Identification of novel missense mutations (c.1156T>C and c.785T>C) in the PSEN1 gene in Chinese families with early-onset Alzheimer’s disease

Lu Ren¹,², Qiuyan Wang³, Guowen Min³, Yarong Zhao³, Yang Li³

¹First Clinical Medical College, Shanxi Medical University, Taiyuan, China
²Department of Neurology, Luliang People’s Hospital, Luliang City, China
³Department of Neurology, First Clinical Medical College, Shanxi Medical University, Taiyuan, China

Submitted: 12 April 2021
Accepted: 2 June 2021

Arch Med Sci Aging 2021; 4: e6–e13
DOI: https://doi.org/10.5114/amsa.2021.107802
Copyright © 2021 Termedia & Banach

Abstract

Introduction: Mutations in the presenilin 1 (PSEN1) gene are associated with the inherited form of early-onset Alzheimer’s disease (AD). Currently, more than 200 PSEN1 mutations have been identified.

Material and methods: Two Chinese families with early-onset Alzheimer’s disease were enrolled in this study. Their clinical and radiological profiles were analyzed, and their genomic DNA was extracted from peripheral blood and amplified for sequencing. The sequences of all exons and intron/exon boundaries in the PSEN1 gene were analyzed. The potential pathogenicity of the identified mutations was predicted using the SIFT and PolyPhen-2 bioinformatics software tools.

Results: In the first family, a novel heterozygous missense mutation (c.1156T>A) was identified in exon 11 of the PSEN1 gene. This nucleotide substitution led to an amino acid change from phenylalanine to leucine at codon 386 (p.F386L), and was predicted to be ‘deleterious’ by SIFT and ‘probably damaging’ by PolyPhen-2. This mutation was not consistent across all family members with the disease. In the second family, a novel heterozygous missense mutation (c.785T>C) was identified in exon 8 of the PSEN1 gene, which also caused an amino acid change (p.L262S). This mutation was also predicted to be ‘deleterious’ by SIFT and ‘probably damaging’ by PolyPhen-2.

Conclusions: We identified two novel heterozygous missense mutations (c.1156T>C and c.785T>C) in the PSEN1 gene in separate Chinese families with early-onset Alzheimer’s disease. This study provides new PSEN1 gene mutation profiles, which help to elucidate the pathogenesis of early-onset Alzheimer’s disease.

Key words: early-onset Alzheimer’s disease, presenilin 1, PSEN1, mutation, DNA sequencing, Chinese.

Introduction

Alzheimer’s disease is a degenerative and progressive disorder of the brain, and is the most common neurological condition that leads to dementia. Typically, Alzheimer’s disease can be classified into two forms: early-onset Alzheimer’s disease (onset before the age of 65 years) affects approximately 95% of patients, and late-onset Alzheimer’s disease (onset at or after the age of 65 years) affects only a small proportion
Identification of novel missense mutations (c.1156T>C and c.785T>C) in the PSEN1 gene in Chinese families with early-onset Alzheimer’s disease

Material and methods

Subjects

This study was approved by the local Ethics Committee and written informed consent was obtained from each participant. The patients (probands) were recruited from the Department of Neurology at the First Hospital of Shanxi Medical University. The pedigree of each proband was established with the help of family members, and their clinical, radiological, and laboratory profiles were collected. The individual’s cognitive function was assessed using the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), and the Activities of Daily Living Scale (ADL). The analyses also included 100 unaffected individuals of matched geographical ancestry as healthy control individuals.

Mutation screening

Peripheral blood samples were obtained from the proband and the family members. Genomic DNA was extracted from the peripheral blood (~300 μl) using the RelaxGene Blood DNA System (Tiangen Biotech Co., Ltd., Beijing, China). The purity and quantity of DNA were determined using an Agilent 2100 Bioanalyzer system (Agilent Technologies, Inc., Santa Clara, CA, USA). DNA libraries were purified by magnetic beads (AMPure XP beads; Beckman Coulter, Inc., Brea, CA, USA). Coding regions and intron/exon boundaries were enriched, and sample quality control was conducted by an Agilent 2100 Bioanalyzer system (Agilent Technologies, Inc.). The extracted DNA was stored at −20°C and prepared later for the subsequent sequencing.

DNA samples were sequenced using the Illumina HiSeq X Ten platform (Illumina, Inc., San Diego, CA, USA). The results were analyzed and annotated using an in-house pipeline. Briefly, raw reads were preprocessed to remove reads with low quality or adaptors. Read alignment was performed using the Burrows-Wheeler Aligner tool (version 0.7.17) with default parameters against the human genome assembly hg19(GRCh37) as previously described [10]. The generated bam file was sorted by SAMtools. The genome Analysis Toolkit (GATK; http://software.broadinstitute.org/gatk) was used to detect single-nucleotide variants (SNVs) and indels (< 50 bp), and the copy number variations (CNVs) were detected using a CNV kit. Then, the Variant Effect Predictor was applied to annotate SNVs, indels and CNVs. For calculating the homozygous ratio with SNV data, the following rules were adopted: i) SNPs with a depth of < 20× were removed; ii) only SNPs with a variant allele frequency between 0.2 and 0.8 were considered to be heterozygous. Moreover, subsequent filtering was restricted to the genes linked to FAD.

The potential pathogenicity of the identified variations was predicted using the Sorting Intol-
Lu Ren, Qiuyan Wang, Guowen Min, Yarong Zhao, Yang Li

Based on this collective profile, a diagnosis of early-onset Alzheimer’s disease was made. The pedigree for this patient is shown in Figure 2B. This patient’s father and one of his brothers had dementia, and they exhibited similar clinical symptoms as the proband at the age of 50 years. Genetic sequencing revealed a novel heterozygous missense mutation (c.1156T>A) in exon 11 of the PSEN1 gene (Figure 2C). This nucleotide substitution leads to an amino acid change from phenylalanine to leucine at codon 386 (p.F386L). The mutation was not consistent in those with the disease in the family. The affected amino acid is located at the seventh transmembrane (TM7) domain of the PSEN1 protein and was predicted to be ‘deleterious’ by SIFT and ‘probably damaging’ by PolyPhen-2. No mutation of PSEN2, APP or other dementia causative genes was detected in the family. Exon 11 of PSEN1 was normal in the 100 healthy controls.

Second family

The proband was a 56-year-old man with a 5-year history of memory impairment and difficulty with communicating (especially in finding words). He had a 30-year history of alcoholism. The patient came to us 2 years after symptom onset, and a neuropsychological assessment showed cognitive impairment (MMSE score: 18/30; and MoCA score: 13/30). Oral donepezil hydrochloride was prescribed; however, after 1 year of treatment, he developed loss of orientation. A neuropsychological reassessment demonstrated that cognitive dysfunction was aggravated (MMSE score: 13/30; and MoCA score: 7/30). Laboratory tests and brain MRI were all normal. He was diagnosed with early-onset Alzheimer’s disease. The pedigree for this patient is shown in Figure 3A. The patient’s mother and uncle exhibited memory loss at the age of 72 years and 60 years, respectively. The other family members did not show dementia-like symptoms. We were unable to collect peripheral blood samples of these family members as they had died before this study took place. Nevertheless, we did obtain a DNA sample of the patient’s 27-year-old son. Sequence analysis revealed a novel heterozygous missense mutation (c.785T>C) in exon 8 of the PSEN1 gene (Figure 3B), which caused an amino acid change from leucine to serine at codon 262 (p.L262S). The affected amino acid is located at the sixth transmembrane (TM6) domain of the PSEN1 protein and was predicted to be ‘deleterious’ by SIFT and ‘probably damaging’ by PolyPhen-2. This mutation was predicted to be pathogenic and his son also carries the mutation. No mutation of PSEN2, APP or other dementia causative genes was detected in the family. Exon 8 of PSEN1 was normal in the 100 healthy controls.

Figure 1. The flow chart illustrates the main steps of the working procedure from patient sample analysis to mutation identification, including genetic analysis and biological analysis.
Identification of novel missense mutations (c.1156T>C and c.785T>C) in the PSEN1 gene in Chinese families with early-onset Alzheimer’s disease

Figure 2. Neuroimaging, pedigree diagram and sequence chromatograms for the first family. A – Brain magnetic resonance imaging (MRI) revealed a reduced volume in the bilateral hippocampus without white matter demyelination and atrophy of cerebral cortex. B – In the family pedigree, the arrow designates the proband, and the circles indicate females and squares indicate males. Solid black symbols indicate the affected individuals, and solid gray symbols indicate asymptomatic mutation carriers. The proband’s father and brother both carried the mutated gene disease and showed clinical symptoms. The proband and his brother’s son both carried the mutated gene but showed no clinical symptoms. C – DNA sequencing revealed a novel heterozygous missense mutation (c.1156T>A) in exon 11 of the PSEN1 gene. Arrows indicate the mutation sites. Blood samples were available from the son and brother of the proband with the mutation confirmed.
Discussion

In the first Chinese family, typical clinical symptoms, abnormal neuroimaging scans and changes in CSF biomarkers strongly supported a diagnosis of early-onset Alzheimer’s disease. DNA sequencing showed a heterozygous missense mutation (c.1156T>A) in exon 11 of the PSEN1 gene, and was thought to be inherited from his father. This mutation has never been reported in literature or documented in the following public available databases: Alzheimer Research Forum (http://www.alzforum.org/mutation) and Alzheimer Disease & Frontotemporal Dementia Mutation Database (http://www.molgen.ua.ac.be/admutations). The affected amino acid (p.F386L) is located at the TM7 domain of the PSEN1 protein, which is considered to play an important role in protein-protein interactions. Both SIFT and PolyPhen-2 predicted that this mutation has pathogenicity. The position of amino acid 386 is a hot spot for mutations in the PSEN1 gene, where another three mutations (p. F386L, p. F386S, p.F386I) have been reported previously in the literature [13–16]. Yagi et al. identified a mutation at nucleotide 1158 (c.1158C>A) in a Japanese family, which leads to an amino acid transition at p.F386L; in this family, four mutation carriers developed early amnesia, work difficulties, and even depressive symptoms at the age of 42–50 years [13]. Subsequently, an adjacent mutation (c.1157T>C) was identified in a French family, in which four carriers developed clinical spastic paraparesis at the age of 34–40 years [14]. Shea et al. identified a heterozygous novel missense mutation (c.1156T>A) in the PSEN1 gene, changing phenylalanine into isoleucine at codon 386 (p.F386I). In this Chinese family, six mutation carriers developed symptoms that included memory and cognitive impairment at the age of 40–60 years, and one carrier exhibited atypical epilepsy [16].

In some experimental studies, PSEN1 mutations were found to increase the Aβ42/Aβ40 ratio in vitro. In mutant cells, the secretion of Aβ42 was increased [17]. However, Sun et al. analyzed the effects of PSEN1 mutations on the in-vitro production of Aβ42 and Aβ40 peptides by γ-secretase, and found no significant correlation between the Aβ42/Aβ40 ratio produced by a γ-secretase variant with a specific PSEN1 mutation and the mean age at onset of patients carrying the muta-
Identification of novel missense mutations (c.1156T>C and c.785T>C) in the PSEN1 gene in Chinese families with early-onset Alzheimer’s disease

Furthermore, overexpression of PSEN1 caused by the F388L mutation significantly increased the secretion of Aβ42 and the Aβ42/Aβ40 ratio compared to the wild-type control, which may explain the development of early-onset Alzheimer’s disease [19].

Additionally, we found a novel heterozygous missense mutation (c.785T>C) in exon 8 of the PSEN1 gene, resulting in an amino acid substitution (p.L262S) at the conserved transmembrane domain TM-6. SIFT and PolyPhen-2 predicted that this variation may be a destructive mutation. In previous studies, two pathogenic mutations in the same location have been reported (L262F and L262V) [13, 19, 20]. In the family with the L262F mutation, the affected carriers developed short-term memory decline and difficulty with articulation at the age of 50 years [20]. The L262V mutation has been previously reported in two families: a family in Turkey, in which mutation carriers exhibited memory impairment at an onset age of about 50 years [21], and a family in France, in which the relevant clinical profiles were not described [14]. In our study, the age of onset and clinical symptoms were consistent with these previous reports. Therefore, we speculate that the early-onset Alzheimer’s disease observed in the two Chinese families described in the current work was caused by these novel mutations. It should be noted that in the affected families, some elderly relatives remained asymptomatic, indicating that this inherited disease caused by PSEN1 mutations may harbor an incomplete penetrance like some other autosomal dominant diseases [22].

Table I. Mutations in PSEN1 as reported in Chinese population

<table>
<thead>
<tr>
<th>Mutation(s)</th>
<th>Nucleotide Location (exon)</th>
<th>Age at onset [years]</th>
<th>Sex</th>
<th>Onset symptom</th>
<th>Pathogenicity</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>V97L</td>
<td>c.289G>T</td>
<td>4</td>
<td>Female</td>
<td>Amnesia</td>
<td>Pathogenicity</td>
<td>[27]</td>
</tr>
<tr>
<td>V103G</td>
<td>c.308T>G</td>
<td>4</td>
<td>No report</td>
<td>Uncertain</td>
<td></td>
<td>[28]</td>
</tr>
<tr>
<td>F105C</td>
<td>c.314T>G</td>
<td>4</td>
<td>Female</td>
<td>Amnesia</td>
<td>Uncertain</td>
<td>[29]</td>
</tr>
<tr>
<td>G111V</td>
<td>c.332G>T</td>
<td>4</td>
<td>Male</td>
<td>Amnesia</td>
<td>Pathogenicity</td>
<td>[30, 31]</td>
</tr>
<tr>
<td>A136G</td>
<td>c.407G>T</td>
<td>5</td>
<td>No report</td>
<td>Pathogenicity</td>
<td></td>
<td>[32, 33]</td>
</tr>
<tr>
<td>M139L</td>
<td>c.415A>T</td>
<td>5</td>
<td>Female</td>
<td>Amnesia</td>
<td>Pathogenicity</td>
<td>[28, 34]</td>
</tr>
<tr>
<td>M139I</td>
<td>c.417G>A</td>
<td>5</td>
<td>Male</td>
<td>Amnesia</td>
<td>Pathogenicity</td>
<td>[5, 35]</td>
</tr>
<tr>
<td>T147I</td>
<td>c.440C>T</td>
<td>5</td>
<td>Female</td>
<td>Amnesia</td>
<td>Uncertain</td>
<td>[5]</td>
</tr>
<tr>
<td>R157S</td>
<td>c.471G>T</td>
<td>5</td>
<td>Male</td>
<td>Amnesia</td>
<td>Uncertain</td>
<td>[5]</td>
</tr>
<tr>
<td>I167del</td>
<td>c.497_499delTTA</td>
<td>6</td>
<td>Female</td>
<td>Amnesia and spastic paraparesis</td>
<td>Pathogenicity</td>
<td>[29]</td>
</tr>
<tr>
<td>S169del</td>
<td>c.507-509delATC</td>
<td>6</td>
<td>Female</td>
<td>Amnesia</td>
<td>Pathogenicity</td>
<td>[36]</td>
</tr>
<tr>
<td>L173W</td>
<td>c.518T>G</td>
<td>6</td>
<td>Male</td>
<td>Amnesia</td>
<td>Pathogenicity</td>
<td>[5]</td>
</tr>
<tr>
<td>F177S</td>
<td>c.530T>C</td>
<td>6</td>
<td>Male</td>
<td>Amnesia</td>
<td>Pathogenicity</td>
<td>[5, 37]</td>
</tr>
<tr>
<td>F177V</td>
<td>c.529T>G</td>
<td>6</td>
<td>No report</td>
<td>Uncertain</td>
<td></td>
<td>[28]</td>
</tr>
<tr>
<td>G206V</td>
<td>c.614A>G</td>
<td>7</td>
<td>Female</td>
<td>Amnesia</td>
<td>Uncertain</td>
<td>[38]</td>
</tr>
<tr>
<td>H214R</td>
<td>c.641A>G</td>
<td>7</td>
<td>Female</td>
<td>Amnesia</td>
<td>Uncertain</td>
<td>[38]</td>
</tr>
<tr>
<td>L226R</td>
<td>c.677T>G</td>
<td>7</td>
<td>Male</td>
<td>Amnesia</td>
<td>Uncertain</td>
<td>[39]</td>
</tr>
<tr>
<td>M233L</td>
<td>c.697A>C</td>
<td>7</td>
<td>Female</td>
<td>Epilepsy and amnesia</td>
<td>Pathogenicity</td>
<td>[40]</td>
</tr>
<tr>
<td>L248P</td>
<td>c.743T>C</td>
<td>7</td>
<td>Female</td>
<td>Amnesia</td>
<td>Uncertain</td>
<td>[29]</td>
</tr>
<tr>
<td>Y256N</td>
<td>c.766T>A</td>
<td>7</td>
<td>Female</td>
<td>Amnesia</td>
<td>Uncertain</td>
<td>[38]</td>
</tr>
<tr>
<td>R269H</td>
<td>c.806G>A</td>
<td>8</td>
<td>Male</td>
<td>Amnesia</td>
<td>Uncertain</td>
<td>[5]</td>
</tr>
<tr>
<td>K311R</td>
<td>c.932A>G</td>
<td>9</td>
<td>Male</td>
<td>Amnesia</td>
<td>Pathogenicity</td>
<td>[30]</td>
</tr>
<tr>
<td>R352C</td>
<td>c.1054C>T</td>
<td>10</td>
<td>Female</td>
<td>Amnesia</td>
<td>Pathogenicity</td>
<td>[40]</td>
</tr>
<tr>
<td>F386I</td>
<td>c.1156T>A</td>
<td>11</td>
<td>Male</td>
<td>Amnesia and spatial disorientation</td>
<td>Uncertain</td>
<td>[16]</td>
</tr>
<tr>
<td>F386L</td>
<td>c.1164C>G</td>
<td>11</td>
<td>Female</td>
<td>Amnesia</td>
<td>Pathogenicity</td>
<td>[19]</td>
</tr>
<tr>
<td>V391G</td>
<td>c.1172T>G</td>
<td>11</td>
<td>Male</td>
<td>Extrapyramidal signs</td>
<td>Uncertain</td>
<td>[41]</td>
</tr>
<tr>
<td>A434T</td>
<td>c.1300G>A</td>
<td>12</td>
<td>Female</td>
<td>Hallucinations and delusions amnesia</td>
<td>Uncertain</td>
<td>[29]</td>
</tr>
</tbody>
</table>
Lu Ren, Qiuyan Wang, Guowen Min, Yarong Zhao, Yang Li et al. performed a functional study and found that the L262F mutation was associated with an increased Aβ42/Aβ40 ratio in vitro [18].

According to cumulative clinical evidence, early-onset Alzheimer’s disease is characterized by an onset age of 65 years and early-onset memory impairment. Moreover, other cognitive deficits, such as language disorders, visual-spatial deficits, and behavioral disorders, are more common in early-onset Alzheimer’s disease than the late-onset counterpart [23]. In addition, early-onset Alzheimer’s disease may manifest with various unique features, such as spastic paralysis, early myoclonus, epilepsy, dysarthria, pseudobulbar disease, broader amyloid angiopathy and atypical amyloid plaques [24]. A systematic review showed differences in the clinical manifestation of PSEN1 mutations before and after codon 200. While patients with a codon 200 amino-side PSEN1 mutation had an earlier onset and were more susceptible to seizures and myoclonus, patients with a codon 200 carboxy-side mutation were more susceptible to visual space damage and spastic paraparesis [4]. However, while these results are compelling, various researchers have reported inconsistent findings overall [25]. In our study, no such clinical manifestations were noted, and a much longer follow-up is warranted.

With the rapid economic development, China’s population aging problem has become increasingly serious and has attracted increasing attention. Studying the risk genes of AD has important strategic significance for in-depth understanding of the underlying mechanism of disease development and providing a strong theoretical basis for the development of anti-AD drugs. The identification of AD risk genes is mostly based on the Caucasian population, and the correlation between rare mutations and disease phenotypes may not be directly applicable to Chinese people. According to previous studies, the detection rate of PSENs in China is lower than that of the Caucasian population, and not all Caucasian susceptibility genes are present in Chinese AD [26]. We summarized the known PSEN1 mutations (Table I [27–41]) found in Chinese patients. Among them, Guo, J discovered that a novel mutation (Ser169del) in the PSEN1 gene is related to an early-onset familial AD. Except for their early onset, the mutation produced a clinical phenotype similar to that of sporadic AD. There are two other mutations at codon 169 (Ser169Pro [42] and Ser169Leu [43]) associated with an atypical phenotype, characterized by a very early onset (mean age of onset was 32), rapid progression (mean age of death was 38) and the presence of other phenotypes, such as seizures, generalized myoclonic jerks and so on. It shows that there are different clinical phenotypes with different amino acid transversions even at the same codon. At present, the reason for the heterogeneity of the mutant PSEN1 phenotype is not yet clear. There may be other unidentified genes and environmental factors involved, which requires further research. Several mutations in PSEN1, including N24S, V97L, G111V, M139L, L172W, and K311R, were also first identified in the Chinese population. The clinical phenotypes of the novel mutations reported by us are not significantly different from those of different amino acid transversions even at the same codon compared with previous reports.

Carrying out large-scale genetic analysis in China will help expand the understanding of AD risk genes in different ethnic groups. In summary, in order to better understand the pathogenesis of AD and formulate diagnostic and treatment strategies, it is necessary to establish a nationwide network and conduct systematic genetic analysis, which is currently lacking in China.

In conclusion, we identified two novel heterozygous missense mutations (c.1156T>C and c.785T>C) in the PSEN1 gene in Chinese families with early-onset Alzheimer’s disease. While the pathogenetic role of these mutations still needs further research, our findings provide new PSEN1 gene mutation profiles and will help elucidate the pathogenesis of early-onset Alzheimer’s disease.

Conflict of interest
The authors declare no conflict of interest.

References
Identification of novel missense mutations (c.1156T>C and c.785T>C) in the PSEN1 gene in Chinese families with early-onset Alzheimer’s disease

