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Abstract
Mucopolysaccharidoses (MPSs) are known as rare genetic diseases which are caused by mutation in the enzyme heparin sulfate, 
which normally leads to degradation and accumulation of glycosaminoglycans in the cells. There are 11 types of MPSs, whereby 
neuropathy may occur in seven of them (MPS I, II, IIIA, IIIB, IIIC, IIID and VII). Accumulation of degraded heparin sulfate in lysosomes 
causes cellular dysfunction and malfunction of several organs. However, the exact molecular mechanism how protein degradation 
and storage leads to cellular dysfunction is not understood, yet. Nonetheless, several genetic and biochemical methods for diagnosis 
of MPSs are available nowadays. Here we provide an overview on known molecular basis of MPS in general, including enzyme 
defects and symptoms of MPS; however, the main focus is on MPS type III together with potential and perspective therapy-options.
Key words:
mucopolysaccharidosis III (MPS III), lysosomal storage diseases (LSDs), glycosaminoglycan, therapy for mucopolysccharidosis, clinical 
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Introduction 

Lysosomal storage diseases (LSDs) are inherited metabolic 
disorder diseases; these kinds of diseases are caused by en-
zyme deficiencies resulting in accumulation of un-degraded 
substrate. This storage process leads to clinical manifesta-
tions depending on the specific substrate and site of accu-
mulation. LSDs are a  heterogeneous group of diseases [1]. 
They are characterized by accumulation of macromolecules in 
lysosomes, like glycosaminoglycan (GAG). If GAG degrada-
tion cannot be performed normally, the resulting LSD is called 
mucopolysaccharidosis (MPS). Here the degradation of carbo-
hydrate complex is hampered and thus, GAG cannot be proc-
essed normally [2]. Mucopolysaccharidoses constitute ~30% 
of all LSDs [3].

Mucopolysaccharidosis

Mucopolysaccharidoses are known as a group of metabo-
lic diseases caused by absence or malfunction of an enzyme 

being necessary for breakdown of molecules long chains (car-
bohydrates) in the cells. In such patients deficiency of 11 diffe-
rent enzymes being required for breakdown of carbohydrates in 
small and simple molecules have been reported. These GAGs 
are accumulated in blood, brain, spinal corda and different 
connective tissue and are there responsible for local cell da-
mage. Symptoms may be similar or may vary among different 
types of MPSs [4]. 

The prevalence of MPSs is different in different countries 
and varies between 0.07 in Australia and 4.05 per 100,000 life-
births in Estonia; reported differences may be due to undiag-
nosed cases and/or different genetic prevalence: It must be 
suggested that MPSs are underdiagnosed in many countries 
due to lack of corresponding diagnostic means.

Mucopolysaccharidoses are known to be autosomal re-
cessive disorder, meaning that only individuals with two mu-
tated alleles are affected. When both parents are heterozygo-
te for the disease causing allele in each pregnancy there is 
a one in four chance that the child will be affected. Accordingly, 
unaffected persons in a family may be either heterozygous for 
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a disease causing allele, or may carry two non-disease causing 
ones. Only MPSII or Hunter syndrome is an X-linked recessive 
disorder [5–7]. 

Generally, following factors may increase the chance to 
have or pass an MPS-disease-causing allele:
• family history of an MPS;
• a couple is consanguineous or derive from same distinct 

ethnic or geographically clustered community;
• a couple is heterozygous for MPS disease causing allels.

Among all types of MPS, MPS III (or Sanifilippo syndrome) 
is most frequent; it was first described ~50 years ago [8]. Here 
heparin sulfate (HS) plays a pivotal role, as it does also in neu-
ronal development [9]. Accordingly, neurological pathology fo-
und in MPS III patients can be explained. Relevance of lysoso-
mes in maintaining of neuron and brain homeostasis has been 
reported recently [10]. Impairment of HS metabolism, where 
also lysosomes are involved and accumulation of α-synuclein, 
connected MPS III with other neurological diseases such as 
Parkinson disease is reported [11]. On the other hand MPS III 
can be seen in one line with autism spectrum disorders (ASDs) 
which are associate with neurodevelopmental delay, including 

language, impaired social interactions and restrictive, repetitive 
and stereotyped behaviors [12, 13].

Mucopolysaccharidosis III can be divided into five subty-
pes [3]. These are caused by mutation of sulfamidase (MPS IIIA; 
OMIM#252900) [14], α-n-acetylglucosaminidase (NAGLU, MPS 
IIIB; OMIM#252920) [15], heparan acetyl CoA: α-glucosaminide 
N-acetyltransferase (HGSNAT, MPS IIIC; OMIM#252930) [16], 
and N-acetylglucosamine 6-sulfatase (GNS, MPS IIID; OMIM# 
252940) [17].

Here we describe the molecular basis of MPS III, and sum-
marize therapeutic approaches. The process of heparin sulfate 
degradation and enzymes which are involved in this process 
are presented in Fig. 1.

Genetics of mucopolysaccharidosis III

The known common mutations being responsible for MPS 
III are presented in Table IIa. Besides, other recently found ge-
nes involved in MPS III in Table IIb (only single case reports, 
yet). Approximate frequencies of genes involved in MPS IIIA, 
MPS IIIB, MPS IIIC, MPS IIID and MPS IIIE were determined 
based on reports in Varsome and ClinVar databases [99–100].

Mucopolysaccharidosis IIIA

Mucpolysaccharidosis IIIA (~27% of MPS III) is caused by 
mutations in the gene SGSH localized in chromosome 17q25.3 
(Table II, III). This gene is responsible for coding of sulfamini-
dase (heparin sulfate sulfatase or N-sulfoglucosamine sulfohy-
drolase) [18]. The first patients diagnosed with symptoms of 
MPS IIIA were described by Sanfilippo et al. [8]. 

Specific mutations in sulfaminidase are found in variant fre-
quencies in different countries. The missense mutations p.R74C 
occurs at a frequency of 56% in Polish MPS III population [19]. 
In Australia amino acid change at p.R245H is most frequent 
with 31%; in Germany frequency of this mutation is 35%, and in 
Netherlands 58% [19, 20]. In Italian patients missense mutation 
for p.S66W was found with a frequency of 29% [21]. 

Mucopolysaccharidosis IIIB

Mutation in gene NAGLU (17q21.2) causes MPS IIIB 
(~36% of MPS III; Table II). This gene encodes N-acetyl-α-
glucosaminidase, a lysosomal enzyme of 720 amino acids with 
six glucosylation site [22]. Most frequently observed are mis-
sense mutations p.F48L, p.G69S, p.S612G and p.R643C which 
are associated with late-onset phenotype [23–25]. 

Mucopolysaccharidosis IIIC

The third form of mucpolysaccharidosis, MPS IIIC (~30% 
of MPS III), is caused by lysosomal membrane acetyl-CoA 
α-glucosaminide N-acetyltransferase coded by HGSNAT gene 
(8p11.21) (Tables II, III) [26]. Missense mutations in position 
p.R344C (22%) and p.S518F (29%) [27] are most frequently 
observed. MPS IIIC can be associated with other diseases 

Table I. Incidences of MPS in different ethnicities

Country Prevalence per 
100,000 life-births

References

Netherland 1.89  [75]

Australia 0.07  [76]

Portugal 0.12  [77]

Scandinavian 
countries 

0.67  [78]

Japan 1.53  [79]

Switzerland 1.56  [79]

Taiwan 2.04  [80]

South Korea 1.35  [81]

Tunisia 2.27  [82]

British Columbia 
(Columbia)

1.94  [79]

Brazil 1.04  [79]

Czech Republic 3.27  [83]

Estonia 4.05  [84]

Germany 3.51  [79]

Poland 1.80  [85]
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such as Retinitis pigmentosa, when HGSNAT missense muta-
tions p.G262R and p.S539C in membrane domain of the en-
zyme are present [28–30]. 

Mucopolysaccharidosis IIID

Mucopolysaccharidosis IIID is caused by GNS gene 
(12q14.3) mutations (~5% of MPS III, Tables II, III), which en-
codes lysosome N-acetylglucosamine-6-sulfatase. This enzyme 
contain 552 amino acids and 13 glucosylation (modification) 
sites [31]. Missense mutation occur in 13% of all MPS IIID cases.

Mucopolysaccharidosis IIIE

Mutations in ARSG gene (17q24.2) cause MPS IIIE (~2% 
of MPS III, Tables II, III). The gene contains eleven exon, the 
protein N-glucosamine 3-O-sulfatse consist of 525 amino acids 
and four glucosylation (modification) sites in asparagine [32–4].  

Laboratory diagnostic methods  
for mucopolysaccharidosis

Stepwise diagnostics of MPS is done biochemically, for 
example by detection of heparan sulfate levels in urine of pa-
tients. Dimethylmethylen blue is used for heparan sulfate de-
tection at the wavelength of 520 nm in a  spectrophotometer 
[35, 36]. Another method is high-resolution cellulose acetate 
electrophoresis of a  urine sample which can separate and 
identify heparan sulfate [37]. Finally, tandem mass spectrom-
etry can be applied for diagnosis of MPS [38]; identification of 
specific oligosaccharides that are accumulate as a  results of 
enzyme deficiency can be picked up by that [38–40]. Recently 
it was also suggested to measure protein amounts involved in 
MPS from dried blood spot using multiplex immune–quantifica-
tion assay [41, 42].

The method to identify the underlying genetic cause and 
specific subtype of a  suggested MPS is genomic DNA se-

Figure 1. Synthesis and degradation of HS (Heparan Sulfate) is presented schematically including cell organelles (Lysosome) 
and enzymes which are responsible for each MPSs; also modification of residues is shown
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quencing (NGS-next generation sequencing); also carrier sta-
tus of parents can be assessed by this [43]. 

Postnatally, urine or peripheral blood can be studied. Pre-
natal genetic diagnostic is possible after invasive prenatal diag-
nostics, as chorionic villus sampling, amniocentesis or umbili-
cal cord blood sampling [44]. 

Therapy for mucopolysaccharidosis patients

Most of the following treatment options are still experimental.

Enzyme replacement therapy

Enzyme replacement therapy is a  possible approach to 
treat MPS patients. Injection of human sulfaminidase directly 
in brain [45] or cerebrospinal fluid via the cerebellomedullary 
cistern [46] has been shown to be principally possible in MPS 
IIIA mice [47] (Fig. 2A). 

Substrate reduction therapy
Substrate reduction therapy (STR) in another alternative 

therapy approach and outline in Figure 1B. Aim is here to ap-
proach molecular targets decreasing production of accumu-
lated substrate and to restore balance between synthesis and 
degradation. This method is approved e.g. for treatment of 
lysosomal disorders with neurological and non-neurological 
symptoms [48]. For STR RNAi can be applied to key genes par-
ticipating in GAG synthesis, such as EXTL other genes involved 
in linkage region formation. Dziedzic et  al., applied siRNA to 
down-regulate XYLT1, XYTL2, GALTI and GALTII [49]. 

This strategy is successfully applied in treatment of MPS I 
and MPS IIIA, resulting in reduction of mRNA and protein lev-
els of corresponding genes and a significant decrease in GAG 
synthesis. Using of shRNA (short hairpin RNA) has been shown 
to have a positive effect in downregulation of two other genes 
EXTL2 and EXTL3; both genes influence reduction of GAG syn-
thesis [50] (Fig. 2B). 

Table II. Summary of the phenotypic, enzymatic, and genetic classification of the MPS III 

Subtype Phenotype Enzyme Gene 
locus

Cytogenetic 
location

Type  
of mutation

Position  
of mutation

Reference 

MPS III A OMIM 
252900

Sulfamidase SGSH 17q25.3 Missense p.R245H
p.S66W

[19, 20, 
21]

MPS III B OMIM 
252920

α-n-acetyl-
glucosaminidase

NAGLU 17q21.1 Missense p.F48L
p.G69S
p.R643C

[23, 24, 
25]

MPS III C OMIM 
252930

Heparan acetyl CoA;
α-glucosamine 
6-sulfatase

HGSNAT 8p11.1 Missense p.R344C
p.S518F
p.G262R
p.S539C

[27, 28,  
29, 30]

MPS III D OMIM 
252940

N-acetylglucosamine 
6-sulfatase

GNS 12q14.4 Missense

 
Nonsense 
Splice site 
mutation

Frame shift 
mutations

Large 
deletion

p.S94I
p.K340R
p.G418E
p.K388X
c.875+2delT,
c.1097_1098 
+1delAGGinsGGT
c.1309-2A>G
c.1420-2A>G
c.625-637del8
c.109dupG
c.123dupG
Del EX1+
Del EX6,7
Del EX9-14

 [43]

MPS III E n.a. N-glucosamine 
3-O-sulfatase

ARSG 17q24.2 n.a. [32, 33, 
34]
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Pharmacological therapy

In many cases, mutation is shown to lead production of 
misfolded protein, which become rapidly degraded. The activa-
tion of chaperons (cellular proteins) may help functional correct 
protein folding. As shown in Fig. 2C, small compounds as ac-
tin-like chaperones (= amino and iminosugars) prevent protein 
misfolding by acting as enzyme inhibitors [51]. This approach 
is used to treat different LDS diseases such Farby, Morquio B, 
Pompe, Gaucher and Krabbe diseases [52]. 

The component is an isoflavine which is purified from soy 
and has the ability to reduce GAG (glucoaminglucans) level. 
The overall mechanism is not clarify. However, it seems likely 
that the mechanism involves protein kinase inhibitory, which in 
turn induces TFEB (transcription factor EB) transcriptional ac-
tivity [53, 54].

Growth medium supplemented by genistein has been shown 
to reduce GAG level in skin fibroblast of MPS IIIA and MPS IIIB 
patients [55]. In murine model such treatment led to reduction 

of GAG storage [56]. Moreover, in a pilot study in patients with 
MPS IIIA and B administration of genistein reduced GAG levels 
in urine [57]. In mouse reduction of GAG levels was demonstrat-
ed after treatment with rhodamine in the liver and the brain [58]. 

Stem cell therapy

Stem cell therapy was suggested for treatment of neuro-
logical diseases in order to produce correct forms of enzyme 
(Figure 2D). Bone marrow transplantation can be used for 
treatment of neurological diseases, but in MPS III diseases this 
approach was not successful [59]. The treatment with hemat-
opoietic stem cell in patients show that in brain cells microglia 
can be replaced and become enzyme secretion donor cells 
[60]. Recently genetic modification of hematopoietic stem cells 
carrying normal copies of the SGSH or NAGLU genes led in 
mouse model to enzyme production [61–64].    

iPSC (induced pluripotent stem cell) development technol-
ogy gave new possibilities for generation of neural stem cell 

Table III. Summary of the MPS III associated with other diseases and gene mutation

Diseases which are found to be 
associated with MPS IIIB

Gene Gene encoded Reference 

Lung diseases, nephrotic syndrome¸ 
epidermolysis syndrome

ITGA3 member of the integrin a chain 
family of proteins

[86, 87, 88]

Autism HRH1 histamine receptor H1 [88, 89, 90]

Neurodevelopment disorders, 
development of learning and memory

eIF4A3 (eukaryote initiation 
factor 4A3)

eIF4A3 [88, 91, 92]

MPS types/subtypes ID2 transcription factor DNA binding 2 [88]

Deafness, behavior problem Homer 2 protein scaffold [88, 93, 94]

MPS I, MPS IIIA and MPS IIIB Homer 1 Homer 1 protein [95]

Cancer diseases B2M (β-2-microglobulin) β-2-microglobulin [88]

Diabetes INSR (insulin receptor) Insulin receptors [88]

Charcot-Marie Tooth,
neurodegenerative diseases

MME (membrane 
metalloendopeptidase)

Glycoproteins [96, 97]

Charcot-Marie Tooth,
neurodegenerative diseases

CAPN2 (capelin 2, calcium 
dependent protease)

Calpain-2 catalytic subunit [96, 97]

Neuropathy and neurodegeneration APOE apolipoprotein E  [98]

Neurodegenerative disorders UCHL1 ubiquitin C-terminal hydrolase L1  [88]

MPS IX, Rigid Spine Muscular 
Dystrophy 1 and Visceral Heterotaxy

SERPINE2 SERPINE2 protein  [88]

MPS IX, VLDLR-associated cerebellar 
hypoplasia

VLDLR lipoprotein receptor  [88]
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(NSC). After transplantation of NSC they could migrate over 
long distances within brain and were integrated in host net-
work. This form of treatment recovered neurological pathology 
of MPS VII [65] and MPS IIIB [66].  

Gene therapy

The gene therapy is used to enlargement ERT (enzyme re-
placement therapy) (Fig. 1E) so far is attempted to introduce 
the coding sequence of the protein. The cell manipulation will 
possess in enzyme activity but also will participate in enzyme 
secretion and circulation up to altered cell. The sulfamidase 
injection as a  recombinant adeno-associated virus (AAV) will 
improve coding sequence and in this form will increase enzyme 
activity (sulfamidase) in brain of mice [67]. This strategy now is 
used in human clinical traits [68]. 

Gene therapy is most promising therapeutic option for 
treatment of MPS diseases, and 5–15% of enzyme activity can 
be recovered in affected patients [69]. Several viral vectors are 
used for treatment of MPS patients, such as retroviruses, len-
tiviruses, adenoviruses and adeno-associated viruses (AAV). 
Using of nonviral vector also led to increased enzyme activ-
ity and GAG reduction in lysosome [70]. Adeno-associated 
viruses treatment seems to be suited best for gene therapy 
in neurological disorders. AAV therapy could e.g. induce cell 
death in murine neural cells and hippocampus, suggesting 
that these approaches should be carefully evaluated [71]. 

AVV therapy and other viral gene therapies may be associated 
with significant side effects, particularly during development. 
Adeno-associated virus serotype 5 (AAV5) has been used for 
treatment of MPS IIIB patients, results shown improvement of 
neurological progression in patients inducing sustained en-
zyme production in the brain [72]. AAVrh10 (adeno-associated 
virus serotype rh10) was used to integrate intact SGSH gene in 
MPS IIIA model mice. This treatment reduced HS accumulation 
and microglia activity administration [73]. The AAV8 delivered 
effectively NAGLU gene in MPS IIIB animal model and also fa-
cilitated robust somatic transduction of the heart and liver [74]. 

Conclusions

In this review we provide an overview for molecular basis 
of MPS III, laboratory diagnostic methods such biochemical 
detection of heparan sulfate in patients with MPS III. Genes re-
sponsible for MPS III have been identified by characterizing the 
functional role of gene products in the metabolism. A number 
of genetic and biochemically methods have been adopted in 
laboratory for diagnosis. Although four types of MPS III diag-
nosis remain difficult, our recommendations for screening and 
diagnosis are as follows:
• All patients with speech delay, deficit or hyperactivity disor-

ders, autism should be screened for MPS III. DMB (1,2-di-
amino-4,5-methylenedioxybenzene-2HCl) assay is strongly 
recommended.

Figure 2. Potential therapy attempts to treat MPS. Schematic representations of: A) enzyme replacement therapy (ERT) to replace 
mutated form of protein; B) substrate reduction therapy (SRT), reduction of storage of undegraded substrate; C) pharmacological 
chaperone to correct substrate miss-folding; D) stem cell therapy (SCT) used for replacement of diseased cells; E) gene therapy 
to provide correct form of a mutated gene

A

D

B C

E
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• All positive samples from quantitative assay should be 
investigate by electrophoresis, GAG depolymerization fol-
lowed by HPLC/MS/MS analysis.

• An enzyme activity assay must be done to confirm the di-
agnosis.

• Molecular genetic testing should be offered to all patients; 
this test is informative for the family when they making deci-
sion for family plan.

Therapeutic options for MPS III disease, once considered 
untreatable, are available for patients with these diseases. The 
iPSC have been established, and will be very useful in drug 
screening studies to identify the drugs which will be potential 
for human treatment.  
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