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Abstract
Central nervous system (CNS) infections may involve the meninges, brain and/or spinal cord. The most common 
etiologic agents are Streptococcus pneumoniae, group B Streptococci, Neisseria meningitidis, Haemophilus influenzae, 
and Listeria monocytogenes. CNS is characterized by specific structure and function. Despite a unique system of brain 
barriers and autonomous immune system, CNS is very susceptible to microorganisms which may invade directly, via 
the blood, or less frequently by reverse axonal transport. The complex process of bacteria and activated polymor-
phonuclear leukocyte transfer to the subarachnoid space, which is devoid of natural immune defence mechanisms, 
initiates an inflammatory response that subsequently spreads to the brain tissue. Consequences of these changes 
include damage to the blood-brain barrier, development of vasogenic cerebral oedema, and intracranial pressure-
volume disturbances leading to impaired CNS perfusion.
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Anatomically, central nervous system (CNS) infections 
may be categorized into meningitis, encephalitis, and myeli-
tis. Infections may involve one or more of these anatomical 
locations [1]. In terms of acuity and severity of the disease 
process, the most dangerous type of CNS infection is bac-
terial meningitis [2]. The incidence is 3-5 cases per 100,000 
population per year, and mortality is up to 26% [3]. The most 
common etiologic agents are Streptococcus pneumoniae, 
group B Streptococci, Neisseria meningitidis, Haemophilus 
influenzae, and Listeria monocytogenes [4].

CNS is characterized by specific structure and function. 
Despite a unique system of brain barriers and autonomous 
immune system, CNS is very susceptible to microorganisms 
which may invade directly, via the blood, or less frequently 
by reverse axonal transport [5]. Meningitis is mostly initi-
ated by nasopharyngeal bacteria with abundant surface 
adhesion proteins [6]. Their invasive capability depends on 
the presence of polymeric immunoglobulin receptor (pIgR) 
on the epithelial cell surface, responsible for transcellular 
antibody transfer [7]. It is believed that by binding to pIgR, 
bacterial choline-binding protein A (CbpA) forms a channel 

for bacterial translocation to the intravascular space [8]. In 
addition, bacterial hyaluronidase degrades hyaluronate and 
induces additional damage to the protective barriers [9]. It 
was found that intravascular pathogen survival depends 
on the presence of cell membrane polysaccharides impart-
ing protection from phagocytosis [9]. As the intravascular 
space is separated from CNS by the blood-brain barrier (BBB) 
and the blood-cerebrospinal fluid barrier (BCSFB), severe 
bacteraemia is not the only prerequisite for the develop-
ment of meningitis [10]. The morphological and functional 
substrate of BBB is the tight junction, formed by adjacent 
basal laminae of the endothelial cells of CNS microvascu-
lature (Fig. 1) [11]. Its large electrical resistance, precluding 
perivascular flow, low pinocytic activity, and selective, fully 
controllable BBB transport system eliminate any possibility 
of uncontrolled protein, ion, and microorganism transfer to 
CNS [12–16]. BBCSF located at the choroid plexus, with a 
relatively large vascular surface, is the place of direct contact 
of the cerebrospinal fluid with the blood [17, 18]. For most 
pathogens causing meningitis, the exact place of penetra-
tion into the subarachnoid space (SAS) is not clearly known. 
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Indirect evidence suggests that Hemophilus influenzae en-
ters CSF through the choroid plexus [19], while Streptococ-
cus pneumoniae penetrates via the meningeal vessels [20]. 
Recent studies indicate that bacterial transfer from the blood 
to SAS occurs within the endothelium and its ultrastructures 
[10]. Three mechanisms of pathogen BBB crossing have 
been identified. The first of these is possible with disrupted 
continuity of tight junctions and/or endothelial cells. The 
remaining two mechanism involve leukocyte-mediated 
transfer through BBB, either with or within the leukocyte, 
and active transcytosis [10]. The first mechanism is most 
commonly observed. Pathogen invasion and transmigra-
tion provokes activation of the platelet activating factor 
(PAF) receptor on the endothelial cell surface, which binds 
bacterial wall phosphorylcholine [21]. A vacuole formed by 
the endothelial cell, PAF receptor, and the bacterium allows 
pathogen translocation to SAS [22]. Pathogens present in 
CSF proliferate freely due to lack of natural defence mecha-
nisms such as polymorphonuclear leukocytes (PMNL), the 
complement system, and immunoglobulins [23–25]. PMNL 
activated by the presence of bacteria migrate by a complex 
process from the intravascular space to SAS. During this 
process, a sequential activation of vascular endothelial cell 
and PMNL receptors and adhesion ligands occurs, leading to 
binding, activation, persistent adhesion, and migration [26]. 
The transfer process is initiated by P-, E- and L-selectins. Next, 
activated PMNL binds via the macrophage antigen 1 (Mac1) 

integrin to the intercellular adhesion molecule 1 (ICAM-1) at 
the vascular endothelial cell, which results in persistent ad-
hesion and induces chemotactic gradient-mediated PMNL 
transfer to SAS [27, 28]. Peptidoglycan and lipoteichoic acid 
released from the bacterial wall activate the membrane 
CD14 (mCD14) receptor and the toll-like receptor 2 (TLR2) 
in peripheral blood-derived PMNL, which in turn stimulates 
translocation of the nuclear factor κB (NF-κB) from the cy-
toplasm to the nucleus [29]. NF-κB is the main activator of 
gene transcription responsible for production and release 
of inflammatory mediators, such as tumor necrosis factor 
alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 
(IL-6) [30]. Of note, IL-1β and TNF-α play a key role in stimulat-
ing expression of adhesion molecules that mediate PMNL 
transfer from the blood vessels to SAS [31]. Morphological 
and functional changes in PMNL that occur intravascularly 
lead to endothelial cell proliferation, and bacteria and PMNL 
translocated to SAS, along with released proteins, form the 
inflammatory infiltrate [5]. These changes result in vascular 
obstruction and morphological evidence of inflammatory 
reaction within SAS, peaking at 48 hours (Fig. 2A). If destruc-
tive processes are halted, vessel recanalization, arachnoid 
fibrosis, and formation of adhesions occur within the next 
few days [5] (Fig. 3A). Impaired cerebral tissue perfusion 
due to vascular occlusion leads to impaired homeostasis of 
the CNS immune system, consisting mainly from microglial 
cells and astrocytes.

Figure 1. A — morphology of the subarachnoid space. Interrelations between blood vessels and cerebral tissue; B — comparison of central 
nervous system (CNS) and peripheral microcirculation structure
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Figure 2. A — bacteria-activated polymorphonuclear leukocytes (PMNL) result in vascular obstruction and ischemic changes in the cerebral 
cortex. PMNL and bacteria translocated to the subarachnoid space (SAS) form inflammatory infiltrates; B — ischeamic changes activate neuronal 
NF-κB, and later astro- and microglia; C — astro- and microglial cells undergo morphological and functional changes, which result in TNF-α, IL1-β, 
and IL-6 synthesis and release 
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Figure 3. A — restoration of the subarachnoid space (SAS) with arachnoid fibrosis, formation of adhesions, and microvascular recanalization;  
B — glial scar forms in hypoperfused cortex; GFAP — glial fibrillary acidic protein
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Figure 4. A — resting astrocyte; B — fully activated astrocyte; C — resting microglial cell; D — active microglial cell, an equivalent of a 
polymorphonuclear leukocyte (PMNL)
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Activation of astro- and microglia is a sensitive marker of 
CNS changes. Factors affecting their activation may include 
water and electrolyte imbalances due to ischemia, exposure 
to blood serum components, damage to BBB, reduced pro-
duction of some proteins, and altered neuronal transcription 
activity [32]. Due to neuronal damage, translocation and 
activation of NF-κB occurs in the astrocytes within several 
hours, leading to gene transcription and production and 
release of inflammatory mediators including TNF-α (Fig. 2B), 
IL-1β, and IL-6 [33] (Fig. 2C).

By similar mechanisms, morphological and metabolic 
changes occur in the microglia. These cells become larger, 
their processes retract, and enzymatic pathways leading 
to TNF-α, IL-1β, IL-6, and nitric oxide synthesis become ac-
tivated [34] (Fig. 4C, D).

Within several days after the insult, neuronal damage, 
BBB discontinuation, and PMNL infiltration ensue (Fig. 2B). 
Astrocytes become fully activated and able to migrate and 
proliferate [35] (Fig. 4B). The purpose of activation of these 
mechanisms is to restore tissue structural integrity. Gene ex-
pression changes occur, leading to synthesis of antioxidative 
proteins along with TNF-α, IL-6, and IL-1β [35]. During these 
pathological processes, extensive tissue damage, the presence 
of neuronal and/or axonal debris, and consequences of dis-
rupted BBB continuity lead to full activation of microglial cells 
(Fig. 4D). They achieve a capability for migration, proliferation, 
and phagocytosis, along with IL-1β synthesis and release [36].

Formation of the glial tissue, also known as glial scar, is 
a repair response of mostly the astroglia but also microglia 
(Figure 3B). Main contributors to glial scar formation include 
vimentin-rich, hypertrophic processes of activated astro-
cytes (Fig. 4B), macrophages, and the extracellular matrix 
[37]. Astrocytes show high nuclear NF-κB content and TNF-α, 
IL-6, and IL-1β expression [37, 38]. In addition, reactive astro-
cytes in the glial scar modulate their activity and stimulate 
expression of transforming growth factor β (TGF-β) [38, 39]. 
TGF-β enhances the forming scar by stimulating synthesis 
of collagen fibres, fibronectin, tenascin, thrombospondin, 
and proteolytic protein inhibitors [40] (Fig. 3B). Macrophages 
are a major component of the forming glial scar. They de-
rive from both microglial cells (Fig. 4C) and PMNL and are 
characterized by high IL-1β and TGF-β content which de-
creases with time [40]. A gradual reduction of the number 
of microglial cells in the scar occurs due to apoptosis [41].

Intensive research of the recent years led to the dis-
covery of metalloproteinases (MMPs) which are a family of 
more than 20 tissue proteases [44]. Inactive forms of MMPs 
are produced and released by activated astro- and micro-
glial cells, along with cerebral vessel endothelial cells [44]. 
Endogenous tissue MMP inhibitors (TIMPs) are responsible 
for maintaining an adequate balance of MMP activity [44]. 
PNML, astrocytes and microglial cells activated by the infec-
tious process release TNF-α, IL-6, and IL-1β, which leads to 
activation of MMPs and inhibition of TIMPs. Active forms of 
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MMP-2 and MMP-9 induce damage to the structural proteins 
of the tight junctions - the morphological and functional 
BBB substrate [44]. Consequences of these pathological 
processes at the molecular level include loss of BBB with 
transfer of water and osmotically active components from 
the intravascular space to the interstitium, which results in 
vasogenic cerebral oedema [44]. The volume of translocated 
water determines both the extent of the damage and the 
level of intracapillary hydrostatic pressure [45]. The abso-
lute increase in intracranial water volume, which disturbs 
pressure-volume relationships, leads to a reduction in cer-
ebral perfusion pressure with imminent structural damage.
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