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A b s t r a c t

The chicken is one of the most common widespread domesticated animals in
the world. We rely on them as a primary source of food and consume both their
meat and eggs; therefore their overall health should be of great concern and
relevance. In this regard, opioid peptide and opiate alkaloid processes in mammals
and invertebrates have functions that transcend their actions as anti-nociceptive
agents. Many reports document their presence and action in many different
physiological processes, such as neural, immune, vascular and digestive systems.
Since poultry are the closest living animals to dinosaurs we examined these
animals to determine if they too had an endogenous opioid system that was
diffuse in function and presence. Indeed, poultry contain such an opioid system,
which includes many physiological systems beside neural processes involved in
pain perception. In this assessment it was also discovered that poultry opioid
processes display novel idiosyncrasies that can be considered paradoxical when
compared to mammalian processes. Interestingly, from the relatively sparse
literature, the variations occur within the realm of pain perception and responses. 
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Introduction

The production and manufacturing of healthy poultry that is not profuse
with disease and is harmless to consume is nothing less than a major
accomplishment of modern agriculture. Loss of poultry population to
disease represents a serious component of the cost to produce poultry.
Disease is at the forefront of impediments for increased productivity 
[1-3]. This not only referring to increased mortality as a symptom of disease,
but also referring to the increase in production costs resulting from the
disease, e.g. vaccinations, veterinary care, contamination of plant sites,
decreased egg production. The rate of poultry consumption, for example,
in the United States has more than tripled since the 1960’s. In 1960,
Americans consumed 28 pounds of chicken per capita and in 2004 it was
reported that figure reached 85 pounds (UDSA, ERS). With a supply and
demand system as strong as this, it is extremely imperative and relevant
to closely monitor the industry, including the health and welfare of the
animals that create the industry. In the United States, the Hatch Act of
1887 provided the USDA the first mandate to sponsor extramural research.
Interestingly, in 2007, only 0.04% of the Department of Agriculture budget
was allocated to its competitive grants program for research that directly
involves important domestic agricultural animals [4]. 
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Morphine and other chemically related opiate
alkaloids represent classical and reliable analgesic
principles for management of severe pain
associated with disease [5, 6]. Importantly, this fact
alone may enable this system to serve as a sentinel
of health. A cadre of cellular and physiological
effects associated with the pharmacological
administration of morphine and its cognates is
documented by a substantial body of accumulated
evidence that lie outside the realm of anti-
nociception and appear to be mediated by indirect
and “non-traditional” mechanisms. Opioids and
opiates are neuropeptides and opiate alkaloids,
respectively, which serve in many animal systems
as neurotransmitters, neuromodulators and
chemical messengers in systems other than the
nervous system [7, 8]. Endogenous opioid peptides
and opiate alkaloids modulate an array of
regulatory functions such as pain perception, stress
mechanisms, immune response and suppression,
respiration as well as cardiovascular and diuretic
functions [9-11]. Opioid peptides and their receptors
are implicated in an array of behavioral and
physiological functions in avian species, including
reproduction, endocrinology, water balance, social
behavior and pain stimulus [12-14]. This information
coupled with the knowledge that various chicken
tissues contain highly opioid receptors designed to
bind endogenous opioids may serve as a means to
understanding the overall health and wellness not
only in the chicken but as a potential model for all
vertebrates. Examining the mechanisms of opioid
peptides in domestic poultry may provide a key to
unlocking unique therapeutic opportunities through
the action of opioid, for example, immunopharma-
cology.

Distribution of opioid binding sites in the
chicken brain

Opioids are widely known to be inhibitory
neurotransmitters, their receptor subtypes, denoted
as mu, kappa, and delta are distributed widely
throughout the central nervous system in
vertebrates [12]. Immunocytochemical methods and
radioimmunoassay demonstrated the existence and
distribution of the opioid peptides in the avian brain
over two decades ago. Autoradiographic studies have
proven this system of mu, kappa, and delta subtypes
intact in the domestic chicken [15]. These methods
established endorphin, dynorphine and enkephalin
in the forebrain, midbrain and pituitary gland [16-
21]. Immunoreactive enkephalin peptides are present
in the domestic fowl brain days before hatching [22].
Opioid peptides influence an array of physiological
and behavioral responses in birds. Examples include
embryonic motility [23], body temperature [24], pain
sensitivity [25], aggressive and sexual behavior [26],
vocalization [27], ingestive behaviors [24, 28] and
endocrine regulation (Figure 1) [29-31].

The maximum binding capacity and affinity of
[3H] diprenorphine was assessed in chicken brain
section homogenates [32]. Binding sites were found
distributed among six regions of the brain namely
the frontal cortex, lateral septum, striatum,
amyglada, hippocampus and hypothalamus [32]. It
has been established that the limbic system,
amygdale, striatum and hippocampus in birds are
involved in emotion, motivation and learning [33].
The hippocampus in birds is involved in food storage
behavior and homing [33]. Distribution of opioid
binding sites decrease in concentration from frontal
cortex, striatum, amygdala regions and from ten

FFiigguurree  11..  Multiple pathways affected/mediated/regulated by opioid/opiate receptors and their cognates in domestic chicken
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day old chicks to adulthood in female chickens.
Opioid binding sites in the hippocampus,
hypothalamus, and lateral septum were constant
for the female age groups [32]. Male chickens do
not experience a reduction in opioid binding sites
in the aforementioned brain regions from ten days
old until adulthood that the females experienced
during that same time course[32].

Substance P is one of the many important
complex molecules involved in pain perception 
[34, 35]. The sensory function of substance P relate
to the transmission of pain information into the
central nervous system. Further it also has potent
effects as a vasodilator. Substance P induced
vasodilatation is dependent on constitutive nitric
oxide release [36]. Substance P is present in the
chicken dorsal horn [37]; this same group
demonstrated the presence of opioid receptors in
the same neural region. The broad distribution of
opioid peptides and receptors in the brain and
throughout the body suggest that they serve
multiple purposes, again as neurotransmitters and
neuromodulators.

Prenatal exposure to opiates

The effects of opiate exposure and withdrawal
on neuroendocrine function in chicks have not been
extensively studied, however it is widely known and
accepted that the chick responds to immune
system stimulation induced by lipopolysaccharide
(LPS) in a similar manner as mammals by
stimulating sickness behaviors and cognitive deficits
as well as an increase in body temperature [38-40].
Prenatal opiate exposure in chicks suppresses fever
response and hypersensitivity in response to LPS
treatment [41]. Repressed fever response to LPS has
been well studied in the rodent but not as well in
the avian system. Nearly equivalent results were
achieved after administration of opiates prenatally
to chicks, namely after exposure to interleukin 
(IL)-6, IL-β, and tumor necrosis factor (TNF)-α [41].

Prenatal exposure of chicks to morphine
significantly impairs long term memory in the
passive avoidance learning paradigm [42]. Short
term memory and long term memory retention
times were assessed for chicks exposed to
morphine prenatally. Morphine (20 mg/kg) was
injected into the airspace of the egg on days 12 to
16 of gestation, once hatched, the chicks underwent
one-trial passive avoidance learning task. The task
exploited the chick’s innate tendency to peck at
objects. While the results showed no difference in
the number of spontaneous pecks between control
groups and morphine treated groups during pre-
training, the morphine treated groups had
significantly impaired memories at the long term
training time point. These experiments led to
speculation that prenatal exposure to morphine

may affect the process of protein synthesis and the
expression of long term potentation, affecting the
neural molecular cascade including NMDA-
glutamate receptors or membrane protein
phosphorylations [42].

Osteogenic processes are also likely regulated in
part by endogenous opioids in chick embryos [43].
Embryonic osteogenesis was studied by evaluating
bone growth in relation to opioid receptor blockade
during different stages of embryonic development.
In the Liskov et al. study, morphological analysis of
the femoral bone after hatching showed that
naloxone did significantly alter the number of
osteoblasts, mitotic cells, osteocytes and the
thickness of the perichondrial bone cuff [43].

Evidence for hyperalgesic effects of morphine
and paradoxical pain

Opiates, typically employed to alleviate pain can
often cause numerous side effects including nausea,
respiratory depression, constipation addiction, and
withdrawal [44-47]. Additionally, opiates can actually
elicit pain, also known as opiate induced tactile
hyperalgesia that may not be associated with the
initial pain complaint [25, 47-54]. One explanation
of this nontraditional response to opiates is that it
is caused by a compensatory response to the
inhibition produced by activation of the μ opioid
receptor, causing hyperactivity of the system [53,
55]. Multiple opioid receptor subtypes also
participate in variations of behavior and responses
to stimuli, including in poultry [56-59]. 

Morphine initiates a signal through a G protein
cascade (Figure 2) [60-65]. Morphine first interacts
with the opiate receptor, which changes its
conformation and interactions with a G protein
within the cell causing it to expel its GDP molecule
in exchange for a GTP. The G protein then breaks
into 2 segments, α and β. The subunits diffuse
along the cell membrane until they reach and bind
their targets. Morphine also increases conduction
through potassium channels, decreases conduction
through calcium channels and inhibits the
membrane bound enzyme adeylyl cylase, it is this
trifecta that accounts for the blunting of the signal
system that transmits pain (Figure 2) [62-64, 66]. 

Prior work from our laboratory has determined
that μ3 and μ4 opiate receptors are selectively
activated by morphine and morphine-related opiate
alkaloids and are completely unresponsive to a wide
variety of endogenous opioid peptides [11, 67]. Thus
far this pertains to human and invertebrate tissues.
These novel receptors are coupled to nitric oxide
release (NO), associating morphine’s actions with
processes that transcend pain and include NO [53,
54, 56, 68-71]. Thus, we have defined a cellular
regulatory circuit by which endogenous morphine
activates its cognate μ3 and μ4 opiate receptors. The
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evolutionary and biological significance of the μ3
opiate receptor is further enhanced by our recent
finding that it is present on human stem cells as is
its variant, the μ4 opiate receptor, in the absence of
the traditional μ opioid receptor [67]. These specialized
opiate receptors are not coupled to adenylyl cyclase
activation [53], therefore excitation rather than
traditional inhibition ensues cellularly (Figure 2).

There are a multiple of tests available to assess
the antinociceptive action of various drugs. Stimulus
type varies widely among tests, including
mechanical (pinch or pressure), chemical (formalin,
acetic acid), thermal (tail-flick, hot plate)
stimulations. Morphine, the prototypical opiate
analgesic has antinociceptive on each of the
aforementioned tests [49, 57]. Non typical morphine
effects have been reported pertaining to poultry
undergoing thermal and chemical stimulation.
Rather than the classical hypoalgesic response to
morphine, White Leghorn and California White

cockerels responded contradictory to this manner
[25, 48-50]. The animals appeared to be
experiencing sedation after morphine exposure,
however when exposed to the noxious stimuli, they
were more quickly to react than the control
chickens that were administered saline in the stead
of morphine, naloxone was able was able to block
the hyperalgesic effects of morphine [48, 49].
Morphine induced hyperalgesia has also been
demonstrated in rodents however it only occurs
after chronic morphine exposure, and is preceded
temporally by morphine’s typical analgesic effects
[72, 73].

The readily evident hyperalgesic effects of
morphine in the chicken are not only uncommon,
but paradoxical as well. Hyperalgesia in the
domestic fowl was also observed in the
developmental stages of the animal. A jump latency
test was used to determine the effects of morphine
on young chicks, at ages three, five, seven and

FFiigguurree  22..  Inhibitory and excitatory pathways are activated by traditional and Mu3/Mu4 -like opiate receptors,
respectively. Activation of the traditional receptor results in analgesia after the inhibition of adenylate cyclase stops
the production of second messenger cAMP from ATP. WE surmise, based on mammalian studies, hyperalgesic effects
are achieved through activation of the specialized mu3/mu4 like receptor, which cause Ca++ dependent cNOS to
synthesize the second messenger nitric oxide, as well as activation of NMDA receptors which results in non selective
cation transport through cell membranes, making Ca++ available for cNOS
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fourteen days. This group determined, consistent
with earlier research that while chicks ages, three,
five and seven days were unaffected by morphine
in terms of the jump latency test, they were
affected typically in terms of respiration and rates
decreased. Also, the results demonstrated an age
related jump latency increase [50]. The effect
morphine has on these domestic fowl is both
counterintuitive and paradoxical. Not only does the
unexpected effect occur on the first exposure to
morphine, but the animals experiencing morphine
in this atypical way also display the typical temporal
effects. One explanation of this nontraditional
response to opiates is that it is caused by 
a compensatory response to the inhibition
produced by activation of the μ opioid receptor,
causing hyperactivity of the system [55]. 

Stress induced analgesia

Stress induced analgesia is an adaptive pain
suppression coping behavior (mechanism) [74-77].
Endogenous analgesia occurs among chickens
experiencing severe tonic pain [74]. Pain can be
mimicked experimentally. Birds often suffer from
gouty arthritis; this pain can be mimicked
experimentally by intraarticular injection of sodium
urate (SU) [74, 78, 79]. In one similar experiment,
chickens were injected with SU in one ankle joint
and frequency of leg lifts were recorded over time
as a measure of pain. Notably, after a period of 
45 to 19 min, the birds appeared hypoaesthetic,
spending most of their time sitting and dosing,
closing their eyes with drooping head and tail
feathers [74]. The aforementioned behaviors are all
common reactions to analgesic drugs, indicating an
endogenous analgesic consequence. The same
group also conducted a similar experiment in which
they compared the results of their previous
experiments where the experimental birds were
kept in simple battery cages, to experimental birds
kept in novel cages [74]. The birds in the novel cages
received the same SU injections and observations
were made at the same intervals. In the case of this
experiment a novel cage contained a variety of
stimuli and was considered enriched when
compared to a 450 × 360 × 550mm battery cage.
Lameness in the novel cages was significantly less
than in the familiar battery cages. The absence of
pain related behavior does not necessarily indicate
absence of pain; results suggest that, like humans,
the avian’s motivational state can contribute to the
coping of pain by altering the perception of pain
[49, 51, 74, 75]. This ability of birds to demonstrate
hypoalgesia may explain why commercial
caponization doesn’t produce behavioral evidence
of pain [74], and industry is reluctant to stop this
otherwise brutal procedure. 

Opioid usage for relief of articular pain in
domestic fowl

Spontaneous incidences of arthropathies occur
frequently among the heavy breeds of domestic
poultry [80-82]. Traditionally, opiates like morphine
are injected or ingested systemically rather than
locally administered, however studies in rats have
shown that local administration of morphine or
Met-enkephalin was markedly more effective than
the local anesthetic lidocaine [83]. Trials among
avian species make use of the microcrystalline
sodium urate induced arthritis pain model to
measure the analgesic effects of various opioid
agonists [84]. Opioid analgesics, morphine sulfate,
fentanyl citrate, and bupreorphine hydrochloride
were all injected intraarticularly to subjects after
injection induced arthritis symptoms were seen.
None of the opioid agonists had considerable effect
on pain related behavior and therefore it was
concluded that opioids with a high affinity for the
mu receptor had little effect when injected
intraarticularly [84] since it was shown that kappa-
opioid antagonists were very effective when injected
intraarticularly [85]. In speculation, it is likely that all
opioid receptor subtypes are not present in the joints.
Although morphine binds primarily to mu opioid
receptors, experiments confirm opioids such as
morphine exert their effects through multiple opioid
receptor subtypes with a lesser affinity. The effects
of morphine or other opioids may be altered if they
bind to kappa receptors before mu [59]. Selectivity
of opioid receptor ligands for their cognate receptor
will affect the physiological manifestations of the
opiate [86, 87].

Food intake behavior

Stimulatory mechanisms for feeding in chicks
are anomalous and differ from mammalian feeding
stimulatory mechanisms [88]. Feeding mechanisms
are important for newly hatched chicks, since they
must be able to recognize and ingest food in order
under their own free will to survive. It is therefore
relevant to reveal the feeding behavior stimulatory
mechanisms for feeding. μ-Opioid receptor
antagonists, have been shown to inhibit feeding
behavior in meat-type chicks, demonstrating the
important roles endogenous ligands for μ receptors
have in feeding regulation [89]. Results of
intracerebroventricular injections of mu, kappa and
delta agonists in broiler chicks suggest delta and
kappa opioid receptor agonists induce hyperphagia
while mu opioid receptor agonists generate 
a contrasting result of suppressed food con-
sumption [89]. This further elucidates the
paradoxical effects of the opioidergic involvement
in the chicken while suggesting opioids do play 
a major role in feeding mechanisms of this precocial
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animal that depends on instinct to ingest food
voluntary rather than under the forceful concern of
a mammalian parent.

Opioid involvement in developing social
processes

Similar to many mammalian species, chicks
display a well characterized stress response when
separated from their group, this response includes
distress vocalizations, hyperthermia and analgesia
[27, 75, 90, 91]. Also, a number of studies associate
the involvement of the opioid system with social
attachment processes [75, 90, 92, 93]. Opioid
receptor agonists attenuate separation stress, while
antagonists have enhanced distress calls in chicks
[90]. Only the mu opioid agonist, DAMGO was able
to attenuate separation stress vocalizations,
suggesting mu opioid receptor involvement and not
kappa or delta [93]. However, in studies evaluating
changes in this comfort response by facilitation of
opiate, serotonin, and acetylcholine activity, using
agonists, morphine, quipazine and pilocarpine
respectively, only morphine was found to magnify
the comforting effect of mirrors [90]. The effects of
naloxone on contact comfort, and the acquisition
and expression of imprinting were evaluated to
deduce that opioid blockade reduced all these
measures of social comfort. It was concluded that
endogenous opioid activity contribute to the
comfort which animals derive from their social
environment [90]. It would be interesting in the
future to compare estrogen processes in poultry
given the morphine parallelisms and their ability to
release constitutive nitric oxide release [94-96]. 

The role of opioid receptors in mediating
cardioprotection

Opioid receptors appear to play important roles
in protection against ischemia-reperfusion injury in
several bodily systems in many vertebrates,
including in the central nervous system [97],
jejunum [98], kidney [99], and heart [100, 101]. Also,
in whole animal models opioid receptor antagonists
have effective cardioprotective effects [102].
Cardioprotection was mediated in chicken
embryonic cardiomyocytes via mu opioid receptor
signaling using baicalein (5, 6, 7-trihydroxy-2-
phenyl-(4H)-1-benzopyran-4-one), a flavanoid
compound derived from the root of Scutellaria
baicalenis, Georgi, which exerts anti-inflammatory
[103] and anti-oxidative [104] properties. Thus,
baicalein in chicks protects cells against hypoxia-
reoxygenation injury [13]. After treatment with
baicalein, opioid receptor presence was determined
using polymerase chain reaction. Mu-opioid receptor
antagonist β-funaltrexamine was used block the
mu-opioid receptor and determine presumed signal
transduction pathways [13]. 

Avian immune system

The immune system in birds as well as all animals
is a highly complex physiological system that has
been the focus of many studies. A bird’s ability to
fight off infection, i.e., viral or bacterial, will depend
on the overall condition and well being of the animal
as well as its level of immunity [33, 105, 106]. 

Experiments were conducted on chickens to
examine whether melatonin induced opioids are
involved in the immunomodulatory action of
melatonin. While the immunomodulatory properties
of melatonin have been investigated in mammals,
the underlying mechanisms are still largely
misunderstood. In mammals some immuno-
modulatory effects of melatonin are mediated by
opioids [107, 108]. Melatonin has been shown to be
involved in the regulation of both cellular and
humoral immunity [107]. Melatonin not only
stimulates the production of natural killer cells,
monocytes and leukocytes, but also alters the
balance of T helper (Th)-1 and Th-2 cells mainly
towards Th-1 responses and increases the
production of relevant cytokines such as interleukin
(IL)-2, IL-6, IL-12 and interferon-γ [107]. In chickens
results were achieved by inducing peritonitis by
injecting thioglycollate, half of the chickens were
pretreated with melatonin and some of these birds
also underwent pretreatment with opioid
antagonist naltrexone [109]. Peritoneal leukocytes
were counted at different time intervals,
demonstrating melatonins biphasic effect on the
induced peritonitis. Initial effects of melatonin were
that it blocked the development of peritonitis, by
decreasing the number of peritoneal leukocytes,
the authors presumed the inflammation was
initially blocked by melatonin scavenging free
radicals. Hours later a proinflamatory effect was
seen after the increased expression of the
proenkephalin gene in the peritoneal leukocytes.
These effects were blocked by naltrexone,
suggesting involvement of an opioid mechanism
[109]. Melatonin has been shown to cause synthesis
of β-endorphin and dynorphin in chicken immune
cells [109]. This same group also demonstrated
exogenous opiate alkaloids stimulated pro-
inflammatory effects on the induced peritonitis in
chickens. Majewski provided an explanation that
suggests the different effects between mammals
and birds in the action of melatonin on immunity
could be attributed to the different immuno-
regulatory activity of endogenous opioids [109]. 

Discussion 

As one of the largest and most diverse protein
families, the GPCR superfamily mediates important
regulatory roles in a multiplicity of biological and
pathological processes such as development and
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proliferation, neuromodulation, angiogenesis,
metabolic disorders, inflammation, and viral
infection [62, 65]. The traditional GPCR protein has
three intracellular and three extracellular loops
linked to a 7 TMH domain core. The three types of
opioid receptors cloned are designated mu, delta,
and kappa, and they are standard 7 TMH domain
GPCRs. They share a high degree of sequence
homology and are most divergent at the N- and 
C-termini [110]. Although mechanisms of action for
the three types of opioid receptors may be
somewhat similar, selectivity for the different
ligands depends on variations with the N- and 
C- terminal regions and the cellular loops. All three
major subtypes of opioid receptors use cyclic AMP
as their second messenger [66]. Activation of these
receptors inhibits the production of adenyl cyclase,
which catalyzes the formation of cyclic AMP from
ATP. The inhibitory effects of the opioid receptors
are mediated by inhibitory guanine triphosphate
(GTP) binding regulatory protein [111]. The broad
distribution of opioid peptides and receptors in the
chicken brain and throughout the body suggest that
they serve multiple purposes as neurotransmitters,
neuromodulators and chemical messsengers. 

The fact that the domestic chicken displays some
paradoxical opioid actions may be an atavistic
regression linking domestic chickens to their
prehistoric predecessors, dinosaurs. Although
domestic chickens have mu, kappa and delta
opioidergic systems at play, responses to
stimulation or repression of these systems does
differ notably from other vertebrates. Evidence for
paradoxical pain in chickens is the most notable
difference among vertebrates (Figure 2). Morphine
is best known for its analgesic effects, these effects
are highly altered in the domestic chicken.
Interestingly, stress induced analgesia seems to be
more effective than morphine for treatment of
arthropathic pain for domestic chickens. Further
compelling evidence of the hyperalgesic response
to morphine is particularly baffling since the animal
does exhibit the typical side effects of morphine.
Amonst prenatal chicks, endogenous opioids play
a role in cognition and learning, thermoregulation,
as well as osteogenic processes, suggesting the
primitive role this system represents for these
vertebrates.

Functionally, accumulated data suggest that μ3
and μ4 opiate receptors may be representative
members of primordial family if G-protein coupled
receptors responsible for autocrine/paracrine
regulation of cellular metabolic activity via local
circuit Ca++ gating and NO feedback inhibition [110].
In combination with complementary analyses
demonstrating de novo synthesis of chemically
authentic morphine by diverse classes of animal
cells [112], the establishment of a “morphinergic”

regulatory pathway mediated by morphine and
naturally expressed active morphine congeners such
as its 6-glucuronide conjugate and their cognate μ3
and μ4 receptors receives significant validation.
However, given the paradoxical actions of morphine
in chicken this system may not be present. 

The observed hyperalgesia, may actually be
misinterpreted hypersensitivity to noxious stimuli as
a survival mechanism of an already injured animal.
The chickens paradoxical hyperalgesic response to
low dose exogenous morphine may be related to this
primitive survival mechanism. The paradoxical
response of the chicken to morphine is most simply
as follows: the animal appears drowsy while
experiencing a heightened motor response to pain.
An animal in such an inebriated state would not be
able to defend itself if it experienced further painful
stimulus, but the chicken however, reverts to a fairly
obvious survival mechanism while remaining
somewhat aware with motor responses functioning,
if not for its own survival for group survival. The
survival value for of the hyperactive response to
morphine rather than inhibition is possibly due to
varying primitive interactions among opioid receptors,
NMDA glutamate receptor, and Ca++ and K+ channels,
all found to be involved in pain perception [53].

Conclusions

Opiate receptors and their natural cognates,
opiate alkaloids may have a profound effect on an
animal’s maturation and other biological processes.
It has already been demonstrated that animal cells
have the ability to synthesize chemically authentic
morphine via multienzyme mediated processes
restricted by numerous feedback inhibitory steps
[112, 113]. There is a body of evidence demonstrating
that opiate alkaloids such as morphine, morphine-
3-glucuronide and morphine-6-glucuronide as well
as the putative precursor molecules (thebaine,
salutaridine, norcocolarine, reticuline, tetrahy-
dropapoverine and codeine) exist in vertebrates,
including their modulatory enzymes as actions
associated with substance abuse [114-122]. It is not
just the higher order vertebrates that express these
signal molecules since they have been found in the
invertebrate Mytilus edulis [123-126]. These primitive
receptors and the morphinergic signal molecules
associated with them are likely affecting many
underlying biochemical processes, including
endocrine and within the scope of substance
abuse[127-130]. Multiple and non-mutually exclusive
pathways lie behind these primitive processes.
These processes have not been examined in poultry
instead the literature contains, in part, paradoxes.
When fully understood, these processes will likely
prove to have roles towards understanding
processes of benefit to the commercialized food
industry.
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