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A b s t r a c t

Mytilus edulis, a marine bivalve mollusk, exists in many coastal marine
environments. It also serves as a common food with a high level of
commercialization. Therefore their overall health should be of great concern
and relevance to the human population. Studies in the past 30 years have
demonstrated considerable conservation in opiate and opioid peptide processes
between invertebrate and humans, including the chemical messengers
themselves, as well as their respective receptors. These same messengers may
serve as an indication of their over all health. Known evolutionary relationships
with all animals and the presence of similar or identical processes, specifically
in mollusks, make Mytilus edulis an ideal organism for the study of these
processes as a model system. In this review, we mainly focus on the discovery
of opiate signaling mechanisms in the mollusk Mytilus edulis, since they
transcend pain in function.
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Opioid peptides

Previous studies demonstrated the presence of Met-enkephalin, Leu-
enkephalin and Met-enkephalin-Arg6-Phe7 in the nervous system of Mytilus
edulis along with highly selective opioid receptors (see Leung and Stefano,
1987 [1-3]). The demonstration of Met-enkephalin-like material in the
hemolymph and immunocytes of M. edulis was carried out by means of
high pressure liquid chromatography (HPLC) and radioimmuno-assay (RIA)
[4-8].

In addition it was determined, in part, how neuropeptides in the
hemolymph are degraded or their action terminated, explaining the
difficulty in obtaining them in the first place. In mammals CD10 (CALLA,
common acute lymphoblastic leukemia antigen/neutral endopeptidase
24.11; NEP, “enkephalinase”) hydrolyzes a number of naturally occurring
peptides including the endogenous opioid pentapeptides Met- and Leu-
enkephalin [9, 10]. This enzyme in the mammalian brain has been termed
“enkephalinase”. In invertebrate organisms, such as the mollusk M. edulis,
Met-enkephalin triggers inflammatory responses by inducing morphological
changes, directed migration, and aggregation of hemocytes [4-9]. M. edulis
hemocytes express a CD10/NEP related structure and abrogation of
CD10/NEP enzymatic activity reduces the amount of Met-enkephalin
required for hemocyte activation by five orders of magnitude [9]. Human
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CD10+ polymorphonuclear leukocytes are similarly
responsive. Thus, a precise mammalian-like
mechanism for degrading peptides in the inver-
tebrate immune/defense system is present [10].

Additionally, Met-enkephalin is degraded by
other peptidases present in the hemolymph fluid
and hemocyte membrane suspension of M. edulis
[11]. Degradation of Met-enkephalin is rapid in the
fluid and slower in the membrane preparation [12].
Aminopeptidase activity is bestatin sensitive in
hemocyte membrane and highest in the fluid of the
hemolymph which appears to have a component
which is insensitive to inhibition [13-16]. Angiotensin
converting enzyme activity is found only in the fluid
of the hemolymph. Carboxypeptidase and NEP are
membrane bound and the former appears to
predominate. Thus, invertebrate immune tissues
contain the machinery to digest, as well as process,
peptidergic signal molecules. 

Importantly, opioid peptides and their precursors
have been identified in invertebrate tissues and
they contain either identical or close to identical
sequences as found in mammals [17]. A mam-
malian-like proenkephalin peptide in invertebrates
was surmised from studies demonstrating the
presence of smaller peptides that are found within
this precursor. The opioid peptides Met- and Leu-
enkephalin, as well as Met-enkephalin-Arg-Phe,
were isolated and sequenced from M. edulis neural
tissues [18, 19]. Recently, a proenkephalin-like
peptide was identified in the immunocytes of 
M. edulis [20, 21]. M. edulis proenkephalin exhibits 
a high sequence identity with human and guinea
pig proenkephalin (39 and 50%, respectively). This
proenkephalin contains Met- and Leu-enkephalin
in a ratio of 3 : 1 for M. edulis. It also possesses Met-
enkephalin-Arg-Gly-Leu and Met-enkephalin-Arg-
Phe that are flanked by dibasic amino acid residues,
demonstrating cleavage sites. Furthermore, using
both sequence comparison and a specific antiserum
raised against bovine proenkephalin A (209-237),
the enkelytin peptide, FAEPLPSEEEGESYSKEVPE-
MEKRYGGFM, was identified as proenkephalin and
it exhibited a sequence identity of 98% with
mammalian enkelytin [22].

M. edulis also contains a prodyn molecule in its
hemocytes [20, 23]. M. edulis prodyn contains,
αneo-endorphin, dynorphin-A and dynorphin-B 
at the C-terminus, exhibiting 100, 70.5, and 85%
sequence identity with the rat prodyn-derived
counterparts, respectively [20, 23]. The number of
Leu-enkephalins in this precursor is identical to that
found in vertebrates. M. edulis prodyn is distin-
guished from that described earlier in leeches in
that the N-terminus is longer. Additionally, the
presence of an orphanin FQ-like peptide, exhibiting
50% sequence homology with that found in
mammals, was found [23]. 

Briefly, besides opioid processes catechola-
minergic processes are also found in M. edulis
tissues, resembling there invertebrate counterparts
[24]. Additionally, estrogen signaling exists in these
tissues as well, again resembling those processes
found in mammals [25-28]. 

Receptors

The effects of the naturally occurring opioid
neuropeptide deltorphin I, isolated from amphibian
skin, on immunoregulatory activities were studied
in invertebrates. (D-Ala2) Deltorphin I binding and
pharmacological studies have provided evidence for
a special subtype of delta opioid receptor, δ2, on
human and invertebrate immune cells [29-31]. The
high potency of this compound parallels that of Met-
enkephalin previously demonstrated in vertebrate
plasma and invertebrate hemolymph. In cold
saturation experiments a single high affinity binding
site was revealed for M. edulis immunocyte
membrane homogenates. The ability of a variety of
other opioids to displace specifically bound 
3H-DAMA also was investigated. The opioid peptides
were effective in the following decreasing order:
deltorphin I = DAMA > [Met]enkephalin> DADLE >
DPDPE. By contrast, the mu and kappa ligands DAGO
and dynorphin 1-17 were quite weak [31]. The results
obtained with deltorphin I support the view that the
special role played by endogenous Met-enkephalin
in immunobiological activities of vertebrates and
invertebrates is mediated by a special subtype of
delta opioid receptor, δ2. This site is also sensitive
to the inhibitory influence of naltrindole further
documenting its identity as δ2 [32, 33] and its role
in immunocyte activation. It is of interest to note
that this new receptor subtype was first
demonstrated in an invertebrate and then found on
human granulocytes [31]. Thus, opioid peptides
appear to have an immunocyte stimulatory action
(induce chemotaxis) in both groups of animals via
this novel opioid receptor subtype [32, 33].

Opiate alkaloids

Morphine-like and codeine-like substances were
demonstrated in the pedal ganglia, hemolymph and
mantle tissues of the mollusk M. edulis [34]. The
pharmacological activities of the endogenous
morphine-like material resemble those of authentic
morphine. Both substances counteracted, in a dose
dependent manner, the stimulatory effect of tumor
necrosis factor (TNF)-α or interleukin (IL)-1α on
human monocytes and M. edulis immunocytes. The
immunosuppressive effect of this opiate material
expresses itself in a lowering of chemotactic activity,
cellular velocity and adherence, as well as making
active immunocytes inactive, i.e., rounded [34, 35].
Codeine mimics the activity of authentic morphine,
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but only at much higher concentrations. These
pharmacological effects of morphine on im-
munocytes are consistent with those actions
attributed to opiates reported in the literature [32].
Indeed, it has been surmised that morphinergic
transmission may regulate the down regulation of
immune activation [32].

Furthermore, a specific, high-affinity and novel
receptor site (μ3) for morphine has been identified
on human monocytes as well as M. edulis
immunocytes [34]. Scatchard analysis revealed 
a single relatively high affinity binding site. A variety
of opioids, tested by two methods, were found to
be ineffective in displacing specifically bound 
3-dihydromorphine (DHM) [34]. The discovery of
this receptor site mediating opiate effects also was
first found in an invertebrate and then in man,
further demonstrating the value of the comparative
approach [34]. 

Using primers derived from the human neuronal
mu1 opiate receptor and reverse transcription-
polymerase chain reaction (RT-PCR), we found mu
transcripts in M. edulis pedal ganglia, substantiating
the earlier observation [36]. Sequence analysis of the
RT-PCR products revealed 95% identity with the
neuronal human mu1 receptor. Furthermore,
interleukin-1 and morphine exposure to excised pedal
ganglia resulted in up- and down-regulation of the
mu receptor transcripts, respectively [36]. This study
provides molecular evidence that mu-type opiate
receptors are expressed in molluskan ganglia,
suggesting that they first appear in invertebrate
organisms and are retained during evolution.
Interestingly, this receptor has also been identified in
both human brain tissue and human white blood cells
as well [37, 38]. It has also been isolated, sequenced
and cloned in human tissues and determined to be
a truncated mu-1 like receptor [37, 39, 40]. 

Opioid-cytokine link 

Opioid induction of an interleukin 1-like substance
in M. edulis pedal ganglia and immunocytes has been
demonstrated [41-46]. Recombinant human IL-1 can
induce the formation of a TNF-like substance, as well
as initiate specific immunocyte conformational
changes that are interpreted as activation in
immunocytes [41]. Both the immune and nervous
system of M. edulis contain an IL-1-like molecule [11,
46]. In nervous tissue it is apparently localized in
microglial cells [11]. Opioid challenge can induce the
formation of an endogenous IL-1-type molecule that
stimulates immunocytes as does authentic IL-1 [11,
46-48]. This immunocyte stimulation can be blocked
by specific IL-1 antibody. DAMA induced stimulation
of the production of an IL-1-like substance is shared
by both the immune and nervous system. In M. edulis,
recombinant human IL-6, although not activating cells
directly, potentiated IL-1 activation of immunocytes

[42, 43, 45]. Furthermore a irIL-6 appears to be present
in M. edulis and the insect Leucophaea hemolymph
(0.82 ng/ml) [43]. It was also found that irIL-6 is
produced in pedal ganglia in response to the
pharmacological challenge of the Met-enkephalin
analogue DAMA. These data also imply that immune
signal molecules may have functions that transcend
immunomodulation. 

Morphine biosynthesis in Mytilus

Morphine and morphine-6-glucuronide, a mor-
phine metabolite, have been identified and
quantified in Mytilus edulis pedal ganglia by high
performance liquid chromatography coupled to
electrochemical detection [49]. These opiate
alkaloids were further identified by both gas-
chromatography mass spectrometry and nanoflow
electrospray ionization double quadrupole
orthogonal acceleration Time of Flight mass
spectrometry. In animals that were starved, the
morphine levels increased significantly compared
to controls. Tetrahydropapaveroline and reticuline,
isoquinoline alkaloids, morphine precursors, were
purified and identified in pedal ganglia as well [50].
These studies demonstrate that opiate alkaloids are
present as naturally occurring signal molecules
whose levels respond to stress, i.e., starvation.

In M. edulis, endogenous morphine level in
the ganglia statistically increased after their
incubation with reticuline, tyrosine and tetrahy-
dropapaveroline [51, 52]. Reticuline does not
stimulate ganglionic NO release, as do the other
morphine precursors [53]. Furthermore, in binding
displacement experiments both reticuline and
salutaridine (another morphine precursor) exhibit
no binding affinity for the pedal ganglia mu opiate
receptor subtype [53, 54]. Injection of intact, whole
healthy animals with reticuline or L-DOPA also
results in significantly higher endogenous ganglionic
morphine levels [52]. Incubation with quinidine
and/or AMPT diminished ganglionic morphine and
dopamine synthesis at various steps in
the synthesis process [52]. It was also demonstrated
that CYP2D6 mediates the tyramine to dopamine
step in this process, as did tyrosine hydroxylase in
the step from tyrosine to L-DOPA [52]. Furthermore,
via RT-PCR, a cDNA fragment of the CYP2D6 enzyme
in the ganglia, which exhibits 94% sequence
identity with its human counterpart, was identified
[55, 56]. Other studies demonstrate critical link with
opiate alkaloid synthesis and actions associated
with morphine [55, 57]. 

Opiate alkaloid function in Mytilus

As noted earlier, given the presence of morphine
select receptors as well as the opiate alkaloid itself
functions associated it also became evident. In an
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effort to demonstrate possible functional roles of
morphine in M. edulis, its presence was examined
in the course of a stressful situation brought about
by experimental intervention [34, 47]. In animals
having been subjected to electrical stimulation of
the pedal ganglia morphine down regulated
immune and motor responses caused by the
stimulus in a naloxone sensitive manner.
Examination of the levels of endogenous morphine-
like material revealed a significant increase in the
hemolymph and in the pedal ganglia taken from
the 30-h post electrical stimulation group. The
deactivating influence of opiate substances in both
systems has to be interpreted in context with the
body of information on immunoregulation,
particularly immunostimulating activities of opioid
peptides and other messenger molecules. The need
for a functional interaction of regulatory factors with
opposite effects can be considered to be enhanced
under abnormal conditions. This speaks for a ge-
neral and yet specific role of morphine in calming
or terminating the state of alertness created by the
initial release of endogenous opioids and/or
cytokines [32]. This same role of naturally occurring
morphine as an immune down-regulating molecule
has been proposed for morphine in CNS [32]. It also
may represent a common protective mechanism via
the stress followed by relaxation, if appropriate [58].

In another study the concept of the existence
in insects and mollusks of a distinctive class of
neuroglial cells, comparable to vertebrate
microglia, was examined during surgical stress
[59]. The evidence presented was as valid as that
used in reference to the separate status of
vertebrate microglia, i.e., the demonstration of 
a close structural and functional relationship of
these cells with cells of the immune system. The
excision of ganglia from three invertebrate species
(the mollusks Planorbarius corneus and Mytilus
edulis, and the insect Leucophaea maderae), and
their maintenance in incubation media, led to an
exodus of small cells and their accumulation in
the culture dish [59]. During this process, they
underwent conformational changes from stellate
to rounded, and then to more or less ameboid,
comparable to those indicative of the process 
of activation in the animals’ immunocytes.
Functional characteristics, which these
translocated microglia-like cells share with
immunocytes, are motility, phagocytotic activity,
and adherence to the culture dish. An additional
phenomenon of particular interest for the
classification of microglial elements is their
response to morphine [59]. At a concentration of
10–6 M, this drug inhibits not only the number of
cells emerging from the excised ganglia, but also
the degree of their transformation to the 
“active” ameboid form. This dose-dependent 

and naloxone-sensitive effect of morphine on
microglial cells parallels that on activated
immunocytes of the same species [34].
Corresponding results demonstrating an inhibitory
effect of morphine on mobilized microglial cells
of the frog Rana pipieus indicate that this
relationship between the two cell types under
consideration also exists in vertebrates [59].
Binding and displacement experiments with
membrane homogenates of microglial cells as well
as immunocytes of M. edulis have shown that the
effects of morphine on both cell types are mediated
by the same special opiate receptor μ3 [59].

Opiate coupled nitric oxide signaling 

Nitric oxide (NO) serves many functions,
including free radical scavenger, anti-bacterial and
- viral and widespread gaseous messenger actions
[60-62]. In numerous reports we also have
demonstrated that the novel opiate receptor mu3,
which is opiate alkaloid selective and opioid peptide
insensitive, is coupled to constitutive nitric oxide
release (cNOS) in M. edulis tissues [34, 63-66]. In
M. edulis, microglia egress from ganglia, which
morphine inhibits, was found to operate via NO
release [67]. Taken together, these data
demonstrate that morphine can stimulate NO
release in cells obtained from an invertebrate that
represents an animal 500 million years divergent in
evolution from man, underscoring the significance
of this process and further substantiating the
critical importance of morphine as a naturally
occurring signal molecule [68]. 

The morphine metabolite morphine-6-
glucuronide (M6G) also stimulates pedal ganglia
cNOS-derived NO release at identical concentrations
and similar peak levels as morphine [69, 70].
However, the classic opiate antagonist, naloxone,
only blocked the ability of morphine to stimulate
cNOS-derived NO release and not that of M6G.
CTOP, a mu-specific antagonist, blocked the ability
of M6G to induce cNOS-derived NO release, as well
as that of morphine, suggesting that a novel mu
opiate receptor was present and selective toward
M6G. 

Subjecting the marine bivalve M. edulis to an
immediate temperature change has been shown to
rapidly alter the animals’ ganglionic monoamine
levels, opiate processes as well as its ciliary activity
[71]. After 12 h cold exposure the estimated relative
mu opiate receptor (MOR) gene expression in 
M. edulis pedal ganglia, measured by real-time PCR,
did not differ significantly from the control group
whereas 24 h of cold exposure significantly down
regulated their mu opiate receptor mRNA
expression and limiting nitric oxide release.
Interestingly, morphine and DAMGO significantly
enhances ciliary beating in a naloxone sensitive
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manner, whereas L-NAME, a nitric oxide synthase
inhibitor, only antagonized morphine’s action [72].
This study strongly suggests that the two
alternatively spliced mu opiate receptors may be
involved in the physiological regulation of lateral
ciliary activity in the visceral ganglia via dopamine
and nitric oxide.

Incubation of M. edulis excised gill filaments
reveal spontaneously lateral cilia beating in a meta-
chronal wave, which was significantly decreased by
morphine in a concentration dependent and
naloxone reversible manner [73]. Exposure of the
spontaneously beating cilia to SNAP, a NO donor,
also diminished the beating rate. Exposing the cilia
to L-NAME blocked the morphine induced cilio-
inhibition, demonstrating that morphine was
working to inhibit the cilia via NO. Furthermore, the
gill tissue contained mu opiate receptor transcripts,
which was mu3 in nature [73]. As in mammals,
opiate signaling is not confined to neural tissues.
This report demonstrates the occurrence of opiate
signaling for the first time in an invertebrate’s
respiratory tissue.

Mytilus edulis as a model 
for substance abuse screening

Based on the experimental data that Mytilus
edulis ganglia make morphine and that
perturbation of its environment, such as cold stress,
bacteria infection, starvation, can alter its synthesis
make it a likely model for testing substances of
abuse [74]. We have designed an assay that can
actually measure the effect of substances of abuse
on morphine release from M. edulis ganglia [75-78].
Incubation of pooled M. edulis pedal ganglia with
ethanol, cocaine or nicotine, substances with high
substance abuse potential, resulted in a statistically
significant enhancement of 125I-trace labeled
morphine release [75-85]. Taken together, besides
demonstrating the suitability of M. edulis as 
a model animal for influencing opiate processes
Mytilus studies introduce the hypothesis that
substance of abuse may all work, in part, by
releasing endogenous morphine, which impacts the
CNS reward and motor systems. 

Conclusions

Thus, opioid peptides and opiate alkaloids,
functioning in an autocrine/paracrine manner have
not only been conserved during the course of
evolution but their activities in immuno- and neuro-
regulation have been conserved as well.
Stereoselect degradation and dynamic receptor
mechanisms also exist in invertebrates to insure
that their signals exhibit the highest fidelity. The
potential for immunocytes to communicate with
neural and immune elements using opioid, opiate,

cholinergic, GABAnergic and catecholamininergic,
as well as cytokine, signal molecules also exists.
Furthermore, “opiates” may be used, in part, by
parasites to escape immune surveillance [86-88].
Thus, the comparative study, emphasizing M. edulis
in this review, of chemical messenger associated
regulation and its involvement in autoim-
munoregulation represents a scientific area of
timely interest, which will be the subject of future
endeavors. These primitive receptors and the
morphinergic signal molecules associated with
them are likely affecting many underlying
biochemical processes, including endocrine and
within the scope of substance abuse [81, 89-91].
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