eISSN: 1896-9151
ISSN: 1734-1922
Archives of Medical Science
Current issue Archive Manuscripts accepted About the journal Special issues Editorial board Abstracting and indexing Subscription Contact Instructions for authors
SCImago Journal & Country Rank
3/2018
vol. 14
 
Share:
Share:
more
 
 
abstract:
Experimental research

Therapeutic inhibition of CXC chemokine receptor 2 by SB225002 attenuates LPS-induced acute lung injury in mice

Qing Cao, Biru Li, Xike Wang, Kun Sun, Ying Guo

Arch Med Sci 2018; 14, 3: 635–644
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Introduction
Sustained neutrophilic infiltration is known to contribute to organ damage, such as acute lung injury (ALI). CXC chemokine receptor 2 (CXCR2) is the major receptor regulating inflammatory neutrophil recruitment in acute and chronic inflamed tissues. The purpose of this study was to investigate the functional relevance of the CXCR2 inhibitor SB225002 in LPS-induced acute lung injury.

Material and methods
Male C57BL/6 mice were randomly divided into the following four experimental groups (n = 10 per group): untreated group (control group, Ctr); LPS-treated ALI group (LPS group, LPS); LPS + PBS-treated group (LPS + PBS); and SB225002-treated ALI group (LPS + SB225002). Twenty-four hours after treatment, the blood, bronchoalveolar lavage fluid (BALF), and lung tissue were collected and wet/dry ratio, protein concentration, myeloperoxidase (MPO) activity, neutrophil infiltration, and inflammatory cytokine secretion in lung tissue were measured. The pathologic changes in the lungs were examined using optical microscopy. Survival rates were recorded at 120 h in all four groups, in other experiments.

Results
Histology findings revealed that the SB225002-treated group had significantly milder lung injury compared to the LPS-induced ALI and the PBS-treated control groups. Treatment with SB225002 significantly attenuated LPS-induced lung injury and suppressed the inflammatory responses in damaged lung tissue. Compared to the PBS-treated control group, treatment with SB225002 dramatically decreased the lung wet/dry ratio, protein concentration, and infiltration of neutrophils in lung tissue. Therefore, SB225002 treatment appeared to inhibit the production of inflammatory cytokines and increase survival time compared to the PBS-treated control group.

Conclusions
Together, these data demonstrated that inhibition of CXCR2 signaling by SB225002 could ameliorate LPS-induced acute lung injury, by reducing neutrophil recruitment and vascular permeability. SB225002 may be further developed as a potential novel treatment for LPS-induced ALI.

keywords:

SB225002, LPS-induced ALI, CXCR2, neutrophil migration

FEATURED PRODUCTS
Quick links
© 2018 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe