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Abstract

Purpose: Mitophagy is a type of selective autophagy, associated with degradation of inefficient mitochondria. The modulation
of mitophagy seems to be one of the most important solutions for key factors in the maintenance of neuronal cell homeostasis.
This paper overviews the role of mitochondria and mitophagy in the etiology of the most common age-related neurodegenerative
diseases, i.e. Alzheimer’s disease (AD) and Parkinson’s disease (PD).

Views: In recent years, the role of mitophagy in neurodegenerative diseases has been given more attention. It has been shown that dis-
turbed mitophagy and mitochondrial dysfunction in neurons may contribute to the cell death. In AD and PD, a number of abnormalities
related to the expression and function of proteins involved in the process have been revealed. Because mitochondrial dysfunction plays
arole in the origin/etiology of those diseases, possible therapeutic strategies aiming to improve quality control systems of mitochondria are
also presented. Nowadays, these are mainly strategies improving the energy efficiency and facilitating induction of mitophagy.

Conclusions: Recent reports suggest that abnormal function of proteins involved in mitophagy may be an important etiological
factor in neurodegenerative diseases. Furthermore, these findings may become the basis for the development of more effective
therapies preventing or alleviating the disease symptoms.

Key words: mitophagy, mitochondria, Alzheimer’s disease, Parkinson’s disease.

Streszczenie

Cel: Mitofagia jest rodzajem selektywnej autofagii, podczas ktdrej degradacji ulegaja mato wydajne mitochondria. Modulacja procesu
mitofagii wydaje si¢ obecnie jednym z najwazniejszych rozwigzan umozliwiajacych utrzymanie homeostazy komoérek nerwowych.
Celem niniejszej pracy jest podsumowanie istniejacej wiedzy dotyczacej roli mitochondriéw oraz procesu mitofagii w etiologii najbardziej
rozpowszechnionych choréb neurodegeneracyjnych zwigzanych z wiekiem, tj. choroby Alzheimera (AD) i choroby Parkinsona (PD).
Poglady: W ostatnich latach obserwuje si¢ wzrost zainteresowania rola mechanizmu mitofagii w powstawaniu choréb neurode-
generacyjnych. Wykazano, ze zaburzona funkcja mitochondriéw i utrata zdolno$ci do mitofagii w komérkach nerwowych moze
przyczynia¢ sie do ich $mierci. W AD i PD zaobserwowano szereg nieprawidlowosci zwigzanych z ekspresja oraz funkcja biatek za-
angazowanych w ten proces. Ze wzgledu na powigzanie zaburzen funkcji mitochondrialnych z omawianymi chorobami w niniejszej
pracy przedstawiono takze mozliwe strategie terapeutyczne ukierunkowane na poprawe wewnatrzkomoérkowych systemoéw kontroli
jakosci tych organelli. Obecnie sg to przede wszystkim strategie poprawiajace wydajno$¢ energetyczng komdrek nerwowych i roz-
wigzania umozliwiajace kontrolowane indukowanie procesu mitofagii.

Whioski: Najnowsze badania wskazuja, ze nieprawidlowe funkcjonowanie biatek zaangazowanych w proces mitofagii moze sta-
nowi¢ wazny czynnik etiologiczny choréb neurodegeneracyjnych. Wyniki tych badan moglyby sta¢ si¢ podstawa do opracowania
skuteczniejszych terapii zapobiegajacych wystapieniu objawéw wspomnianych choréb badz tagodzacych ich przebieg.

Stowa kluczowe: mitofagia, mitochondria, choroba Alzheimera, choroba Parkinsona.
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INTRODUCTION

Ageing is one of the most important risk factors for
common neurodegenerative disorders, such as Alzhei-
mer’s disease (AD) and Parkinsons disease (PD). With
the increase in life expectancy, new treatments are being
intensively searched for. Although general mechanisms be-
hind age-related neurodegeneration have been identified,
the complex processes responsible for its development are
still not fully understood, and current pharmacotherapy is
still based on symptomatic treatment.

The main pathomechanism of these neurodegenerative
diseases is the aggregation of abnormally folded proteins
and the associated loss of specific nerve cell populations.
In AD, the changes affect areas of the brain that are key to
learning and memory processes, i.e. hippocampus, rhin-
encephalon and frontal cortex [1, 2]. In PD, dopaminergic
neurons in substantia nigra of the midbrain are lost [3].
Maintaining the integrity of neuronal networks is depen-
dent on factors involved in the removal of nerve tissue waste
products. Among them, autophagy - an evolutionary con-
servative intracellular mechanism based on the elimination
of macromolecular components of cytoplasm, especially
proteins with a long half-life and whole organelles - has
a great application potential in controlling the processes
of neurodegeneration [4-11]. Autophagy is non-selective,
when a part of the cytoplasm is digested and the balance
between the size and composition of the cytoplasm is being
kept. However, this process can be very specific and lead
to the degradation of specific structures, such as protein
aggregates, cell organelles, as well as bacteria and viruses.
A type of selective autophagy important for cell homeo-
stasis is mitophagy — a process of degrading damaged and
inefficient mitochondria [12, 13]. Neurons as cells showing
a high energy demand dependent on mitochondrial me-
tabolism are particularly sensitive to mitochondrial dys-
function [14-18]. Besides, neurons do not have the ability
to proliferate, therefore an efficient system is needed to
eliminate damaged mitochondria, which may be a source
of reactive oxygen species (ROS) or a factor triggering
apoptosis [19].

In recent years, the role of mitophagy in neurode-
generative diseases has been given more attention. It has
been shown that disturbed mitophagy and mitochon-
drial dysfunction in neurons may contribute to the cell
death. In AD and PD, a number of abnormalities relat-
ed to the expression and function of proteins involved
in the process have been revealed. Here we review data
showing that abnormal function of proteins involved
in mitophagy may be an important etiological factor in
neurodegenerative diseases. Furthermore, these find-
ings may become the basis for the development of more
effective therapies preventing or alleviating the symp-
toms.

THE MOLECULAR MECHANISM
OF MITOPHAGY

Over the last decade, significant progress has been
made in the study of molecular mechanisms underlying
mitophagy — a process in which autophagosome engulfs
damaged mitochondria and directs them towards lyso-
somal degradation. This research has helped to identify
the proteins involved and to understand their role in physi-
ological and pathological conditions. There are two known
mechanisms of mitophagy: dependent on and indepen-
dent of ubiquitin. Ubiquitin is a low molecular weight
protein which marks proteins intended for degradation.
The addition of ubiquitin molecules to proteins is called
ubiquitination. This paper focuses primarily on the ubiqui-
tin-dependent mitophagy, since disturbances in the func-
tion of proteins involved in the process have a significant
impact on the development of both diseases.

PTEN-induced kinase 1 (PINK1) is a serine-thre-
onine kinase located on the outer mitochondrial mem-
brane (OMM). PINKI1 together with the cytoplasmic E3
ubiquitin ligase (Parkin) are important factors involved
in the removal of dysfunctional mitochondria on the way
of by means of ubiquitin-dependent mitophagy [20].

PINK1 occurs in small amounts in properly func-
tioning mitochondria. PINK1 is transported via TOM/
TIM membrane translocases from the outer to the inner
mitochondrial membrane (IMM), and is cut by mito-
chondrial proteases. The remaining part of PINKI is
released into the cytoplasm where it undergoes proteo-
Iytic degradation (Figure IA) [21-23]. In dysfunctional
mitochondria with a loss of membrane potential, PINK1
degradation is inhibited. It then binds permanently with
the TOM subunit of the TOM/TIM complex, which
leads to its accumulation in the OMM and initiates
mitophagy [23]. The inhibition of PINK1 degradation
causes the recruitment of cytoplasmic Parkin and its
connection to the mitochondrion with a lost membrane
potential [24, 25].

Linked to the mitochondrial surface and activated
by PINKI, parkin initiates the ubiquitination of pro-
teins of the OMM, including Mitofusin 1 and Mito-
fusin 2 (Mfnl and Mfn2), mitochondrial Rho GTPase 1
(Mirol), voltage-dependent anion-selective channel pro-
tein (VDAC1). Mfnl and Mfn2 preserve mitochondria
connections [26]. In a cell, mitochondria connect to each
other, forming a spatial and branched network. Probably,
such an organisation contributes to the intensification
of energy production and facilitates maintaining homeo-
stasis in response to stress conditions [27]. Depending on
the needs, the network can be modified by connecting or
disconnecting individual mitochondria. Decreased activ-
ity of Mfnl and Mfn2 proteins causes isolation of a dys-
functional mitochondrion from the mitochondrial net-
work [26]. Another substrate for parkin is Miro1 protein,
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which binds mitochondria to the microtubules and thus
provides for each mitochondrion a possibility of move-
ment within the network. Inhibition of Mirol facilitates
isolation and immobilises mitochondrion by discon-
necting it from the microtubule [26, 28]. Another pro-
tein involved in mitochondrial division is dynamin-re-
lated protein 1 (Drpl). PINK1 and parkin can activate
Drpl, which results in disconnection of a mitochondrion
from the network [29, 30]. In addition, to the proteins
of the OMM, polyubiquitin chains are attached which
recruit proteins binding microtubule-associated proteins
1A/1B light chain 3 (LC3) present on the surface of a ma-
turing autophagosome. When a damaged mitochondri-
on is attached to an autophagosome, the autophagosome
membrane elongates and closes the mitochondrion in-
side for the lysis (Figure IB) [31].

The inhibitors of ubiquitin-dependent mitophagy are
deubiquitinating enzymes, including USP15, USP30, and
USP35, pivotal to maintaining balance between ubiquiti-
nation and deubiquitination. Excessive expression of these
enzymes may inhibit the mitophagy through increased re-
moval of polyubiquitin chains [32].

Natalia Chmielewska, Piotr Maciejak, Janusz Szyndler, Adam Ptaznik

MITOCHONDRIAL DISORDERS
IN ALZHEIMER’S AND PARKINSON’S
DISEASES

Neurodegenerative diseases have different clinical
symptoms. However, it is now believed that similar mecha-
nisms leading to neuronal degeneration are responsible for
their occurrence. In the nervous tissue of patients with AD
and PD, accumulation of neurotoxic and enzyme resistant
aggregates is observed. Furthermore, dysfunctional mito-
chondria have also been found. This indicates faulty mito-
chondrial function and a diminished ability to mitophagy
as a new cause of neurodegeneration [17, 33-36].

Alzheimer’s disease

The neuropathological symptoms of AD show extra-
cellular accumulation of B-amyloid (AB) plates and for-
mation of intracellular neurofibrillary tangles, which are
aggregates of hyperphosphated tau protein [17, 33, 34].
An important role in the pathogenesis of AD is being cur-
rently attributed to the interaction of Ap with mitochon-
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Figure I. The mechanism of ubiquitin-dependent mitophagy. A. In properly functioning mitochondria, a PINK1 is trans-
ported through the TOM/TIM complex from the OMM to the IMM, where it is cut by mitochondrial proteases. Then the re-
maining part of the PINKT is released into the cytoplasm and undergoes proteolytic degradation. B. As a result of the loss
of membrane potential, the fransport of PINK1 by the TOM/TIM complex is inhibited. 1. PINK1 connects to the TOM subunit
of the TOM/TIM complex and accumulates on the external surface of the mitochondria. The presence of PINK1 recruits
cytoplasmic Parkin and leads to its activation. 2. Activated by PINK1 Parkin initiates the process of ubiquitination of pro-
teins of the OMM, e.g. Mnf1, Mnf2, Miro1, VDAC1. As a result, polyubiquitin chains are attached to mitochondrial proteins.
3. Polyubiquitin chains are recognised by proteins that have the ability fo bind to the LC3 proteins present on the autopha-
gosome membrane. 4. The dysfunctional mitochondrion is attached fo the membrane of the maturing autophagosome.
5. The autophagosome membrane lengthens and closes the mitochondrion for lysis
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drial matrix proteins, dynamics and distribution of mi-
tochondria in nerve cells, and mitochondrial respiratory
chain abnormalities [37-40]. Recent reports also point to
the disturbance in the expression of key proteins associ-
ated in mitophagy: PINK1 and parkin [41].

It has been revealed that in AD, AP and phosphory-
lated tau protein interact with the Drpl protein, causing
excessive mitochondrial fragmentation [40]. Intensified
and prolonged fragmentation causes a decrease in mito-
chondrial membrane’s internal potential and increased
permeability disrupting proper function of the electron
transport chain [42]. The consequence of abnormal func-
tioning of the respiratory chain complex III and IV is
a decrease in ATP production, an increase in oxidative
stress, and disruption of calcium homeostasis. Increased
Ca?* concentration in neurons may affect both phosphor-
ylation of tau protein and enzymatic treatment of 3-am-
yloid precursor protein (APP), leading to the accumula-
tion of AP [43]. It was also shown that A molecules can
form pores permeable for Ca?* in the cell membrane and
additionally disturb calcium homeostasis, contributing
to the formation of free oxygen radicals. Oxidative stress
caused by the accumulation of AP and calcium excess
may contribute to the mitochondrial dysfunction [44].
Early accumulation of structurally abnormal mitochon-
dria was observed in AD patients and a similar change
was observed in AD animal models [43, 44].

Although processes preceding the clinical manifestation
of AD are being increasingly understood, signal pathways
inducing mitophagy in the neurons of patients are still un-
known. Recent reports suggest that neurons affected by AD,
at first stages, show a strong induction of mitophagy through
increased recruitment of parkin to the damaged mitochon-
dria. As the disease progresses, the intensified process of mi-
tophagy leads to a reduction in the cytosolic parkin, which
results in accumulation of dysfunctional mitochondria [45].
In the neurons of AD patients with established clinical symp-
toms, mitophagy impairment associated with a decreased
park level and insufficient number of autophagosomes led to
accumulation of depolarised mitochondria and PINK1 [41].
Additionally, overexpression of parkin in cell line and mouse
AD model caused increased removal of defective mitochon-
dria by intensified synthesis of autophagosomes. This result-
ed in the recovery of mitochondrial membrane potential
and decreased PINK1 accumulation [41, 46].

Parkinson’s disease

In PD, the presence of neurons with modified a-sy-
nuclein protein inclusions in the cytoplasm, called Lewy’s
bodies, is characteristic [33]. Although the majority of pa-
tients are diagnosed with an idiopathic form of PD, the less
common family form of this condition has helped to iden-
tify genes that are a risk factor. Predominantly, five genes
mutations involved in PD development are described.

These genes code a-synuclein, parkin, PINK1, protein DJ-1
and kinase 2 [47, 48]. In the pathogenesis of PD, besides
a-synuclein, an important role is also played by parkin and
PINKI1, which are key factors involved in the signal path-
way leading to marking and absorption of dysfunction-
al mitochondria in the mitophagy [49, 50]. The clinical
phenotype of PD in patients with those genes mutations
is similar to the idiopathic form of the disease. The hered-
itary form of PD is characterised by earlier manifestation,
especially in parkin mutations. Neuropathologically, there
are no significant differences [51].

Decreased activity of NADH dehydrogenase, an en-
zyme present in the IMM of mitochondria, which is a com-
plex of respiratory chain I, is also associated with PD [52].
Mitochondrial toxins, which are inhibitors of this complex,
are used in animal models of the disease. A decrease in elec-
tron transport chain activity results in an imbalance of cal-
cium homeostasis in the brain and changes in the function
of calcium channels (VDCC) type L. It may cause easier
end frequent opening of the channel and excessive influx
of Ca?* into the neurons, contributing to the formation
of free oxygen radicals [53, 54]. Oxidative stress induced
by damaged mitochondria causes degeneration of substan-
tia nigra and manifestation of symptoms in experimental
animals [55-57]. Interestingly, cells isolated from the brain
of mice with PINK-1 knock out gene also showed limited
capacity of calcium buffering and increased susceptibility
to inflammation-induced oxidative stress [58].

Mitochondrial stress caused by reduced respiratory
chain activity causes changes in the organisation of the mi-
tochondrial network. In the rat line of dopaminergic
neurons, it has been shown that inhibition of complex I
of electron transport chain caused by 1-methyl-4-phenyl-
pridinium neurotoxin (MPP+) and oxidative stress caus-
es fragmentation of mitochondrial network [59]. Similar
changes were observed after administration of the com-
plex inhibitor I - rotenone [60, 61]. Intensified division
of mitochondria may lead to a decrease in the membrane
potential. In that condition, PINK1 does not degrade
and accumulates in the OMM, thus initiating the process
of mitophagy depending on ubiquitin. Reduced mem-
brane potential, increased Ca** levels, and excess of ROS
in mitochondria of nerve cells were also found in animal
knock out of PINK1 and parkin genes [62-64].

IMPROVEMENT OF MITOCHONDRIAL
FUNCTION IN ALZHEIMER’S DISEASE
AND PARKINSON'’S DISEASE AS

A THERAPEUTIC TARGET

Because mitochondrial dysfunctions are believed to
be associated with the two neurodegenerative diseases, in
recent years the search for methods to improve mitochon-
drial functions has been given a lot of interest. Nowadays,
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the best candidates are drugs supporting mitochondrial
mechanisms related to maintaining energy efficiency. These
are natural antioxidants, given that oxidative stress plays an
important role in the pathophysiology of neurodegenerative
diseases. Mitochondria are not only the main production
site of ATP, but also an important modulator of oxidative
potential in the cell. These organelles constantly generate
ROS as a by-product of oxygen metabolism. Mitochondrial
DNA mutations (mtDNAs) accumulate in nerve cells with
aging. It may lead to changes in the oxidative phosphoryla-
tion, the expression of antioxidant enzymes, and an over-
production of ROS [65]. Excessive accumulation of ROS
weakens the bioenergetic function of mitochondria, lead-
ing to numerous mutations in nuclear and mitochondrial
DNA, which decreases the tricarboxylic acid cycle activity
and disrupts the respiratory chain function [65]. There-
fore, strategies for induction of the mitophagy process
seem to be the key to treatment and prevention of neu-
rodegenerative diseases. The solutions described below,
allow to partially restore and increase the intensity of en-
dogenous quality control mechanisms.

Lycopene - a carotenoid compound naturally occur-
ring primarily in tomatoes and other red fruits, has a strong
ability to remove free radicals. It is suggested that lycopene
has a therapeutic potential for neurodegenerative dis-
eases. The beneficial effect of lycopene supplementation
has been shown in the PD rat model, where the oxidative
stress caused by rotenone was reduced by restoring the lev-
el of endogenous antioxidants (glutathione and peroxide
dismutase) and by reactivation of the respiratory complex
I in mitochondria [57]. Another promising antioxidant is
resveratrol — polyphenol naturally occurring mainly in dark
grape varieties. Resveratrol not only reduces ROS, but also
increases the APP protein degradation, improves the clear-
ance of the neurotoxic protein AP and reduces its aggrega-
tion [66-68]. It was also found to be a potential inhibitor
of proapoptic factors, such as the Bax protein, which takes
part in the formation of channels increasing the permeabili-
ty of the outer mitochondrial membrane [68, 69]. Neuropro-
tective action of resveratrol is probably also associated with
stimulation of sirtuin synthesis, which reduces ROS lev-
els [70]. However, numerous studies have shown that the use
of resveratrol may be limited due to low bioavailability and
some effort has been made to improve its properties through
structural modifications. In vitro studies have shown that
methylated and butylated resveratrol derivatives have better
neuroprotective and anti-inflammatory properties [71].

Another organic chemical with neuroprotective ef-
fects is creatine, which after being absorbed into the brain
and skeletal muscles is converted into phosphocreatine
(PCr) by cytosolic and mitochondrial creatine kinase.
PCr is the buffering factor for ATP in tissues with high
energy demand, such as skeletal muscles and
thebrain [72]. Numerous independent studies have shown
that creatine blocks the death of neurons and increases
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neuron vitality in experimental models of animal neuro-
degenerative disorders [73]. The effectiveness of creatine
in treating PD patients has not been demonstrated by
a long-term exploratory study conducted by the National
Institutes of Health (NIH). Based on the Unified Parkin-
son’s Disease Rating (UPDRS), no significant differences
were found between patients receiving creatine monohy-
drate and those receiving placebo [74]. However, due to
promising pre-clinical studies, creatinine could be used
in combination therapy. Polytherapy of creatine with ubi-
quinone (coenzyme Q10) shows additive neuroprotective
effect in animal PD models [75]. Ubiquinone is an essen-
tial biological cofactor of the electron transport chain,
which removes free oxygen radicals in the IMM by in-
teracting with a-tocopherol. Coenzyme Q10 also showed
neuroprotective effects in several models of neurodegen-
erative disorders in vitro and in vivo [72, 76].

The mitophagy seems to be a key pathway in quality
control of these organelles. Unfortunately, compounds
currently used to induce mitophagy in vitro are very toxic
and non-selective. Significant research has led to the devel-
opment of a new potential inductor of mitophagy - PMI
(P62-mediated mitophagy inducer). PMI increases ex-
pression and signalling of autophagic adaptive molecule
P62/SQSTMI in mitochondria, activating mitophagy in-
dependently of PINK1/parkin pathway, and thus does not
cause loss of mitochondrial membrane potential and does
not affect mitochondrial network. Thus, the action of PMI
does not include non-specific effects associated with a sud-
den decrease in the membrane potential, characteristic
of compounds routinely used to induce mitophagy in vitro,
and may be a prototype pharmacological tool for the ex-
ploration of molecular mechanisms of this process [77].

CONCLUSIONS

The improvement of mitochondria quality control
mechanisms, including mitophagy, seems to be one
of the most promising therapeutic interventions in PD
and AD. The aim is difficult to achieve because the pro-
cesses responsible for the proper functioning of mito-
chondria are under control of many complexes and not
fully understood cellular mechanisms. Current symp-
tomatic therapies do not allow to solve the problem
of progressive neurodegeneration and do not allow to
completely abolish the symptoms of the late stage. For
this reason, most of the research focuses on the search for
neuroprotective, regenerative and replacement therapies.
Nowadays, there is no unequivocally effective therapeutic
approach able to control the dynamics of mitochondria
and the mitophagy. Explaining the interrelation of many
molecular mechanisms, metabolic and biochemical pro-
cesses related to mitochondrial functions, and finding
factors activating these processes will facilitate the search
for new, effective methods of treating these diseases.

© 2019 Institute of Psychiatry and Neurology. Production and hosting by Termedia sp. z 0.0.
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