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Abstract
Fluid therapy is one of the most important treatments in patients with traumatic brain injury (TBI) as both hypo- and 

hypervolaemia can cause harm. The main goals of fluid therapy for patients with TBI are to optimize cerebral perfusion 

and to maintain adequate cerebral oxygenation. The avoidance of cerebral oedema is clearly essential. The current 

weight of evidence in the published literature suggests that albumin therapy is harmful and plasma substitutes have 

failed to demonstrate superiority over crystalloids solutions. Crystalloids are the most common fluids administered 

in patients with TBI. However, differences in their composition may affect coagulation and plasma tonicity and acid-

base homeostasis. The choice of the ideal crystalloid fluid in TBI should be made based on tonicity, type of buffer 

used and volume status. Hypotonic fluids buffered with substances altering blood coagulation should be avoided 

in clinical practice. The prescriber remains faced with choices about the tonicity and pH buffering capability of fluid 

therapy, which we review here.
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Solutions of inorganic ions and small organic mol-

ecules dissolved in water are referred to as crystalloids. 

They are far more widely used than colloids which contain 

a larger molecular weight solute expected to contribute 

to the colloid osmotic pressure gradient across capilla ries. 

Infused crystalloids influence electrolyte, acid-balance 

and osmotic homeostasis in all the recognized body fluid 

compartments. The ideal crystalloid solution is often de-

fined as a fluid which is similar to interstitial fluid and so 

would not affect electrolyte or the acid-base balance after 

intravenous administration [1–3]. Bicarbonate dialysate 

solutions are available with or without potassium, and ac-

commodating the prescriber’s preference for calcium and 

magnesium concentrations (e.g. www.bbraunusa.com/

products.html?prid=PRID00007061). Although their only 

disadvantage is that they are usually supplied in 5 litre bags, 

the resourceful clinician should be able to create a local 

policy for their safe use on the ICU. It has been suggested 

that clinicians should pay more attention to the type of 

fluid used, particularly in critically ill patients treated for 

traumatic brain injury (TBI), sepsis, septic shock or acute 

kidney injury (AKI) [4–6].

regulation of fluids in tHe Brain
The central volume of distribution of infused crystalloids 

is essentially the whole of the intravascular fluid including 

the glycocalyx layers. Equilibrium with the tissue volume of 

distribution depends on the transendothelial filtration rate 

(Jv) and the return of interstitial fluid to the blood via lymph 

nodes or the thoracic duct (Qlymph). Jv is itself determined 

by the transendothelial pressure gradient and the transen-

dothelial resistance to flow (reciprocal of hydraulic conduct-
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Table 1. Ions in cerebrospinal fluid (CSF), brain interstitial fluid (BISF), plasma and interstitial fluid [7, 12]

cSf/biSf Plasma interstitial fluid

pH 7.3 7.35 – 7.45 7.38–7.42

Na+ (mM) 152–156 135–145 139–146

K+ (mM) 2.86–3 3.6–4.5 2.9–4

Cl¯ (mM) 120 110–117 110–113 

HCO3¯ (mM) 22–24 20–24 26–28 

Ca2+ (mM) 1.14 2.1–2.5 2

Mg2+ (mM) 1.1 0.8–1.2 1.2–1.4

ance Lp) [7]. By definition, while isotonic solutions have no 

effect on intracellular water content, hypotonic solutions 

pose a threat to intracranial pressure because an acute fall 

in the tonicity of plasma causes brain cells to swell. Extra-

cellular oedema occurs when the net variance between Jv 

and QLymph results in pathological interstitial fluid excess. 

It used to be believed that the brain was unusual in having 

no lymphatic system, but such a system was discovered in 

2015 [8]. It also used to be believed that biophysical osmotic 

therapy with colloids would reduce interstitial oedema, but 

this is now known to be untrue [7]. Although neuronal cells 

can compensate for an increase in brain water content, 

especially by regulating brain interstitial fluid (BISF), via 

active depletion of intracellular osmotic solutions, these 

mechanisms may also trigger an apoptotic pathway [9, 10].  

Patients treated for TBI are especially susceptible to dis-

turbances in blood tonicity and electrolyte disorders. 

Physiologically, the inorganic ions in brain fluids depend 

on permeability of two interfaces: the choroid plexus and 

the brain blood-barrier (BBB). The choroid plexus produces 

cerebrospinal fluid (CSF), while the BBB generates BISF that 

drains into the CSF. The composition of BISF depends pri-

marily on the transport of the BBB and plasma osmolality 

while its volume depends on intra-cranial pressure (ICP) 

and cerebral perfusion pressure (CBP) [10, 11]. It should be 

noted that while concentrations of K+, Na+, Ca2+ and Cl¯ are 

very close in BISF and CSF, they are significantly different 

from those in blood plasma (Table 1). Small molecules move 

freely between BISF and CSF whereas large molecules move 

slowly across the boundaries between BISF and CSF [11, 12].  

Some authors have shown that 70 – 90% of isotopically 

marked water in the blood perfusing the brain go over the 

BBB in a single pass [10, 13–16]. It can be estimated that the 

total net water flow into the brain amounts to '680 L per day 

when cerebral blood flow (CBF) is 700–800 mL per min. In 

the smallest brain capillaries, the brain water movements 

depend mainly on the hydrostatic and total osmotic gradi-

ents between both sides of the BBB [15, 16]. However, the 

permeability of brain microvessels to Na+ and Cl¯ is 1000-fold 

lower than in peripheral vessels, which plays a crucial role 

for the water shift to the brain [10, 17]. It has been estimated 

that 1 mM concentration difference for NaCl across the 

BBB changes hydrostatic pressure difference by 38 mm Hg  

[15, 16, 18, 19]. Based on this assumption, the rate of fluid 

shifts across BBB is strictly dependent on solute transport 

and the volume of BISF is determined by the solute con-

centration in BISF and the plasma osmolality [10]. Even 

small changes in blood osmolality of 1 mOsm L-1 increase 

the pressure of fluid shifts across the BBB at 19 mm Hg, and 

a decrease in plasma osmolality by approximately 3%, i.e. 

from 288 to 280 mOsm kg-1 H2O, increases brain volume by 

3% and decreases intra-cranial blood and/or CSF volume 

by as much as 30% [10, 20]. Therefore, hypotonic solutions 

have not been recommended for patients with traumatic 

brain injury as they increase brain volume (Grade 1C) [21]. 

The daily production of CSF is around 600–700 mL (CSF is 

produced at a rate of 0.2–0.7 mL min-1) and the turnover of 

entire volume of CSF is three to four times per day.

alterations in Blood Brain Barrier
In general, TBI coexists with an increase in BBB perme-

ability, which is an early consequence of injury. The greatest 

destruction in the BBB is detected in the pericontusional 

area during the first 48 hours after TBI [22]. A transcapillary 

leakage leads to a decline in osmotic buffering capacity of 

small solutes and rapid water filtration along hydrostatic 

and osmotic gradients. An increase in BBB permeability also 

favours a raised shift of osmotically important molecules 

such as sodium, disturbing BISF tonicity [15]. Therefore, 

some authors have suggested that uncontrolled extrava-

sation of crystalloids through an injured BBB should be 

compensated by an increase in plasma oncotic pressure 

as an opposing force to fluid filtration [23, 24]. Bulk flow 

of water through a disrupted BBB is driven by osmotic and 

hydrostatic forces, produced by alterations in ion transport. 

If the concentrations of solutes in BISF and nervous cells is 

constant, small changes in plasma ions content moderately 

affect water and solutes shift into BISF. However, every TBI 

increases BBB permeability resulting in brain oedema fol-

lowing pathological osmotic-driven fluid flow into the brain. 
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A peri-injury hypotension treated with overzealous crystal-

loid infusion significantly increases brain water content 

leading to cytotoxic oedema [25]. 

tHe role for HyPertonic solutions
A relatively small volume (4 mL kg-1) of hypertonic saline 

3–7% can significantly reduce ICP, correct CBF and improve 

cerebral oxygen delivery [26]. Elliot et al. [27] showed in an 

experimental study that the use of hypertonic saline treat-

ment resulted in a significant decrease in the number of 

hypertrophic astrocytes, together with a reduction of stress-

related inflammatory response, and that this was associated 

with improved outcomes. Hypertonic saline also suppresses 

production of proinflammatory cytokines in activated micro-

glia and increases the expression of inducible nitric oxide 

synthase in the peri-ischaemic area [28]. It is remarkable that 

the extreme chloride load of hypertonic saline seems quite 

safe in reality. Although hypertonic saline is also used in the 

emergency medicine setting, the fourth edition of the guide-

lines for the management of severe TBI has not supported 

hyperosmolar therapy and only recommends mannitol as 

an effective treatment in patients with elevated ICP [29–31].

tHe role of Balanced crystalloid solutions
Balanced solutions and normal saline are both advo-

cated by experts to treat hypovolaemia in TBI patients. 

There is no reason why both may not be used if plasma 

chloride concentrations are being monitored. The case for 

balanced salt solutions includes the occurrence of dilution 

hyperchloremic acidosis following massive saline infusion 

[32, 33]. Indeed, infusion of large volumes of normal saline 

commonly leads to dilution hyperchloremic acidosis, par-

ticularly in hypovolaemic patients with impaired kidney 

function or perfusion [33]. Evidence has been produced 

that massive infusion of chloride-rich fluids leads to renal 

ischemia following interstitial oedema, and reduces glo-

merular filtration following arterial vasoconstriction, hence 

increasing the risk of AKI [34, 35]. Infusion of 20 mL kg-1 of 

chloride solution (9 L of 0.9% NaCl) decreases base excess 

by 10 mmol L-1 in a typical 70 kg patient, suggesting an 

inverse linear relationship between base excess and the 

amount of chloride administration [4]. It should be noted 

that the occurrence of AKI has been reported in 9–23% of 

patients with TBI, and depends on age, severity of TBI and 

daily fluid balance [36]. Some authors have also documented 

a deleterious effect of normal saline when irrigated directly 

on an injured brain. A decrease of pH and rapid electrolyte 

disorders in BISF lead to neural damage and increase the 

risk of hematoma recurrence [37, 38]. The use of balanced 

solutions may prevent all the above-mentioned effects and 

may be safer than normal saline when given as intravenous 

infusion or direct irrigation on the brain [37, 39]. 

Isotonic balanced salt solutions reduce the occurrence 

of dilution hyperchloremic acidosis and do not affect ICP and 

the number of episodes of intra-cranial hypertension (ICH) 

[39]. Unfortunately, some solutions are hypo-osmotic and 

their in-vivo (real) osmolality (tonicity) is lower than the the-

oretical or plasma tonicity (Table 2) [6, 40]. Such differences 

result from different plasma and fluid compositions. Gener-

ally, all therapeutic fluids contain cations and anions (Na+, K+, 

Mg2+, Ca2+, Cl¯) buffered by anions including malate, lactate, 

citrate or acetate, whereas plasma cations are buffered by 

sulphate, phosphate, organic acids and some proteins. Dif-

ferent content of fluid ions has a significant impact on strong 

ion difference (SID) affecting the plasma acid-base state 

and plasma electrolyte concentrations. Despite their differ-

ent composition, some authors have documented similar 

unfavourable effects of Plasma-Lyte® 148 and 0.9% NaCl on 

kidney function in 12 healthy volunteers [41]. Although both 

fluids expanded the intravascular volume to the same de-

gree, extravascular fluid disorders were significantly greater 

in the 0.9% NaCl compared to the Plasma-Lyte® group. An-

other clinical study has documented a similar occurrence of 

AKI in critically ill patients treated with Plasma-Lyte and 0.9% 

NaCl [42]. An experimental study comparing 0.9% NaCl ver-

sus Plasma-Lyte® and Ringer’s lactate in haemorrhagic shock 

has presented a significantly better 24-hour-survival rate in 

animals receiving Ringer’s lactate compared to Plasma-Lyte® 

or saline (67% vs 30%) [43]. While the composition and tonic-

ity of crystalloid solutions may have an impact on survival 

after fluid resuscitation from hypovolaemia, the case for nor-

mal saline is that it is safe, cheap and widely available [44].  

Until randomized clinical trial evidence is available, clinical 

judgment may be used to choose between normal saline or 

a balanced salt solution of adequate tonicity for resuscita-

tion from hypovolaemia.

effects of crystalloid solutions  
on coagulation

Crystalloid-induced alterations in coagulation should be 

a factor determining the choice of fluid in patients treated 

for TBI. General disorders in coagulation following volume-

related blood dilution, as well as some disorders related to 

specific crystalloid composition (such as presence of citrate) 

may increase the risk for intracranial (re)bleeding resulting in 

a worse clinical outcome. It should be noted that acute idi-

opathic coagulopathy disorders occur in 59% of all patients 

with TBI (7–86.1%), and are frequently observed in patients 

with parenchymal injury [45–48]. Posttraumatic coagulopa-

thy has been noted more frequently in patients with isolated 

TBI than injuries without TBI, and this has not been depend-

ent on the severity of TBI [48]. Acute coagulation disorders 

are associated with higher mortality, particularly when they 

develop within the first 24 hours after TBI [46, 47]. Citrate, 
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Table 2. Composition of the most popular fluid in Poland

0,9% nacl ringer's 
Solution

Multielectrolyte 
fluid (PWe)

optilyte Plasmalyte Sterofundin 
iSo

Sterofundin

Na+ (mmol L-1) 154 130 141 141 140 145 140

Cl¯ (mmol L-1) 154 109 109 109 98 127 106

Ca2+ (mmol L-1) – 3 2 2 2,5 2,5

Mg2+ (mmol L-1) – – 1 1 1,5 1 1

K+ (mmol L-1) – 4 5 5 5 4 4

Buffered anions

acetate – – 34 34 27 24

citrate – – 3 3 – –

gluconate – – – – 23 – –

lactate – 28 – – – 45

malate – – – – – 5 –

SID 0 28 43 43 50 29 45

pH 4.5–7 5–7 5.5–7.5 5.5–7.5 4–8 5.1–5.9 4.5–7.5 

Osmolarity „in vitro”
(mOsm L-1)

308 273 295 295 295 309 299

Osmolality „in vivo” 
mOsm kg-1 H2O)

285 256 273 273 273 286 277

Tonicity Isotonic Hypotonic Hypotonic Hypotonic Hypotonic Isotonic Hypotonic

SID: strong ions difference

contained in some fluids, binds blood to ionized calcium 

and intensifies or induces coagulation disorders. Similar 

effects may be induced by massive infusion of packed red 

blood cells and platelets, as these products contain high 

citrate concentrations [21, 49]. Therefore, the control of 

ionized calcium has been strongly recommended in the 

European guideline on management of major bleeding and 

coagulopathy following trauma (recommendation 30) [21].  

The current goal-directed protocols advocating the use 

of massive fluid resuscitation have suggested using fresh 

frozen plasma with packed red blood cells to maintain Hb 

of 7–9 g dL-1 (recommendation 17) underlining, that a low 

initial Hb level indicates severe bleeding coagulopathy (rec-

ommendation 10). In that case the use of crystalloids should 

be limited [21]. Initial military experience showed that use of 

plasma and packed red blood cells at the ratio 1:1 improved 

haemostasis, the time of artificial ventilation and final out-

come [50]. However, the risk of acute respiratory distress 

syndrome (ARDS) increases with increasing number of fresh 

frozen plasma units and/or crystalloids, whereas crystalloids 

infused with packed red blood cells do not increase the risk 

for ARDS [51, 52]. An increased risk for ARDS is associated 

with the male sex and depends on the volume and duration 

of crystalloid infusion [52]. A quick infusion of crystalloids 

or plasma not only increases the risk for ARDS, but also for 

brain oedema. An experimental study has documented 

that rapid infusion of crystalloids and plasma following 

TBI and shock has been associated with brain swelling and 

an increase in ICP despite quick correction of peripheral 

oxygenation and cardiac output [53]. Moreover, fast infu-

sion of crystalloid solutions has increased lesion size. Slow, 

continuous infusion of these fluids has been shown to be 

safe and is devoid of adverse effects.

tHe role of Buffers in Balanced solutions
Different crystalloids are buffered by different substanc-

es that can be used as a fuel for the brain or substrates in 

the Cori cycle. Exogenous lactate is a well-established fuel 

for the brain in situations of increased energy demand. In 

experimental studies of TBI, lactate infusion preserved ex-

tracellular glucose levels, improved mitochondrial oxidative 

respiration and outcomes [54, 55]. A previous clinical study 

has documented a significant correction of brain dysfunc-

tion following severe hypoglycaemia [56]. 

Little is known about the effects of citrate, acetate, 

malate and gluconate on brain metabolism. Gluconate is 

mainly excreted with urine. Yet, only one study has docu-

mented an immediate elevation of unmeasured anions 

in cardiac surgery patients receiving a gluconate-based 

buffered crystalloid (Plasma-Lyte® 148) [57]. Another study 

showed that the use of Plasma-Lyte 148 as a priming fluid 

for cardiopulmonary bypass resulted in supra-physiological 

concentrations of acetate and gluconate and an increase in 

plasma IL-6 concentrations [58].

Citrate is metabolised in the liver, and its metabolism 

may be significantly impaired in shock, hypothermia and in 

patients with hepatic insufficiency [59]. Citrate serum con-

centrations have been suggested as potential biomarkers  
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A Physiological CBF.� � �
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ICP > 40 mm Hg

B Impaired CBF.� �
-1– � � � � .�20 30 mL 100 g brain per min
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Figure 1. Changes in Cerebral Perfusion Pressure (CPP) in accordance to peripheral blood pressure. A. Physiologically, intra-cranial pressure (ICP) 
ranges between 0–10 mm Hg. B. An increase in ICP or decrease in blood pressure following hypovolaemia impair cerebral blood flow (CBF).  
C. The subsequent decrease in CBF reduces metabolic processes decreasing cerebral oxygen deliver. These pathologies impair the neuronal electric 
activity, then ability to maintain the resting membrane potential and initiation of the active membrane potential. D. A decrease in CBF below  
10 mL 100 g-1 tissue per min definitely inhibits neuronal metabolism leading to neuronal death 

for cognitive dysfunction after TBI as it is markedly decreased 

in TBI patients with cognitive impairment [60]. In an experi-

mental study, oral supplementation of citric acid reduced 

lipid peroxidation, inhibited neuroinflammation, TNF-α and 

nitrate production in Swiss male albino mice brains [61]. 

Nevertheless, citrate is a derivative of citric acid and its effect 

on brain metabolisms requires further study. 

imPortance of daily and cumulative  
fluid Balance

A cumulative fluid balance has been proposed as one 

of the most important factors affecting outcome in patients 

treated for TBI (Fig. 1). Insufficient fluid administration in 

the early phase of TBI may lead to cerebral hypoperfusion 

or intensify brain oedema. Excessive fluid administration 

in the presence of a leaky BBB may lead to refractory in-

tracranial hypertension while aggressive fluid removal and 

negative fluid balance may result in AKI [62]. Many clinicians 

still believe in the beneficial effects of a negative fluid bal-

ance in TBI patients, which can be achieved by high dose 

diuretics. However, uncontrolled use of diuretics together 

with mannitol has been associated with a high incidence 

of AKI and increased risk of worse outcomes or death in TBI 

patients [62, 63]. Several studies have also documented 

that a fluid balance lower than 0.5–0.8 L during 96 hours 

post-TBI is independently associated with poor outcomes 

[62, 64]. Mannitol intensifies extraction of water, Na+ and 

other electrolytes via osmotic diuresis leading to temporary 

hyponatremia in TBI [63]. Diuresis-related hyponatremia 

reduces blood tonicity and escalates the outflow of Na+ from 

BISF. An excessive forced diuresis and the use of hypotonic 

solutions may intensify this process. Interestingly, 54.9% of 

neurointensivists prefer hypertonic saline in the early phase 

of TBI while 45.2% of them prefer mannitol [65]. The criteria 

for use of mannitol or hypertonic saline should be guided by 

plasma osmolality and plasma sodium concentration, while 

cumulative fluid balance should be a minimal 0.8 L positive 

during the first 96 hours of treatment. 

tonicity of fluid and tBi-related 
HyPonatremia (salt-wasting syndrome) 

Electrolyte imbalances, especially disturbance in Na+, 

are frequently observed in patients with TBI. Hyponatremia 

(serum sodium concentrations lower than 135 mmol L-1) can 

occur in patients treated for TBI, subarachnoid haemorrhage 

(SAH) and after neurosurgical procedures, and is associated 

with increased mortality [29, 66, 67]. Its pathophysiology has 

been poorly understood. Two principal causes of TBI-related 
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hyponatremia have been established, namely: cerebral salt 

wasting (CSW) and the syndrome of inappropriate secre-

tion of antidiuretic hormone (SIADH) [68, 69]. Fluid status 

is the main key in differentiating between CSW and SIADH. 

An inappropriate urinary salt loss associated with hypo-

volaemia (especially extracellular hypovolaemia) is typical 

for CSW, while an inappropriate secretion of antidiuretic 

hormone following increased atrial or brain natriuretic pep-

tides generates SIADH [29, 67–71]. To put it simply, CSW can 

be diagnosed in hypovolaemic patients with hypotonic 

hyponatremia (e.g. patients receiving excess hypotonic 

solutions), whereas SIADH can be defined as hypotonic 

hyponatremia in an euvolaemic or hypervolaemic patients 

[72, 73]. Hence, CSW should be treated with sodium and 

water, whereas SIADH requires sodium supplementation 

with water restriction [69, 70]. 

Vasopressin is commonly used as a vasoconstrictive 

drug. It is the antidiuretic hormone, which is secreted by 

the posterior pituitary gland following hypovolaemia and 

a rapid increase in plasma osmolality. Although a decline in 

plasma sodium concentration was observed 16–24 hours 

after beginning vasopressin administration, in 16% of the 

TBI patients hyponatremia developed earlier (2–4 days after 

injury) and was associated with lesions in the limbic system, 

presumably resulting in inappropriate vasopressin secretion 

[67, 74]. Hyponatremia also occurs in more than 10% of pa-

tients on the first day of mannitol administration and more 

than 20% of patients receiving mannitol for 7-days [63, 75].  

Persistent hyponatremia leads to osmotic demyelination 

manifested by seizures, coma, brain oedema, and brainstem 

herniation in the critical-onset cases.

Hyponatremia may be classified into two subtypes. 

Hypotonic hyponatremia (hypovolaemic, euvolaemic or 

hypervolaemic) usually courses with low plasma tonicity, 

whereas isotonic or hypertonic hyponatremia results from 

extravasation of osmotically active fluids, such as glucose 

or mannitol [67]. Hypovolaemic hypotonic hyponatremia 

frequently develops in patients treated with hypotonic fluids 

and loop diuretics [76, 77]. The use of “in vivo” hypotonic 

solutions intensifies renal fluid losses and stimulates vaso-

pressin secretion, which can be particularly unfavourable in 

TBI patients with lesions in the limbic system [67, 74, 76, 77]. 

 Electrolyte-free fluids should be avoided in patients 

with euvolaemic or hypervolaemic hyponatremia, while 

the administration of isotonic or hypertonic saline is recom-

mended for the treatment of hypovolaemic hyponatremia 

[67, 73, 77]. Patients with TBI complicated by severe hypo-

volaemic hyponatremia require an increase in serum Na+ 

concentration at the rate ' 1 mmol L-1 per hour with strictly 

controlled haemodynamic parameters, such as stroke vol-

ume variation (SVV), cardiac index (CI) and central venous 

pressure (CVP). Additionally, plasma and urine osmolality, 

as well as electrolyte concentrations should be monitored 

to correct the electrolyte imbalance during continuous 

high-dose sodium administration. All hypotonic solutions 

are strongly contraindicated while hypertonic saline with 

the concomitant administration of furosemide are recom-

mended to minimize the risk of volume overload. However, 

the administration of sodium may increase Na+ extraction 

with urinary water per se in some patients with the cerebral 

salt wasting syndrome. Such patients require corticosteroids 

administration [73, 77]. 

conclusions
In conclusion, although balanced crystalloids are some-

times preferred over normal saline in patients treated for 

TBI, there is inadequate evidence on which to base a recom-

mendation. Those preferring a balanced crystalloid have to 

choose from a variety of cationic and anionic recipes. The 

most rational would be one of the bicarbonate dialysis solu-

tions in order to avoid untested and unphysiological anions. 

Hypotonic solutions buffered with citrate should be avoided 

in patients with TBI. Fluid therapy must be monitored by 

plasma osmolality and plasma sodium concentrations. 
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