eISSN: 1896-9151
ISSN: 1734-1922
Archives of Medical Science
Current issue Archive Manuscripts accepted About the journal Special issues Editorial board Abstracting and indexing Subscription Contact Instructions for authors
SCImago Journal & Country Rank
4/2019
vol. 15
 
Share:
Share:
more
 
 
abstract:
Basic research

Genistein-triggered anticancer activity against liver cancer cell line HepG2 involves ROS generation, mitochondrial apoptosis, G2/M cell cycle arrest and inhibition of cell migrationand inhibition of cell migration

Qian Zhang, Juan Bao, Jiehua Yang

Arch Med Sci 2019; 15 (4): 1001–1009
Online publish date: 2018/10/03
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Introduction
Liver cancer is one of the most common malignancies across the globe and one of the major causes of cancer-related mortality. With limited available treatment options, there is an urgent need to look for new available options. Genistein is an important plant flavonoid and has been shown to possess tremendous pharmacological potential. The objective of the present study was therefore to evaluate the anticancer effect of the genistein.

Material and methods
The antiproliferative activity and IC50 of genistein were determined by MTT assay. Reactive oxygen species (ROS) and cycle distribution were investigated by flow cytometry. Apoptosis was detected by DAPI and annexin V/IP staining. Cell migration was investigated by wound healing assay. Protein expression was estimated by western blotting.

Results
MTT assay revealed that genistein reduced the cell viability of HepG2 cancer cells in a dose-dependent manner. Genistein also reduced the colony forming potential of the HepG2 cell concentration dependently. The IC50 of genistein was found to be 25 µM. Genistein caused G2/M cell cycle arrest and G2/M cells increased from 4.2% in the control to 56.4% at 100 µM concentration. Genistein prompted generation of significant (p < 0.01) amounts of ROS, ultimately favouring cell death. Genistein also triggered apoptosis which was associated with upregulation of cytosolic cytochrome c, Bax, cleaved caspase 3 and 9 expression and downregulation of Bcl-2 expression in HepG2 cells.

Conclusions
We propose that genistein exhibits significant anticancer activity against liver cancer and therefore may prove beneficial in the management of liver cancer.

keywords:

liver cancer, genistein, HepG2, anticancer

FEATURED PRODUCTS
Quick links
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe