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A b s t r a c t

The presence of morphine and the mu opioid receptor has been demonstrated in
cells from the nervous, endocrine, immune, vascular, reproductive, respiratory, and
digestive systems of mammals. The understanding of morphinergic signaling in
domestic animals is vital for properly managing this commercially valuable resource.
This review discusses the known functions of mu opioid receptors in Bos taurus
and Equus caballus. Morphine has been shown to regulate the release of hormones
and neurotransmitters in these animals in diverse tissues. The mu opioid receptor
is also present on equine gametes and controls key functions of these reproductive
cells. Evidence for the presence of the mu opioid receptors in bovine blood, heart,
spleen and bone marrow is discussed. Given the widespread occurrence of mu
opiate processes it is surmised that it transcend functions only focused on pain.
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Introduction

Opiate receptors and endogenous opiates along with their synthesizing
enzymes are known to exist in many animal phyla [1-11]. Invertebrates and
vertebrates have functional endogenous morphine signaling in numerous
organ systems [4, 12-15]. Recently, it has been shown that substances of
abuse appear to release endogenous morphine from immune and neural
tissues [16-23].

Opiate receptors in mammals contain conserved gene sequences [24]
and consequently the functions are also conserved. Specifically, the region
of the μ-opioid receptor between the first intracellular loop and the third
transmembrane domain is the most highly conserved in vertebrates [24].
An examination of the literature relating to domesticated animals reveals
that both the bovine and the equine families possess opioid receptor and
morphine reactivity. Interestingly, some opiate receptor subtypes are coupled
to nitric oxide release, thus, associating some opiate actions to those
previously linked to nitric oxide [9, 22, 25-30]. Even more interesting are the
findings that associate estrogen signaling via nitric oxide, making the
phenomena even more complex [31-36]. This review will discuss the functions
of morphine and mu opioid receptors in Bos and Equus. We also demonstrate
the presence of mu opioid receptors in vital cow and horse tissues.

Bos taurus morphine signaling

The Bos taurus mu opioid receptor was first cloned from bovine brain
tissue in 1999 by Onoprishvili et al. [37]. The polypeptide has a 94%
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sequence identity with human mu opioid receptor.
Like its human counterpart, the receptor was shown
to be down regulated by long term exposure to
opioid agonists [37]. These researchers found no
evidence for multiple types of mu opioid receptors
in the brain tissue tested. Prior and subsequent
studies have revealed the presence of mu opioid
receptors in bovine pinealocytes [38-40]. The
stimulation of these receptors has been linked to
the production of melatonin [38, 41]. The opioid
receptor antagonist, naloxone, was able to prevent
this melatonin release [39]. Morphine’s effects on
other parts of the brain have been demonstrated
by the inhibition of oxytocin release in dairy cows [42].
This effect was also found to be reversible by
naloxone [42]. Morphine receptors in the brain play
a vital role in hormonally controlled actions in the cow. 

The opioid receptor has functionality in other cell
types in the cow. The mu opioid receptor has also
been found in bovine oocytes and has been shown
to assist in maturation of these vital cells [43].
Bovine adrenal medulla tissue contains mu opioid
receptors but not delta or kappa subtypes [44]. Cells
lining the bovine airway also possess opioid
receptors [45] and exist in differing amounts
depending on the type of tissue they are found on
[46]. The receptors present in bovine trachealis
muscle can reduce airway constriction when
stimulated [45, 46]. This inhibitory effect was shown
to be controlled by the amount and type of opioid
receptor on the specific tissue type. The trachealis

and the bronchial muscles both possess mu opioid
receptors and constriction of the airway can be
controlled by mu opioid specific receptor agonists
[46]. The opioid agonists were shown to be acting
via the inhibition of cholinergic neurotransmission
[45]. Much like the morphine signaling in the brain,
the reproductive, respiratory and endocrine systems
in the cow are regulated at some level by mu opioid
receptors. 

Detecting mu opioid receptor expression 
in cattle tissue

We have validated the presence of mu opioid
receptors in the tissues present above and extended
the observations into other tissues. Figure 1
demonstrates that the cow splicing from the known
database sequence is analogous to the human
splicing of the mu1. Bovine lung, bone marrow,
heart, brain, and spleen tissue samples (100 mg)
were homogenized in 1 ml of Tri Reagent (Molecular
Research Center, Inc., Cincinnati, OH) using
a polytron homogenizer. The homogenates were
stored at room temperature for 5 min to allow
complete dissociation of nucleoprotein. 0.1 ml of 
1-bromo-3-chloropropane was added to the
homogenates. The samples were vortexed
vigorously for 15 s and then stored at room
temperature for 7 min. After centrifugation of the
samples for 15 min at 12,000 g, the aqueous phase
was transferred to a fresh tube. RNA was
precipitated by mixing with 0.5 ml of isopropanol.

gcctgacgctcctctctggctccgccggggttggtcgctgtaagaaataacaggagctgtggcagcggcgaagacgaagcggctcgcgcgtggaacccgaaaagtcagg
gtgctcgcggttactcccaacgtggtcccagccggcggtcagcaccatggacagcggcgccgtccccacgaacgccagcaactgcactgatcccttcacacacccttcaagt
tgctccccagcacctagtcccagctcctgggtcaacttctcccacttagaaggcaacctgtccgacccatgcggtccgaaccgcaccgagctgggagggagcgacagac
tgtgcccttcggccggcagcccttccatgatcacggccatcatcatcatggccctctactccatcgtgtgcgtggtggggctcttcggaaacttcctggtcatgtatgtgatt
gtcaggtacaccaaaatgaagactgccaccaacatctatattttcaacctcgccctggcagatgccctggcaaccagtaccctgcctttccagagtgtcaattacctgatgg
gaacatggccgtttggaaccatcctgtgcaagattgtgatctccatagattactacaatatgttcaccagcatattcaccctctgcaccatgagtgtggatcgctacattgca
gtctgccatcctgtcaaggccctggatttacgcactccccgtaatgccaagatcatcaacatctgcaactggatcctctcttcagccattggtctgcctgtgatgttcatggc
aacgacaaagtaccggcaaggttccatagattgtacactaacattctctcacccaacgtggtactgggaaaacctgctgaaaatctgtgttttcatctttgccttcatcatgc
ctatcctcatcattacagtgtgttatgggctgatgatcttacgcctcaagagtgtccgcatgctctctggctccaaagaaaaggacaggaacctgcgaagaatcaccagga
tggtgctggtggttgtggctgtgttcattgtctgctggacgcccattcacatctacgtcatcattaaagccttgatcacaatcccggaaactactttccagaccgtttcctggc
acttctgcattgctctaggttataccaacagttgcctcaaccccgtcctttatgcatttctggatgaaaacttcaaacgatgcttcagagagttctgtatcccaacttcctccac
cattgagcagcaaaactccactcgaattcgtcagaacaccagagaccacccctccacagccaatacggtggataggactaaccatcagctagaaaatctggaagcaga
aaccactccgttaccctaactgggtctcataccattcagaccctcactgagcttagacgccacatctatatga

Full-length Bos taurus mu1 opioid receptor amino acid sequence

MDSGAVPTNASNCTDPFTHPSSCSPAPSPSSWVNFSHLEGNLSDPCGPNRTELGGSDRLCPSAGSPSMITAIIIMALYSIVCVVGLFGNF
LVMYVIVRYTKMKTATNIYIFNLALADALATSTLPFQSVNYLMGTWPFGTILCKIVISIDYYNMFTSIFTLCTMSVDRYIAVCHPVKALDLRTP
RNAKIINICNWILSSAIGLPVMFMATTKYRQGSIDCTLTFSHPTWYWENLLKICVFIFAFIMPILIITVCYGLMILRLKSVRMLSGSKEKDRNL
RRITRMVLVVVAVFIVCWTPIHIYVIIKALITIPETTFQTVSWHFCIALGYTNSCLNPVLYAFLDENFKRCFREFCIPTSSTIEQQNSTRIRQNTR
DHPSTANTVDRTNHQLENLEAETTPLP

Bos taurus genomic DNA chromosome 9
Length = 108145351

Exon positions (Bos taurus)

94456715-94457165 94493812-94494169 94495031-94495553 94511994-94512090

FFiigguurree  11..  Full-length Bos taurus mu1 opioid receptor nucleic acid sequence
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Samples were stored at room temperature for 6 min
and then centrifuged at 12,000 g for 8 min at 4°C.
After removing the supernatant, the RNA pellet was
washed with 1 ml of 75% ethanol, and subse-
quently centrifuged at 7,500 g for 5 min at 4°C. The
ethanol was discarded, and the RNA pellet air-dried
for 5 min. The RNA pellet was dissolved in 60 μl
water and denatured at 55°C for 10 min.

An aliquot of each RNA sample was separated
in 1% agarose gel stained with ethidium bromide.
Two predominant bands of 18s and 28S ribosomal
RNA were observed. In addition, spectrophotometric
measurements of the RNA samples were made at
260 and 280 nm. The 260/280 ratios from all of the
samples were above 1.6.

RT-PCR analysis was used to study the expression
of mRNA encoding a bovine mu opioid receptor. RNA
(1 μg) was reverse transcribed using Superscript III
Rnase H-Reverse Transcriptase with random
hexamers (Invitrogen, Carlsbad, CA). PCR analysis
was performed using the following primers: forward
primer 5’-GGTACTGGGAAAACCTGCTGAAGATCTGTG-
3’ and reverse primer 5’-GGTCTCTAGTGTTCTGAC-
GAATTCGAGTGG-3’. Separation of the PCR products
by gel electrophoresis revealed the expected 441 bp
band in all tissue samples. 

In another assay using the same primers listed
above, PCR analysis was performed on bovine blood
samples the using procedure described below for
horse blood. Agarose gel electrophoresis indicated
the presence of a mu opioid receptor in cow blood. 

Equus caballus morphine signaling

Similarities between cow and horse mu opioid
receptor functions can be seen when the presence

of morphinergic signaling is noted in the endocrine
systems of both species. An example of this is given
by the findings of Hon and Ng [47] who show that
opiate like material was present in the equine
pancreas. In addition, they show that this endocrine
organ possesses opiate receptor binding activity
[47]. Another striking parallel between cows and
horses can be seen in the reproductive cells. Similar
to cows, the horse’s oocytes contain mu opioid
receptors that regulate meiosis [48]. The mu opioid
receptor’s density on these cells varies seasonally
and influences the maturation of the oocyte [48].
Mu opioid receptors are not only present on female
gametes, they have also been detected in equine
spermatozoa [49]. The function of the receptors on
these cells is thought to be regulation of motility.
Naloxone has a biphasic effect on sperm motility.
High concentrations inhibit movement while lower
concentrations increased it [49]. The functional
presence of mu opioid receptors in reproduction and
hormone regulation underscores the vital
importance of morphine signaling in domesticated
animals.

Cow and horse intestinal motility are known to
be influenced by opioid mediated systems [50].
Morphine signaling is indeed present in the gut of
mammals [14]. Stimulation of opioid receptors can
decrease gut motility in the equine ileum and this
stimulation can be prevented by naloxone
treatment [51]. Studies of the intestinal transit in
horses and ponies reveal that transit times are
slowed by morphine but can be improved with
naloxone and other opioid receptor antagonists 
[52-54]. Equine medicine has benefited by the
discovery of opioid receptor mediated phenomenon
in the mammalian digestive tract.

Equus caballus sequence identifier XM_001501436

agatgctcagctatccccttctgctcctctctggctccgccagggatggtctctgtaagaaacagcaggagctgtggcagcagctaaaggaagcggctgaagcgcgtgg
aaccagaacagtccgggcgctcgcggttacctcacatcgtggtcacagccggccgtcagcaccatggacagcagcaccgtccccgcaaacgccagcaattgcaatgatc
cctttacgcactcttcaagttgctccccagcacccagccccggttcctgggtcaacttctcccacgcagatggcaacctctccgacccatgcggtccgaaccgtaccgaact
gggcgggagcgacagcctgtgccctccgaccggcagtccttctatgatcacagccatcacaatcatggccatctactccatcgtatgcgtggtgggtctctttggaaacttc
ctggtcatgtatgtgattgtcagatacaccaaaatgaagactgccaccaacatctatattttcaatcttgctctggcagatgccttagcaaccagcaccctgccattccaga
gtgttaattacctaatgggaacatggccatttggaaccatcctctgcaagatcgtgatctccatagattactataatatgttcaccagcatattcaccctctgtactatgagt
gttgatcgctacattgcagtctgccatcccgtcaaggccctggatttccgtactccccgcaatgccaaaatcgtcaacgtctgcaactggatcctctcttcagccattggtct
gcctgtaatgttcatggcaacaacaaaatacaggcatggttccatagactgtacactaacattctctcacccaacatggtactgggaaaacctgctgaaaatctgtgttttc
atctttgccttcatcatgccggtcctcatcattacggtgtgttatggactgatgatcttacgcctcaagagtgtccgtatgctctctggctccaaagaaaaagacagaaacct
gagaagaatcaccaggatggtgcttgtggttgtggctgtgttcattgtctgctggactcccattcacatttatgtcatcattaaagccttgattacgatcccagaaactacttt
ccagaccgtctcttggcacttctgcattgctctaggttacacaaatagctgcctgaacccagtcctttatgcatttctggatgaaaacttcaaacgatgcttcagagagttctg
tatcccaacttcctccaccattgagcagcaaaactctactcgagttcgtcagaacactagagaccacccctccacggccaatacagtggataggactaaccatcagctaga
aaatctggaagcagaaactgctccgttgccctaagtgggtctcatgccattcagagcctcactgagcttaaaagccacc

Predicted horse mu opioid receptor amino acid sequence

MDSSTVPANASNCNDPFTHSSSCSPAPSPGSWVNFSHADGNLSDPCGPNRTELGGSDSLCPPTGSPSMITAITIMAIYSIVCVVGLFGN
FLVMYVIVRYTKMKTATNIYIFNLALADALATSTLPFQSVNYLMGTWPFGTILCKIVISIDYYNMFTSIFTLCTMSVDRYIAVCHPVKALDFRT
PRNAKIVNVCNWILSSAIGLPVMFMATTKYRHGSIDCTLTFSHPTWYWENLLKICVFIFAFIMPVLIITVCYGLMILRLKSVRMLSGSKEKD
RNLRRITRMVLVVVAVFIVCWTPIHIYVIIKALITIPETTFQTVSWHFCIALGYTNSCLNPVLYAFLDENFKRCFREFCIPTSSTIEQQNSTRVR
QNTRDHPSTANTVDRTNHQLENLEAETAPLP

FFiigguurree  22.. Predicted horse mu opioid receptor mRNA sequence 



4 Arch Med Sci 4, December / 2009

Kirk J. Mantione 

The presence of mu opioid receptors has also
been discovered in the equine brain [55] and
synovial tissue [56]. These findings support the use
of opiate analgesics in treating horses. Further
research is required to evaluate the unwanted
treatment effects of morphine on horses [57]. 

MMuu  ooppiiooiidd  rreecceeppttoorr  eexxpprreessssiioonn  iinn  hhoorrssee  bblloooodd

Peripheral blood was collected from horses
(Equus caballus) by veinipuncture and processed
using the PAXgene blood RNA system (PreAnalytix,
Qiagen, Valencia, CA). RNA was isolated from 
2.5 ml of whole blood according to the
manufacturer’s detailed instructions. A 1 μl aliquot
of total RNA was then analyzed using an Agilent
2100 Bioanalyzer with RNA nano chips (Agilent,
Santa Clara, CA). RNA (130 ng) was then reverse
transcribed using Superscript III Rnase H-Reverse
Transcriptase with random hexamers (Invitrogen,
Carlsbad, CA). The predicted sequence from the
database supports the presence of a mu1 type
receptor in horse (Figure 2).

The u1 opioid receptor gene was screened for
using real time PCR with the commercially available
kit from Applied Biosystems (part number Hs
00168570_m1). This primer and probe set (detector
set) is located in the second exon of the mu1 opioid
receptor gene. The 2X universal master mix (Applied
Biosystems) containing the PCR buffer, MgCl2,
dNTP’s, and the thermal stable AmpliTaq Gold DNA
polymerase was used in the PCR reactions. The PCR
reaction mixture was transferred to a MicroAmp
optical 96-well reaction plate and incubated at 95°C
for 10 min to activate the Amplitaq Gold DNA
polymerase and then run for 40 cycles at 95°C for
30 s and 60°C for 1 min on the Applied Biosystems
GeneAmp 7500 sequence Detection System. The
sequence was not detected using this assay and
therefore it can be concluded that these cells
probably do not express the mu1 opioid receptor. 

In conclusion, opiate systems are present as
expected in both horse and cattle and there is 
a resemblance of the two. The system appears to
be present and thus mediate functions that merely
focus on pain. As such, the opiate system exhibits
a general level of functionality in these important
commercial animals.
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