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Abstract
Septic infections in malnourished surgical patients show the highest morbidity and mortality rate. The

attempt to correct the postoperative immune and nutritional disorders by introducing immunomodulating
nutrition is a promising way of improving outcome, but as yet little is known about the mechanisms of
correcting postoperative extensive inflammatory response (SIRS) to a massive infection using this type of
nutrition. A significant role in innate antibacterial and inflammatory response play Toll-like receptors that
recognize PAMPs-pathogen-associated molecular patterns. In this paper special emphasis was put on
clinical trials and the research result for TLR-dependent immune response, anti-bacterial/anti-inflammatory
response applying immunonutrition with increased concentrations of glutamine and unsaturated fatty acids. 
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Malnutrition is a major global public health problem and
can be defined as a state of nutrition in which a deficiency of
energy, protein and other nutrients like arginine, glutamine,
fatty acids, vitamins and trace elements causes measurable
effects on body and tissue function and clinical outcome.
Surgical trauma increases immune system suppression and
deepens disease related malnutrition. The immune disorders
and malnutrition worsen in the early postoperative period,
considerably affecting the process of wound healing, intestinal
barrier function and the number of post-operative infections.
Infections in malnourished surgical patients increase morbidity
and mortality rate. Despite advances in treatment, there is still
no therapy available to efficiently reduce the excessive
inflammatory response, which can increase the risk of multiple
organ failure (MOF) [1]. The promising results of experi-
mental studies on treating severe infections with LPS inhi-
bitors, TNF-α, IL-1, PAF, NO, arachidonic acid metabolites,
complement component inhibitors or free radicals did not
considerably reduce the mortality rate in septic patients [2].
Other strategies for the treatment of sepsis in surgical patients
based on the attempts to block LPS-binding receptors and on
blocking signaling pathway proteins for antibacterial response
(e.g. blockade of TLR4, caspases, Fasl-Fas or NF-κB activity
and blocking of HMGB1- high mobility group box1 pathway)

and on attempting to regulate the neutrophil and lymphocyte
apoptosis (e.g. by over expression of anti-apoptotic proteins
such as Bcl-2) are still subject of experimental research [2-
6]. The aim of this study is to efficiently reduce the excessive
inflammatory response, above all reducing the activation of
nuclear factor κB (NF-κB), the production of post-inflam-
matory cytokines (TNF, IL-1, IL-6), chemokines and adhesive
molecules. 

More efficient therapy consists influences the mechanisms
of inflammatory response to a massive infection. After a major
surgery complicated by severe infection special attention
should be paid to modulation of the expression of signaling
pathway proteins in cells that take part in early (innate)
immune response to infection by applying immunonutrition.
It is well known that neutrophils and monocytes/macrophages
that take part in innate immune response to trauma and
infection play a significant role in the elimination of micro-
organisms and in local and systemic inflammatory response
regulation (SIRS – systemic inflammatory response syndrome)
that increases the risk of MOF [7]. The disorders of pha-
gocytosis and microorganism elimination in the site of
bacterial penetration (extensive surgical wound, catheter in 
a large vein) intensify the pro- and anti-inflammatory response
(CARS- compensatory anti-inflammatory response), which
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intensifies post-operative immunosuppression and may result
in immunity breakdown [8]. These issues opens the discussion
if the re-programming of signal transduction pathways in
intestinal mucosa and innate immunity cells of septic patients
after immunonutrition contribute to the attenuation of local
and systemic hyperinflammatory response in massive bacterial
load? 

The immunomodulatory action of unsaturated fatty acids
affects the decrease in activity of neutrophils, monocytes,
lymphocytes, and the production of cytokines [9-12]. Immu-
nostimulatory action of amino acids increases the phagocytal
activity of leukocytes, enhances immunity to infections and
accelerates wound healing [13-19]. In randomized studies it
has been found that enteral immunonutrition improves the
clinical course, decreases the frequency of severe infections,
shortens hospital stays, reduces treatment costs and signi-
ficantly decreases mortality in severe ill patients with MOF
[20-25]. These benefits were found to be most impressive in
surgical patients. In patients with severe trauma and infection
receiving immunonutrition significant decrease in the duration
of SIRS and in the frequency of MOF have been found [20,
23, 24, 26]. In the clinical setting immunonutrition (with
arginine, nucleic acids and n-3 fatty acids) reduced infections
complications in critically ill patients after trauma and cancer
surgery [22, 23, 25, 27, 28]. The studies have been performed
in various populations patients, which makes it difficult to
compare their results. The most frequently included patients
treated in intensive care units. In the majority of those studies,
the changes in nutritional and immunity status in the course
of immunonutrition and infection have not been monitored.
Despite the advantage of the positive effects of immuno-
nutrition on the treatment of surgical patients, the impact of
this nutrition on the immune system still remains unclear. 
A better knowledge of advantages of immunomodulating
nutrition in treating surgical infections requires studying the
changes in the expression of signaling cascade proteins
associated with their stimulation account not only for
pathological inflammatory response to trauma or infection,
but they can also have a protective action (e.g. increasing the
apoptosis of selected cells, stimulation of signaling pathway
inhibitors).

In regulating the mechanisms of local and systemic
inflammatory response to a massive infection in surgical
patients a significant role is played by Toll-like receptors
(TLRs) expressioned in gut mucosa cells and the cells that
take part in innate response to infection. Some studies
performed show that trauma reduces, whereas severe infection
increases the expression of TLRs recognizing bacterial
antigens (e.g. LPS, peptidoglycan) [29-32]. As compared with
healthy people, the expression of TLR4 in the monocytes of
trauma patients was reduced [29]. In experimental studies the
lack of TLRs increased the susceptibility to infections in mice
[33] and caused disorders in inflammatory mediator secretion,
disorders in phagocytosis and antigen presentation [34-36].
The experimental findings suggest that TLR4 plays a key role
in regulating the expression of inflammatory cytokines in the

lung during endotoxic shock [37]. Six hours of LPS
administration induced a significant increase in pulmonary
TNF-α, IL-1β and IL-6 mRNA in control (TLR4+) mice
compared to TLR4 –deficient mice.

To date, several randomized clinical trials have evaluated
the efficacy of arginine, glutamine, omega-3 fatty acids,
nucleotides and trace elements with antioxidant properties
in critically ill patients with trauma and/or infections, but
the basic molecular mechanisms that can attenuate the
overwhelming inflammatory response in sepsis are still
unclear. In malnourished surgical patients with infections,
the direct factor that intensifies the failure of local “first line”
antibacterial defense can be the disorders of pathogen-
associated molecular pattern (PAMPs) (e.g. LPS, peptido-
glycan, teichoic acids, bacterial DNA) recognition by innate
immunity cells. The hypothesis that one of the main reasons
for false recognition of bacterial antigens by immune system
cells (mainly by phagocytic cells) is malnutrition is highly
probable. The deficiency of immunoactive nourishing
substances (e.g. glutamine, fatty acids) can intensify the
disorders of expression of bacterial antigen binding
extracellular receptors and intracellular proteins/receptors.
The excessive accumulation of bacterial wall fragments and
the microorganisms being proliferated in tissues intensify
the local inflammatory response and increase the release of
cytokines into the blood. 

Glutamine is an important energy source for lymphatic
tissue and glutamine-enriched enteral nutrition has been
found to reduce the incidence of sepsis in trauma patients,
due to maintaining the integrity of intestinal mucosa [38-40].
Low plasma glutamine concentrations (<0.42 mM) at ad-
mission to intensive care units were associated with higher
severity of illness and higher mortality rates [41]. The
results of recent studies show the regulative glutamine
impact on inflammatory response in severe infections and
indicate that it is necessary to administer high doses (e.g.
in parenteral administration 0.35g/kg–1/day–1) to obtain 
a better therapeutic effect [39, 42, 43]. Some most recent
experimental studies show that the enteral administration
of glutamine reduces the increased TLR4 expression, signal
adaptor protein MyD88 (myeloid differentiation factor 88)
and TRAF6mRNA (TNF-α receptor-associated factor 6)
in intestinal mucosa as a response to LPS induced endoto-
xemia in rats (Fig. 1) [5]. In addition, the above-mentioned
studies found a decreased injury to the mucous membrane
of the small intestine. The effect of glutamine on intestinal
TRL4 expression may be considered as a mechanism via
which immunonutrition helps in the recovery of critically
ill and septic patients. The mechanisms by which glutamine
prevents the occurrence of infection are still unclear, but it is
well known that in surgical or burn patients glutamine
decreases the production of pro-inflammatory cytokines [44]
and improves the bactericidal function of neutrophils [46].

The anti-inflammatory action of unsaturated fatty acids
(mainly n-3 PUFAs) and their application in treating
surgical infections and early sepsis (in the first phase of
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sepsis syndrome) still seem to be very interesting. In trau-
matized and surgical patients an enteral diet containing 
n-3 fatty acids significantly reduced infectious complications
and septic events [23, 47, 48]. Enhanced survival and
reduced lung failure after enteral or parenteral usage of 
n-3 lipids was observed in experimental models of sepsis

[49-51]. Interestingly, by incorporation into various membrane
(phospho)-lipid pools, n-3 fatty acids may affect lipid-signa-
ling events in different cell types [52, 53]. The omega-3 fatty
acids have also an ability to selectively suppress the signa-
ling cascade associated with innate antibacterial response
(mainly leukocytes and macrophages), independently at sub-

Immunonutrition and lipopolysaccharide – induced Toll-like receptor signaling

Fig. 1. Schematic diagram of TLR4, MyD88 and TRAF6 down-regulation in rats intestinal mucosa following glutamine administration
and LPS-induced endotoxemia (A). N-3 omega acids inhibition of TLR signaling pathway at the extracellular (DHA interfere with
TLR4 receptor) and intracellular level: inhibition of the phosphorylation and degradation of the IκB, inhibition of the NF-κB activation
and inflammatory cytokines production in LPS-stimulated human leukocytes and macrophages (B). TLR-independent signaling via
the NODs cytoplasmic sensors of LPS does not require members of the MyD88 adaptor family (interrupted lines)
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sequent stages: a) endotoxin interaction with TRL4, b) acti-
vation of inhibitor phosphorylation kinases of the NF-κB
(IκB) transcription factor and c) translocation to nucleus and
connecting NFκB to an appropriate DNA sequence (sup-
pressing the transcription of inflammatory response mediator
genes) (Fig. 1) [54-61]. 

It was indicated that the enteral administration of diet
enriched in unsaturated fatty acids (EPA) and glutamine in
septic patients treated in intensive care units reduced the
inflammatory response and mortality rate caused by acute
lung injury (acute respiratory distress syndrome – ARDS)
[62, 63]. The enteral administration of n-3 acids in septic
patients modulated the functions of neutrophils, changed the
disadvantageous proportion of n-6 acids to n-3 in the direction
of higher concentration of n-3 acids, which was associated
with lower concentrations of pro-inflammatory cytokines [64,
65]. These findings indicate that immunomodulating nutrition
may be an effective means of influencing the inflammatory
response, particularly for those pathways affected by TLR4
signaling.

Our previous study has clearly indicated that the anti-
inflammatory mechanisms are activated early in malnourished
patients after pancreaticoduodenectomy receiving enteral
immunonutrition [66]. Early enteral immunonutrition (with
glutamine, arginine and n-3 fatty acids) in comparison to
standard nutrition has an immunomodulative effect on the
changes in the immune response after extensive surgical
trauma. These consist in selective stimulation of IL-6, IL-8,
IL-10 and IL-1ra production and down-regulation of IL-1 beta
and TNF-α production. The temporary increase in IL-1ra
concentration between post-operative days 7-14 obtained as
a result of enteral immunonutrition decreases the inflammatory
response to extensive surgical trauma and shortens its
duration; this accelerates the wound healing process/tissue
regeneration and may help avoid late complications (fistulas,
abscesses).

The above-presented results show that to improve
outcomes in the group of malnourished surgical patients
suffering from severe infections more attention should be
devoted to explaining the molecular mechanisms regulating
the innate antibacterial response. One of the preconditions to
provide progress in treating the most severely ill patients is
to find out more about the impact of the state of nutrition,
severe infections and immunonutrition on the expression of
selected signaling pathway proteins of innate antibacterial
response cells. Attempts to modulate the innate antibacterial
immune response by applying immunonutrition are promising
and indicate that in the future it can be a valuable supplement
of the therapy using a blockade of selected signaling pathways
to reduce the life-threatening effects of massive infection,
including mainly the increased inflammatory response. 
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