; (2) injury-related genes; (3) body composition-related genes; and (4) cardiac adaptations. This area of research is still at an early stage, and there is a need for studies to develop knowledge of genetics and its link with physical, technical, and cognitive performance in football with a view to facilitating talent identification in young players.

 
REFERENCES (63)
1.
Jeremic D, Zivanovic Macuzic I, Vulovic M, Stevanovic J, Radovanovic D, Varjacic V, et al. ACE/ACTN3 genetic polymorphisms and athletic performance of female soccer players. Rev Bras Med Esporte. 2019;25(1):35–39; doi: 10.1590/1517-869220192501187684.
 
2.
Sarmento H, Clemente FM, Araújo D, Davids K, McRobert A, Figueiredo A. What performance analysts need to know about research trends in association football (2012–2016): a systematic review. Sports Med. 2018;48(4):799–836; doi: 10.1007/s40279-017- 0836-6.
 
3.
Sarmento H, Marcelino R, Anguera MT, Campaniço J, Matos N, Leitão JC. Match analysis in football: a systematic review. J Sports Sci. 2014;32(20):1831–1843; doi: 10.1080/02640414.2014.898852.
 
4.
Peeters T. Broadcasting rights and competitive balance in European soccer. Antwerp: University of Antwerp, Faculty of Business and Economics; 2009.
 
5.
Frick B. The football players’ labor market: empirical evidence from the major European leagues. Scott J Polit Econ. 2007;54(3):422–446; doi: 10.1111/j.1467- 9485.2007.00423.x.
 
6.
Peeters T, Szymanski S. Vertical restraints in soccer: financial fair play and the English Premier League. Antwerp: University of Antwerp, Faculty of Business and Economics; 2012.
 
7.
Sarmento H, Anguera MT, Pereira A, Araújo D. Talent identification and development in male football: a systematic review. Sports Med. 2018;48(4):907–931; doi: 10.1007/s40279-017-0851-7.
 
8.
De Moor MHM, Spector TD, Cherkas LF, Falchi M, Hottenga JJ, Boomsma DI, et al. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res Hum Genet. 2007;10(6):812–820; doi: 10.1375/twin.10.6.812.
 
9.
Silventoinen K, Magnusson PKE, Tynelius P, Kaprio J, Rasmussen F. Heritability of body size and muscle strength in young adulthood: a study of one million Swedish men. Genet Epidemiol. 2008;32(4):341–349; doi: 10.1002/gepi.20308.
 
10.
Guth LM, Roth SM. Genetic influence on athletic performance. Curr Opin Pediatr. 2013;25(6):653–658; doi: 10.1097/MOP.0b013e3283659087.
 
11.
Bouchard C, Daw EW, Rice T, Pérusse L, Gagnon J, Province MA, et al. Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Med Sci Sports Exerc. 1998;30(2):252–258; doi: 10.1097/ 00005768-199802000-00013.
 
12.
Williams AG, Wackerhage H, Day SH. Genetic testing for sports performance, responses to training and injury risk: practical and ethical considerations. Med Sport Sci. 2016;61:105–119; doi: 10.1159/000445244.
 
13.
Alves GB, Oliveira EM, Alves CR, Rached HRS, Mota GFA, Pereira AC, et al. Influence of angiotensinogen and angiotensin-converting enzyme polymorphisms on cardiac hypertrophy and improvement on maximal aerobic capacity caused by exercise training. Eur J Cardiovasc Prev Rehabil. 2009;16(4):487–492; doi: 10.1097/ HJR.0b013e32832c5a8a.
 
14.
Pruna R, Ribas J, Montoro JB, Artells R. The impact of single nucleotide polymorphisms on patterns of noncontact musculoskeletal soft tissue injuries in a football player population according to ethnicity. Med Clin. 2015;144(3):105–110; doi: 10.1016/j.medcli.2013.09.026.
 
15.
Honarpour A, Mohseni M, Hajiagha SG, Irani S, Najmabadi H. Investigation of the relationship between a genetic polymorphism in ACTN3 and elite sport performance among Iranian soccer players. Iran Rehabil J. 2017;15(2):149–154; doi: 10.18869/NRIP.IRJ.15.2.149.
 
16.
Epstein D. The sports gene: inside the science of extraordinary athletic performance. New York: Penguin Group; 2013.
 
17.
Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009; 339:b2535; doi: 10.1136/bmj.b2535.
 
18.
Sohani ZN, Meyre D, de Souza RJ, Joseph PG, Gandhi M, Dennis BB, et al. Assessing the quality of published genetic association studies in meta-analyses: the quality of genetic studies (Q-Genie) tool. BMC Genet. 2015;16:50; doi: 10.1186/s12863-015-0211-2.
 
19.
Ryan R, Synnot A, Prictor M, Hill S. Cochrane Consumers and Communication Group Data extraction template for included studies. Melbourne: La Trobe University; 2016.
 
20.
Dionísio TJ, Thiengo CR, Brozoski DT, Dionísio EJ, Talamoni GA, Silva GA, et al. The influence of genetic polymorphisms on performance and cardiac and hemodynamic parameters among Brazilian soccer players. Appl Physiol Nutr Metab. 2017;42(6):596–604; doi: 10.1139/apnm-2016-0608.
 
21.
Menezes WCF, Gingozac TCV, Oliveira LAS, Pedrino GR, Ternes YMF, Santos RS, et al. Assessment of effects of the genetic polymorphisms on soccer athletes. Genet Mol Res. 2019;18(2):gmr18192; doi: 10.4238/ gmr18192.
 
22.
Dinc N, Yücel SB, Taneli F, Sayın MV. The effect of the MTHFR C677T mutation on athletic performance and the homocysteine level of soccer players and sedentary individuals. J Hum Kinet. 2016;51:61–69; doi: 10.1515/hukin-2015-0171.
 
23.
Handjiski Z, Handzjska E, Milenkova M. ACTN3 genotype and isokinetic characteristics of the kness of soccer players U17. Res Phys Educ Sport Health. 2016; 5(1):45–50.
 
24.
Massidda M, Corrias L, Ibba G, Scorcu M, Vona G, Calò CM. Genetic markers and explosive leg-muscle strength in elite Italian soccer players. J Sports Med Phys Fitness. 2012;52(3):328–334.
 
25.
Massidda M, Scorcu M, Calò CM. New genetic model for predicting phenotype traits in sports. Int J Sports Physiol Perform. 2014;9(3):554–560; doi: 10.1123/ ijspp.2012-0339.
 
26.
Pimenta EM, Coelho DB, Cruz IR, Morandi RF, Veneroso CE, de Azambuja Pussieldi G, et al. The ACTN3 genotype in soccer players in response to acute eccentric training. Eur J Appl Physiol. 2012;112(4):1495– 1503; doi: 10.1007/s00421-011-2109-7.
 
27.
Mugandani SC, Djarova T, Andreeva L, Petrov L, Atanasov P, Watson G. Angiotensin-converting enzyme genotypes, allele frequency, C-reactive protein, uric acid in female Zulu South African soccer, netball and Bulgarian soccer players. Afr J Phys Health Edu Recreat Dance. 2014;20(1):153–163.
 
28.
Santiago C, González-Freire M, Serratosa L, Morate FJ, Meyer T, Gómez-Gallego F, et al. ACTN3 genotype in professional soccer players. Br J Sports Med. 2008; 42(1):71–73; doi: 10.1136/bjsm.2007.039172.
 
29.
Massidda M, Calò MC, Corrias L, Vona G, Piras F, Folletti S, et al. Angiotensin-converting enzyme gene does not contribute to genetic predisposition to elite soccer’s performance in Italians. Med Sport. 2011;64(1):45–54.
 
30.
Pimenta EM, Coelho DB, Veneroso CE, Barros Coelho EJ, Cruz IR, Morandi RF, et al. Effect of ACTN3 gene on strength and endurance in soccer players. J Strength Cond Res. 2013;27(12):3286–3292; doi: 10.1519/JSC.0b013e3182915e66.
 
31.
Egorova ES, Borisova AV, Mustafina LJ, Arkhipova AA, Gabbasov RT, Druzhevskaya AM, et al. The polygenic profile of Russian football players. J Sports Sci. 2014; 32(13):1286–1293; doi: 10.1080/02640414.2014.898853.
 
32.
Proia P, Bianco A, Schiera G, Saladino P, Contrò V, Caramazza G, et al. PPAR gene variants as predicted performance-enhancing polymorphisms in professional Italian soccer players. Open Access J Sports Med. 2014;5:273–278; doi: 10.2147/OAJSM.S68333.
 
33.
Ulucan K, Sercan C, Biyikli T. Distribution of angiotensin-1 converting enzyme insertion/deletion and alpha-actinin-3 codon 577 polymorphisms in Turkish male soccer players. Genet Epigenet. 2015;7:1–4; doi: 10.4137/GEG.S31479.
 
34.
Cięszczyk P, Leońska-Duniec A, Maciejewska-Skrendo A, Sawczuk M, Leźnicka K, Contrò V, et al. Variation in the ACE gene in elite Polish football players. Hum Mov. 2016;17(4):237–241; doi: 10.1515/humo-2016- 0032.
 
35.
Coelho DB, Pimenta E, Rosse IC, Veneroso C, Becker LK, Carvalho MR, et al. The alpha-actinin-3 R577x polymorphism and physical performance in soccer players. J Sports Med Phys Fitness. 2016;56(3):241–248; doi: 10.13140/RG.2.1.2552.6241.
 
36.
Galeandro V, Notarnicola A, Bianco A, Tafuri S, Russo L, Pesce V, et al. ACTN3/ACE genotypes and mitochondrial genome in professional soccer players performance. J Biol Regul Homeost Agents. 2017;31(1): 207–213.
 
37.
Ficek K, Cieszczyk P, Kaczmarczyk M, Leonska-Duniec A, Maciejewska-Karlowska A, Sawczuk M, et al. The polymorphisms and haplotypes in the collagen type I alpha-1 gene in Polish football players with anterior cruciate ligament injury. Muscles Ligaments Tendons J. 2012;2(3-Suppl.):69–70.
 
38.
Ficek K, Cieszczyk P, Kaczmarczyk M, MaciejewskaKarłowska A, Sawczuk M, Cholewinski J, et al. Gene variants within the COL1A1 gene are associated with reduced anterior cruciate ligament injury in professional soccer players. J Sci Med Sport. 2013;16(5):396– 400; doi: 10.1016/j.jsams.2012.10.004.
 
39.
Ficek K, Stepien-Slodkowska M, Kaczmarczyk M, Maciejewska-Karlowska A, Sawczuk M, Cholewinski J, et al. Does the A9285G polymorphism in collagen type XII alpha1 gene associate with the risk of anterior cruciate ligament ruptures? Balkan J Med Genet. 2014;17(1):41–46; doi: 10.2478/bjmg-2014-0022.
 
40.
Lulińska-Kuklik E, Rahim M, Domańska-Senderowska D, Ficek K, Michałowska-Sawczyn M, Moska W, et al. Interactions between COL5A1 gene and risk of the anterior cruciate ligament rupture. J Hum Kinet. 2018;62:65–71; doi: 10.1515/hukin-2017-0177.
 
41.
Pruna R, Artells R, Lundblad M, Maffulli N. Genetic biomarkers in non-contact muscle injuries in elite soccer players. Knee Surg Sports Traumatol Arthrosc. 2017; 25(10):3311–3318; doi: 10.1007/s00167-016-4081-6.
 
42.
Pruna R, Artells R, Ribas J, Montoro B, Cos F, Muñoz C, et al. Single nucleotide polymorphisms associated with non-contact soft tissue injuries in elite professional soccer players: influence on degree of injury and recovery time. BMC Musculoskelet Disord. 2013;14:221; doi: 10.1186/1471-2474-14-221.
 
43.
Massidda M, Eynon N, Bachis V, Corrias L, Culigioni C, Piras F, et al. Influence of the MCT1 rs1049434 on indirect muscle disorders/injuries in elite football players. Sports Med Open. 2015;1(1):33; doi: 10.1186/ s40798-015-0033-9.
 
44.
Massidda M, Voisin S, Culigioni C, Piras F, Cugia P, Yan X, et al. ACTN3 R577X polymorphism is associated with the incidence and severity of injuries in professional football players. Clin J Sport Med. 2019; 29(1):57–61; doi: 10.1097/JSM.0000000000000487.
 
45.
Larruskain J, Celorrio D, Barrio I, Odriozola A, Gil SM, Fernandez-Lopez JR, et al. Genetic variants and hamstring injury in soccer: an association and validation study. Med Sci Sports Exerc. 2018;50(2):361–368; doi: 10.1249/MSS.0000000000001434.
 
46.
Coelho DB, Pimenta EM, Rosse IC, Veneroso C, de Azambuja Pussieldi G, Becker LK, et al. Alpha-actinin-3 R577X polymorphism influences muscle damage and hormonal responses after a soccer game. J Strength Cond Res. 2019;33(10):2655–2664. doi: 10.1519/JSC. 0000000000002575.
 
47.
McCabe K, Collins C. Can genetics predict sports injury? The association of the genes GDF5, AMPD1, COL5A1 and IGF2 on soccer player injury occurrence. Sports. 2018;6(1):21; doi: 10.3390/sports6010021.
 
48.
Bondareva EA, Andreev RS, Yakushkin AV, Parfenteva OI, Akimov EB, Sonkin VD. Polymorphism of uncoupling protein genes in football players: investigation of the functional role [in Russian]. Hum Physiol. 2016; 42(6):645–654; doi: 10.1134/S0362119716060049.
 
49.
Diogenes MEL, Bezerra FF, Cabello GMK, Cabello PH, Mendonça LMC, Oliveira Júnior AV, et al. Vitamin D receptor gene FokI polymorphisms influence bone mass in adolescent football (soccer) players. Eur J Appl Physiol. 2010;108(1):31–38; doi: 10.1007/s00421-009- 1191-6.
 
50.
Micheli ML, Gulisano M, Morucci G, Punzi T, Ruggiero M, Ceroti M, et al. Angiotensin-converting enzyme/ vitamin D receptor gene polymorphisms and bioelectrical impedance analysis in predicting athletic performances of Italian young soccer players. J Strength Cond Res. 2011;25(8):2084–2091; doi: 10.1519/JSC. 0b013e31820238aa.
 
51.
Fatini C, Guazzelli R, Manetti P, Battaglini B, Gensini F, Vono R, et al. RAS genes influence exercise-induced left ventricular hypertrophy: an elite athletes study. Med Sci Sports Exerc. 2000;32(11):1868–1872; doi: 10.1097/00005768-200011000-00008.
 
52.
Rizzo M, Gensini F, Fatini C, Manetti P, Pucci N, Capalbo A, et al. ACE I/D polymorphism and cardiac adaptations in adolescent athletes. Med Sci Sports Exerc. 2003;35(12):1986–1990; doi: 10.1249/01.MSS.00000 98993.51693.0B.
 
53.
Saber-Ayad MM, Nassar YS, Latif IA. Angiotensin-converting enzyme I/D gene polymorphism affects early cardiac response to professional training in young footballers. J Renin Angiotensin Aldosterone Syst. 2014; 15(3):236–242; doi: 10.1177/1470320312471150.
 
54.
MacArthur DG, North KN. A gene for speed? The evolution and function of alpha-actinin-3. Bioessays. 2004; 26(7):786–795; doi: 10.1002/bies.20061.
 
55.
MacArthur DG, North KN. ACTN3: a genetic influence on muscle function and athletic performance. Exerc Sport Sci Rev. 2007;35(1):30–34; doi: 10.1097/JES. 0b013e31802d8874.
 
56.
Mohr M, Krustrup P, Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci. 2003;21(7):519– 528; doi: 10.1080/0264041031000071182.
 
57.
Posthumus M, September AV, Keegan M, O’Cuinneagain D, Van der Merwe W, Schwellnus MP, et al. Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br J Sports Med. 2009;43(5): 352–356; doi: 10.1136/bjsm.2008.056150.
 
58.
Khoschnau S, Melhus H, Jacobson A, Rahme H, Bengtsson H, Ribom E, et al. Type I collagen alpha1 Sp1 polymorphism and the risk of cruciate ligament ruptures or shoulder dislocations. Am J Sports Med. 2008;36(12): 2432–2436; doi: 10.1177/0363546508320805.
 
59.
Collins M. Genetic risk factors for soft-tissue injuries 101: a practical summary to help clinicians understand the role of genetics and ‘personalised medicine’. Br J Sports Med. 2010;44(13):915–917; doi: 10.1136/ bjsm.2009.058040.
 
60.
Liu P-Y, Lu Y, Long J-R, Xu F-H, Shen H, Recker RR, et al. Common variants at the PCOL2 and Sp1 binding sites of the COL1A1 gene and their interactive effect influence bone mineral density in Caucasians. J Med Genet. 2004;41(10):752–757; doi: 10.1136/jmg.2004. 019851.
 
61.
Garcia-Giralt N, Nogués X, Enjuanes A, Puig J, Mellibovsky L, Bay-Jensen A, et al. Two new single-nucleotide polymorphisms in the COL1A1 upstream regulatory region and their relationship to bone mineral density. J Bone Miner Res. 2002;17(3):384–393; doi: 10.1359/jbmr.2002.17.3.384.
 
62.
Massidda M, Bachis V, Corrias L, Piras F, Scorcu M, Calò CM. Influence of the COL5A1 rs12722 on musculoskeletal injuries in professional soccer players. J Sports Med Phys Fitness. 2015;55(11):1348–1353.
 
63.
Hulin BT, Gabbett TJ, Caputi P, Lawson DW, Sampson JA. Low chronic workload and the acute:chronic workload ratio are more predictive of injury than between-match recovery time: a two-season prospective cohort study in elite rugby league players. Br J Sports Med. 2016;50(16):1008–1012; doi: 10.1136/bjsports2015-095364.
 
ISSN:1899-1955
Journals System - logo
Scroll to top