Experimental immunology

The effect of *Echinacea purpurea* on the morphology, angiogenic activity and vascular endothelial growth factor (VEGF) concentration of murine L-1 sarcoma tumors

ALEKSANDER WASIUTYŃSKI1, BARBARA J. BAŁAN2, EWA SKOPIŃSKA-RÓŻEWSKA1, ANDRZEJ K. SIWICKI3, HENRYK SKURZAK4, JOANNA CHOROSTOWSKA-WYNIMKO5, EWA SOMMER1, MICHAŁ MAZURKIEWICZ1

1Department of Pathology, Biostructure Center, Warsaw Medical University; 2Department of Immunology and Nutrition, Warsaw Medical University; 3Department of Microbiology and Clinical Immunology, University of Warmia and Mazury, Olsztyn; 4Department of Immunology, Cancer Center, Warsaw; 5Laboratory of Molecular Diagnostics, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland

Abstract

The aim of the present study was to evaluate the effect of feeding mice *Echinacea purpurea*-containing drugs on 1) neovascular response induced in mice by L-1 sarcoma cells 3 days after intracutaneous grafting 2) morphology, angiogenic activity and VEGF concentration of murine sarcoma L-1 tumors 7 days after intracutaneous cells transplantation.

Material and Methods: *Echinacea purpurea*-containing drugs: Immunal forte tablets (LEK, Slovenia) and Echinapur tablets (Herbapol Poznañ), 0.6 mg per day. Animals: inbred Balb/c mice 8-10 weeks old. Tumor cells: murine L-1 sarcoma from Warsaw Cancer Center Collection. Methods: cutaneous angiogenesis assay according to Sidky and Auerbach, VEGF concentration measurement (ELISA) and histological evaluation of L-1 sarcoma tumors 7 days after transplantation of cells.

Results: Echinapur diminished angiogenesis induced by murine L-1 sarcoma cells 3 days after intradermal cells injection. Both Echinapur and Immunal reduced VEGF concentration in L1 sarcoma tumor tissue, evaluated 7 days after intradermal cells grafting. There were no differences in mass and diameter of tumors between investigated and control groups. In *Echinacea*-fed groups, however, there were less small blood vessels at a margin of tumor.

Key words: *Echinacea purpurea*, L-1 sarcoma, mice.

(Centr Eur J Immunol 2009; 34 (1): 38-41)

Introduction

Use of *Echinacea purpurea* (purple coneflower), herb native to the North American prairies, has a long history. North American Indians used this plant internally and topically as antiseptic, anti-inflammatory, and analgesic drug. They used aerial and underground parts of the plant, in the form of infusion, succus or decoction, for curing burns, snake and insect bites, and as general immunoenhancers. Now, this plant is one of the most important world medicinal herbs, widely used for the treatment of upper respiratory tract infections [1]. We previously reported that *Echinacea purpurea* extracts enhance immunity in mice and stimulate various functions of human blood leukocytes *in vivo* [2-7]. Studies in cancer patients undergoing chemotherapy showed that polysaccharide fraction isolated from *Echinacea purpurea* may counteract the chemotherapy-induced leukopenia [8]. It was described that *Echinacea* extracts were able to induce apoptosis of human cancer cell lines by increasing caspase activity and promoting nuclear DNA fragmentation. It was also found that flavonoids and polyphenols, present in *Echinacea*, inhibit activities of metalloproteinases and some

Correspondence: Ewa Skopińska-Różewska, Pathology Department, Biostructure Center, Warsaw Medical University, Chalubińskiego 5, 02-004 Warsaw, Poland. Email: ewaskop@hotmail.com
serine proteases important for angiogenesis, and inhibit VEGF receptor phosphorylation [9-12]. We recently reported, that Echinacea purpurea extract diminished neovascular reaction induced in mice skin by human cancer cells [7].

The aim of our present study was to evaluate the effect of feeding mice Echinacea purpurea-containing drugs on 1) neovascular response induced in mice by murine cancer cells 3 days after intracutaneous grafting and, 2) morphology, angiogenic activity and VEGF concentration of murine sarcoma L-1 tumors, 7 days after intracutaneous cells transplantation.

Material and Methods

Echinacea purpurea-containing drugs: Immunal forte tablets (LEK, Slovenia) and Echinapur tablets (Herbapol Poznañ), 0.6 mg per day.

Animals

Inbred Balb/c mice 8-10 weeks old. Mice have been of local laboratory breed, weighing 20 g each. Animals were handled according to the Polish law on protection of animals and NIH standards. All experiments were accepted by the local Ethical Committee.

Tumor cells

Murine L-1 sarcoma cells from in vitro culture stock were delivered from Warsaw Oncology Center Collection and then passaged through three generations of Balb/c mice as previously described [13].

Cutaneous angiogenesis assay

According to Sidky and Auerbach, with some modifications [13]. Briefly, multiple 0.05 ml samples of 2×10^6 L-1 sarcoma tumor cells were injected intradermally into partly shaved, anesthetized Balb/c mice. In order to facilitate the localization of cell injection sites, the suspension was colored with 0.1% of trypan blue. Next, mice were fed Echinacea preparations in daily dose of 0.6 mg for 3-5 consecutive days. Some mice after 72 hours were sacrificed with lethal dose of Morbital. All newly formed blood vessels were identified and counted in dissection microscope, on the inner skin surface, at magnification of 6×, in 1/3 central area of microscopic field. Identification was based on the fact that new blood vessels, directed to the point of cells injection are thin and/or differ from the background vasculature in their tortuosity and diversifications.

The other mice were fed Echinacea drugs for 5 days. At the day 7th mice were sacrificed with lethal dose of Morbital, the tumors were removed and weighted.

Histological evaluation of L-1 sarcoma tumors 7 days after transplantation of cells

Half of excised tumors (6 lesions from each group) was fixed in 10% formalin solution. Next, the specimens were dehydrated in increased concentrations of alcohol and embedded in paraffin. Paraffin tissue block was sectioned on 4 μm thin sections. The specimens were contrasted by hematoxyline and eosine for first screening light microscopic examination.

The second half of removed tumors (6 lesions from each group) was pooled within groups, and frozen at −78°C (suspended in PBS in proportion 100 mg per 1 ml) for later VEGF measuring.

Measurement of VEGF concentration

The tumour samples collected on the day seven after tumor cells grafting were homogenized with an ultrasonic disrupter VirSonic (Virtis) for 2 minutes, at frequency 22.5 KHz. Cytokine levels were determined using standard ELISA R&D kits for mouse VEGF, according to producer instructions. From each material 6 repetitions were established. Optical density was measured at 450 nm using spectrophotometric reader Elx800 (Biotek Instruments, Inc., USA). Cytokine concentration was expressed as pg/ml.

Statistical evaluation of the results

One way analysis of variance ANOVA, Tukey’s Multiple Comparison Test (GraphPad Prism software package).

Results

Echinapur diminished angiogenesis induced by murine L-1 sarcoma cells, as evaluated 3 days after intradermal cells grafting.

<table>
<thead>
<tr>
<th>Tukey’s Multiple Mean diff.</th>
<th>Mean diff.</th>
<th>q</th>
<th>Significant?</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control vs. Immunal</td>
<td>1.540</td>
<td>2.950</td>
<td>No</td>
<td>ns</td>
</tr>
<tr>
<td>Control vs. Echinapur</td>
<td>2.340</td>
<td>4.483</td>
<td>Yes</td>
<td>**</td>
</tr>
<tr>
<td>Immunal vs. Echinapur</td>
<td>0.8000</td>
<td>1.533</td>
<td>No</td>
<td>ns</td>
</tr>
</tbody>
</table>

Fig. 1. Neovascular reaction after grafting of L-1 sarcoma. Recipients of tumor cells were fed Echinacea for 3 days after grafting.
Central European Journal of Immunology 2009; 34(1)

Aleksander Wasiutyński et al.

![Graph showing tumor weight (mg)](image1)

Fig. 2. Mass of tumors collected from L-1 sarcoma grafted mice fed *Echinacea* for 5 days (mean ± SD and range)

<table>
<thead>
<tr>
<th>Tukey’s Multiple Comparison Test</th>
<th>Mean diff.</th>
<th>q</th>
<th>Significant? p<0.05?</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control vs. Immunal</td>
<td>-2.750</td>
<td>1.130</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Control vs. Echinapur</td>
<td>-0.7475</td>
<td>0.2797</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Immunal vs. Echinapur</td>
<td>2.002</td>
<td>0.7493</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Control vs. Immunal 1.130 No
Control vs. Echinapur 0.2797 No
Immunal vs. Echinapur 0.7493 No

![Graph showing VEGF concentration (pg/ml)](image2)

Fig. 4. VEGF content in tumors collected from mice grafted with L-1 sarcoma cells and fed *Echinacea* for 5 days (mean ± SD and range)

<table>
<thead>
<tr>
<th>Tukey’s Multiple Comparison Test</th>
<th>Mean diff.</th>
<th>q</th>
<th>Significant? p<0.05?</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control vs. Immunal</td>
<td>249.6</td>
<td>21.27</td>
<td>Yes ***</td>
<td></td>
</tr>
<tr>
<td>Control vs. Echinapur</td>
<td>424.5</td>
<td>36.16</td>
<td>Yes ***</td>
<td></td>
</tr>
<tr>
<td>Immunal vs. Echinapur</td>
<td>174.9</td>
<td>14.90</td>
<td>Yes ***</td>
<td></td>
</tr>
</tbody>
</table>

Control vs. Immunal 21.27 Yes ***
Control vs. Echinapur 36.16 Yes ***
Immunal vs. Echinapur 14.90 Yes ***

Total number of tumors: 65

Discussion

The results of the present study demonstrated that Echinapur, *Echinacea purpurea* derived drug, diminished neovascular reaction induced in mice skin by syngeneic L-1 sarcoma cells. This effect was not observed when mice were fed for 3 days with another *Echinacea purpurea* derived drug, Immunal. However, both drugs administered to tumor recipients for 5 days, reduced VEGF concentration in L1 sarcoma tumor tissue, not affecting tumor mass and tumor cells angiogenic activity.

VEGF is one of the most important factors responsible for stimulating angiogenesis during tumor growth. Its production and function may be suppressed by various polyphenolic compounds [14, 15], among them by phenolic
The effect of Echinacea purpurea on the morphology, angiogenic activity and vascular endothelial growth factor (VEGF) concentration of murine L-1 sarcoma tumors

acids [16]. It is noteworthy, that *Echinacea purpurea* extracts contain cichoric, caftaric, chlorogenic and caffeic acids.

7-day old tumors were small and probably we observed the influence of *Echinacea* on the very early events of their growth - inhibition of VEGF production and lesser number of blood vessels at the tumor margin in *Echinacea*-fed groups of mice.

Previously we observed angioinhibitory effect of complex herbal remedy (syrup Alchinal), containing *Echinacea purpurea*, Allium sativum (garlic) and cocoa, as well as its inhibitory effect on sarcoma L-1 growth. However, in that study mice were fed drug for longer time (since –4 to +13 day, in respect to the day of tumor cells grafting). Moreover, the final effect was probably the resultant of action of all remedy compounds, as anti-angiogenic and anti-tumor activities of garlic and cocoa has been described [17].

References