Acute mesenteric lymphadenitis in children: findings related to differential diagnosis and hospitalization

Mustafa Yaşar Özdamar¹, Erdal Karavaş²

¹Department of Pediatric Surgery, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
²Department of Radiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey

Submitted: 14 August 2018
Accepted: 20 September 2018

Arch Med Sci
DOI: https://doi.org/10.5114/aoms.2018.79430
Copyright © 2018 Termedia & Banach

Abstract

Introduction: Diagnostic discrimination between acute appendicitis (AA) and mesenteric lymphadenitis (AML) may require more diagnostic tests or great skill after excluding other diagnoses. This study aimed to make a differential diagnosis between AA and AML patients with previous and new parameters and to examine which parameters should be taken into account regarding whether the AML patient should be hospitalized or discharged.

Material and methods: One hundred and twenty-three AML and 134 AA patients, randomly selected, were included in the study. Demographic, clinical, and laboratory data of all subjects were analyzed. Ultrasonographic and rarely computed tomography examinations evaluating for the enlarged lymph nodes with the shortest diameter in the right lower quadrant of the AML patients were performed. Also, the erect abdominal radiographs (EAR) of AML and AA patients were evaluated.

Results: While there was no statistically significant difference in age or gender, C-reactive protein, white blood cell count, monocyte percentage as well as symptoms between the AA and AML groups (p > 0.05), neutrophil and lymphocyte percentage, appearance of EAR and L/M ratio were significantly different between the two groups (p < 0.05). There was no correlation between the short-axis diameter of the mesenteric lymph node and clinical and laboratory findings in the AML group (p > 0.05).

Conclusions: Based on the results with ROC curve analysis, we propose to take into account the L/M ratio and the EAR from the parameters in the differential diagnosis between AA and AML in addition to previously reported parameters. Also, we recommend that the same features may be used to decide whether AML patients under observation are hospitalized or not.

Key words: mesenteric lymphadenitis, acute appendicitis, children, differential diagnosis.

Introduction

The most common surgical disease in children with acute abdominal pain admitted to the emergency department is acute appendicitis (AA). Diagnostic discrimination between AA and acute mesenteric lymphadenitis (AML) may sometimes be difficult as a result of the physical examination and laboratory studies after excluding other diagnoses such as diarrhea, urinary infection, intussusception, and gastroenteritis [1, 2]. Acute mesenteric lymphadenitis causes right lower quadrant (RLQ) pain
as in AA and its etiology may be due to primary
(idiopathic) or secondary (infection, malignancy,
etc.) reasons [3].

Although AML brings about abdominal pain, it
does not cause any abnormalities in many healthy
children with enlarged mesenteric lymph nodes.
Wang et al. asserted in an ultrasound-guided clin-
cal study that the mesenteric lymph nodes in-
crease with age until 6 years and then decrease.
Moreover, they supposed that AML with a
short axis diameter larger than 8 mm could be related
to abdominal pain [4]. Also, in another study, the
short axis diameter of larger than 8 mm and even
10 mm was suggested for the definition of the
pathologic mesenteric lymph node in children [5].
The consensus regarding the radiological and
laboratory parameters which may be consistent
with AML in the literature is still controversial
[6, 7]. The most common gastrointestinal com-
plaints in AML are abdominal pain, nausea-vom-
iting, fever, and loose stools, respectively. The clinical
and laboratory results of AA and AML may create
uncertainty about what differential diagnosis will
be made for most practitioners. While establish-
ing a relationship between the clinic picture and
mesenteric lymphadenitis (ML), patients with the
short axis diameter of ML greater than 10 mm were
excluded from the study in some studies; the oth-
ers accepted that ML with a short-axis diameter of
8 mm or more constituted AML [5, 8, 9]. Erect ab-
dominal radiographs (EAR) can provide supportive
findings in the differential diagnosis of intestinal
obstruction or ileus in children [10]. However, no
study has made a differential diagnosis by estab-
lishing a relationship between EAR and the AML or
AA patients’ clinical characteristics.

This study aimed to evaluate the clinical and
laboratory parameters of patients with symptom-
atic AML and to compare them with those of AA
patients, and also to further investigate those
parameters based on lymph node size. Also, we
examined which parameters should be taken
into account regarding whether the AML patient
should be hospitalized or discharged.

Material and methods

Data of all patients aged 5–16 years who con-
secutively presented in the Emergency Depart-
ment and the outpatient clinic of Pediatric Surgery
between the dates July 2015 and May 2018 and
were diagnosed with AML and AA were retrospec-
tively analyzed. The study was approved by the
Institutional Ethics Review Board for Clinical Re-
search of Erzincan Binali Yildirim University (2018,
24/5). Patients with missing data were removed
from the study. Demographic, clinical, and labora-
tory data of all subjects were analyzed. The ab-
dominal ultrasound (US) was performed by a ra-
diologist using the HI VISION Preirus scanner with
a curved-array (2–5 MHz) and a linear-array trans-
ducer (6–13 MHz; Hitachi Medical Corporation,
Japan). Ultrasonographic and rarely computed
tomography (CT) examinations evaluating for the
enlarged lymph nodes with the shortest diameter
in the RLQ of the AML patients were performed.

Also, the erect abdominal radiographs of AML and
AA patients were evaluated. The US finding of AA
was the aperistaltic, incompressible, dilated ap-
pendix with > 6 mm diameter. AA was precisely
identified according to pathological specimen re-
sults after surgery. Symptomatic AML and AA pa-
tients were detected according to the discharge
summary in which there was found right lower
quadrant (RLQ) pain, rebound or tenderness find-
ings of the patients.

Statistical analysis

We performed statistical analysis to for evalu-
ate our results using SPSS Statistics for Windows
version 18.0 software (SPSS Inc., USA). When the
sample size was less than 50, the Shapiro-Wilk test
was used for normality of distribution concerning
the data evaluation. Otherwise, the Kolmogor-
ov-Smirnov test was used. For two independent
groups, nonparametric tests, such as the Mann
Whitney-U test, were used in the case of rejection;
otherwise, a t-test was used. The Kruskal-Wallis
test was used when the number of groups for the
nonparametric data was low. Correlation between
categorical variables was analyzed by the χ² test.
Correlation between numeric variables was exam-
ined by the Pearson test. We used Levene’s test to
assess the equality of variances and a two-sided
95% confidence interval for all measures. Statis-
tical significance was defined at p < 0.05. For the
statistically significant result between the groups
in the laboratory test used in differential diagnos-
sis, the sensitivity, specificity, and cut-off value
were calculated using the receiver operating char-
acteristic (ROC) curve. The area under the curve
of 0.50 represented a variable with no differential
capacity, and the area of 1.00 indicated a perfect
discriminator.

Results

A total of 2680 (100%) patients with abdominal
pain were determined. The AA in 134 (5%), AML in
123 (4.5%), constipation in 450 (16.7%), diarrhea
in 650 (24.2%), and urinary tract infection in 442 (16.5%) patients were reasons for abdominal pain.
Also, incarcerated inguinal hernia, ovarian torsion,
testicular torsion, intussusception, and diabetic keto-
acidosis, etc. in 77 (3.1%) cases, and upper/lower
respiratory tract infection in 804 (30%) patients
were other reasons for abdominal pain.
One hundred and twenty-three AML patients and 134 AA patients without loss of data were consecutively detected. In 24 (9.7%) out of 247 patients with intensive intestinal gas or obesity, CT was used instead of USG because the diagnosis and differential diagnosis could not be reliably performed. The final diagnosis of AML or AA was made with the US and CT examination. Also, AA diagnosis was confirmed by the patient’s pathology and operative report, and the postoperative diagnosis of all preoperative AA patients was the same. There was no significant difference in age or gender between the two groups or within each group (p > 0.05; Table I).

RLQ tenderness, abdominal guarding, and rebound tenderness, which were the findings of RLQ pain in patients, were present in the examination of all patients excluding five AA and nine AML patients who were admitted for only vomiting and AA and AML were detected on ultrasound examination, respectively (Table II).

None of the AML patients were detected to have wall thickening of any bowel segment. According to retrospective data in both groups, symptoms were divided into three variables: 1, only RLQ pain; 2, RLQ pain and vomiting; 3, only vomiting. From the complete blood count results, white blood cells (WBC; reference < 12.5 × 10³/µl), neutrophil (N), lymphocyte (L) and monocyte (M) percentage, as well as L/M ratio were obtained. C-reactive protein (CRP; reference < 10 mg/dl) records of all patients were collected. Erect abdominal radiographs (EAR) were taken from the radiological records, and they were separated into three groups: A – gas-fluid level present; B – the gas-fluid level is absent but abundant gas exists; C – normal appearance. Patients who did not meet these parameters were not included in the study.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AA (n = 123)</th>
<th>AML (n = 134)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP (mean ± SD) [mg/dl]</td>
<td>10.56 ±4.21</td>
<td>10.21 ±4.56</td>
<td>0.53</td>
</tr>
<tr>
<td>WBC (mean ± SD) [× 10³/µl]</td>
<td>10.80 ±2.66</td>
<td>10.28 ±2.23</td>
<td>0.18</td>
</tr>
<tr>
<td>Neutrophils (N) %</td>
<td>76.13 ±3.66</td>
<td>58.15 ±10.89</td>
<td>0.00</td>
</tr>
<tr>
<td>Lymphocytes (L) %</td>
<td>10.76 ±3.66</td>
<td>32.27 ±11.58</td>
<td>0.00</td>
</tr>
<tr>
<td>Monocytes (M) %</td>
<td>5.70 ±1.80</td>
<td>6.64 ±5.07</td>
<td>0.15</td>
</tr>
<tr>
<td>L/M ratio</td>
<td>2.06 ±0.86</td>
<td>5.52 ±1.63</td>
<td>0.00</td>
</tr>
<tr>
<td>Symptoms, n (%):</td>
<td></td>
<td></td>
<td>0.66</td>
</tr>
<tr>
<td>1</td>
<td>123 (100)</td>
<td>134 (100)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>69 (56)</td>
<td>63 (47)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>49 (40)</td>
<td>62 (46)</td>
<td></td>
</tr>
<tr>
<td>EAR, n (%):</td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>A</td>
<td>123 (100)</td>
<td>134 (100)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>76 (62)</td>
<td>52 (39)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>42 (34)</td>
<td>51 (38)</td>
<td></td>
</tr>
</tbody>
</table>

As shown in Table II, there was no statistically significant difference between the two groups except for N and L percentage, EAR, and L/M ratio during the first evaluation (Table II, \(p < 0.05 \)). When the ROC curve for parameters in the discrimination of groups was plotted, the parameters with the largest area under the curve (AUC) were N and L percentage, L/M ratio, and EAR (Figure 1). Cut-off value, sensitivity and specificity for N, L percentage and L/M ratio were 80.9, 10% and 89%; 48.7, 20% and 94%; as well as 8.95, 89% and 97%, respectively.

Observation status was conferred for AML patients considered not ill enough to be fully admitted but not well enough to go home especially due to vomiting and pain. To decide which patient should be admitted to the hospital the same parameters as above were used. AML patients under observation were reevaluated after about 8 h (range: 4–8 h) of symptomatic treatment was applied especially for pain and nausea-vomiting. US findings of the hospitalized AML patients were usually a peristaltic, compressible appendix with 6–8 mm diameter. As the cause of large diameter of the appendix together with some AML patients could be a doubtful case of appendicitis, other findings were evaluated. We reevaluated the new EAR and current symptoms of them. As shown in Table III, there was no statistically significant difference between the hospitalized and discharged AML patients except for EAR (Figure 2), symptoms and L/M ratio (\(p < 0.05 \)). When the ROC curve for

Table III. Comparison of hospitalization and discharge characteristics in AML patients under observation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hospitalized AML*</th>
<th>Discharged AML</th>
<th>(P)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC (mean ± SD) ([\times 10^3/\mu l])</td>
<td>10.42 ±1.51</td>
<td>10.26 ±2.33</td>
<td>0.29</td>
</tr>
<tr>
<td>Neutrophils (N) (%)</td>
<td>58.21 ±14.23</td>
<td>58.09 ±10.28</td>
<td>0.78</td>
</tr>
<tr>
<td>Lymphocytes (L) (%)</td>
<td>38.38 ±7.23</td>
<td>11.13 ±1.04</td>
<td>0.62</td>
</tr>
<tr>
<td>Monocytes (M) (%)</td>
<td>7.39 ±2.37</td>
<td>7.39 ±1.95</td>
<td>0.46</td>
</tr>
<tr>
<td>L/M ratio</td>
<td>6.48 ±1.90</td>
<td>5.09 ±1.55</td>
<td>0.02</td>
</tr>
<tr>
<td>Symptoms, n (%):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20 (100)</td>
<td>114 (100)</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0 (0)</td>
<td>99 (87)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12 (60)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8 (40)</td>
<td>15 (13)</td>
<td></td>
</tr>
<tr>
<td>EAR, n (%):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>20 (100)</td>
<td>114 (100)</td>
<td>0.0004</td>
</tr>
<tr>
<td>B</td>
<td>18 (90)</td>
<td>34 (30)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2 (10)</td>
<td>49 (43)</td>
<td></td>
</tr>
</tbody>
</table>

parameters in the discrimination of groups was plotted, the parameter with the largest area under the curve was only L/M ratio (Figure 3). Cut-off value, sensitivity and specificity for L/M ratio were 8.95, 89% and 97%, respectively.

On the ultrasound examination, we detected a cluster of three or more enlarged lymph nodes in the RLQ and mesentery of the ileocaecal region or the anterior to the psoas, and also measured the short-axis diameter of the largest lymph node in all patients with AML. We found that there was no significant correlation between all parameters of AML patients and the short axis diameter of the largest lymph node ($p > 0.05$); Table IV). As shown in Figure 4 and Table III, the number of patients with a short axis diameter of the largest lymph node less than 8 mm was 118 (88%). These results indicated that the parameters constituting the clinical condition were not affected by the lymph node size.

Discussion

When looking at the literature, there was generally no significant difference in age (range: 9–13) or gender in studies comparing AML and AA patients [8, 11]. Conversely, there was a study that found significant differences in age between AA and AML patients (male vs. female: 10.3 vs. 7.9 years) [7]. This difference may be due to the fact that the regions where these studies were carried out are different (Israel, Latvia and India). In our study, there was no statistically significant difference in age (mean: 9.73 ±2.51 years) or gender between the AA and AML groups. Also, there was no significant difference regarding age or gender among the patients of the AML group. The same characterization was also present in the AA group (Table I, $p > 0.05$).

The AML has a clinical presentation that can mimic AA, and this dilemma may lead to a nega-
tive exploration in the operations performed with AA pre-diagnosis [6, 12]. Various clinical and laboratory parameters have been used in studies to cope with this difficulty. N to L count ratio in the diagnosis of AA was established and this parameter was accepted as a positive predictor in favor of AA. Moreover, Gross et al. suggested that lymphocytosis is a positive predictor in favor of AML regarding the differential diagnosis between AML and AA [6, 13]. Similarly, in our study, N percentage was higher in AA and L percentage was higher in AML patients. Differently, in our study, the L/M ratio was significantly higher in the AML group than that of the AA group (Table II, p < 0.001). The percentage of M alone was not different between the two groups. In a study performed for AA and AML differential diagnosis, the monocyte chemoattractant protein-1 (MCP 1) ratio was found not to be different between these two groups. In this study, although the MCP 1 ratio was high in AA, there was no statistically significant difference between the two groups [11]. This result was compatible with our work regarding the M percentage in the discrimination of both groups (p = 0.15). The CRP and WBC rates were higher in favor of AA in a recent study and this result was statistically significant [6]. There was, however, no significant difference in WBC and CRP between the two groups in our study (p > 0.05). As shown in Table II, when L and N are within normal limits, the L/M ratio seems to be more reliable when making a differential diagnosis between AA and AML. In a recent study, higher values of N/L and M/L ratio demonstrated greater possibilities for bacterial infection and low probabilities for viral infection [14]. Rothrock et al. found that initial misdiagnosis in childhood appendicitis included gastroenteritis and upper respiratory tract infection in the percentage of 60% [8, 15]. M/L and N/L ratio can help the practitioner to differentiate these diseases since AML has the same confusion and condition in the differential diagnosis of AA, and because the viral agents are often considered in the etiology of these involved diseases regarding discrimination of AA. When considering the above pieces of evidence, we tried to make a differen-

Table IV. Correlation of short-axis diameter of mesenteric lymph node with clinical and laboratory findings in the AML group

<table>
<thead>
<tr>
<th>Parameters</th>
<th>A&B correlation P-value</th>
<th>W (mean ± SD) [× 10⁹/µl]</th>
<th>CRP (mean ± SD) [mg/dl]</th>
<th>Lymphocytes (L) (%)</th>
<th>Monocytes (M) (%)</th>
<th>L/M ratio</th>
<th>Symptoms, n (%):</th>
<th>EAR, n (%):</th>
<th>Short axis diameter of the largest lymph node (mean ± SD: 5.62 ±2.26) (rank: 3–12 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC (mean ± SD) [× 10⁹/µl]</td>
<td>0.08</td>
<td>1028 ±2.23</td>
<td>10.21 ±4.56</td>
<td>32.27 ±11.58</td>
<td>6.64 ±5.07</td>
<td>5.52 ±1.63</td>
<td>134 (100)</td>
<td>134 (100)</td>
<td>Diameter N Percent</td>
</tr>
<tr>
<td>CRP (mean ± SD) [mg/dl]</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.00 18 13.4</td>
</tr>
<tr>
<td>Lymphocytes (L) (%)</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.00 30 22.4</td>
</tr>
<tr>
<td>Monocytes (M) (%)</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.00 39 29.1</td>
</tr>
<tr>
<td>L/M ratio</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.00 12 9.0</td>
</tr>
<tr>
<td>Symptoms, n (%):</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.00 6 4.5</td>
</tr>
<tr>
<td>1</td>
<td>63 (47)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.00 13 9.7</td>
</tr>
<tr>
<td>2</td>
<td>62 (46)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.00 3 2.2</td>
</tr>
<tr>
<td>3</td>
<td>9 (7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.00 7 5.2</td>
</tr>
<tr>
<td>EAR, n (%):</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.00 3 2.2</td>
</tr>
<tr>
<td>A</td>
<td>52 (39)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.00 3 2.2</td>
</tr>
<tr>
<td>B</td>
<td>51 (38)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total 134 100.0</td>
</tr>
<tr>
<td>C</td>
<td>31 (23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Histogram showing distribution of a short axis diameter measurement of the largest lymph node according to AML patient numbers.
tial diagnosis between AA and AML, taking into account the L/M ratio instead of the M/L ratio, and to facilitate the diagnosis of AML, which is more likely to be viral by etiology.

Even though the Alvarado score and the pediatric appendicitis score described by Samuel were efficiently used for the diagnosis of AA [7, 16, 17], some authors in their prospective studies reported that both scores could be useful parameters for the diagnosis of AA; however, they concluded that these scores were insufficient to determine whether surgical intervention is required or not [18–20]. In other words, it has been revealed that differential diagnosis cannot be made with current symptoms. According to the parameters we collected from the archive records, abdominal pain percentage was higher in the AA group, while nausea-vomiting was higher in the AML group, but these were statistically insignificant in the differential diagnosis (p = 0.66). In this context, complementary radiological examinations were needed for differential diagnosis and correct treatment. Because of this, CT examination was recommended in cases where the differential diagnosis between AA and AML was not possible with the US examination [7].

We traditionally used EARs [21] in patients in whom we could not make a differential diagnosis with US. Thus, with the CT examination, patients were not exposed to more radiation in the first assessment. When the appendix could not be visualized due to abundant intestinal gas on the US examination, or it could not be determined in any area of the RLQ, we first looked at the patient’s L/M ratio. We observed the patients with an L/M ratio of 5 and above. We then used the EAR to assess intestinal stability. We used CT examination (about 9.7%, 24 out of 257 patients) in patients with an L/M ratio less than 5. Although there was no diarrhea in the AML patients under observation (in all of the AML patients hospitalized and in some of the subjects discharged) their EARs had gas-liquid levels or small gas pockets (Figures 2 B, C). AML patients not fully recovering from nausea-vomiting and abdominal pain after 8 h of symptomatic treatment were hospitalized by looking at their new EARs and L/M ratio. While vomiting was more frequent in the hospitalized AML patients, abdominal pain was more frequent in discharged patients, and this clinical difference was statistically significant (p < 0.001). Moreover, while 90% of the hospitalized AML patients had EARs with gas-fluid levels, 70% of the discharged AML patients had EARs with normal gas distribution and small air pockets, which was statistically significant as well (p = 0.004).

As shown in Table II, there was no significant correlation between the short-axis diameter of the mesenteric lymph node and clinical or laboratory findings in the AML group (p > 0.05). However, it has been stated in the literature that especially abdominal pain occurred in AML patients with the short-axis diameter of the mesenteric lymph node over 8 or 10 mm. Also, it has been supposed that a cluster of three or more lymph nodes measuring more than 5 mm along their short axis in AML was the pathologic condition [3, 4, 7, 22]. In our study, we found that abdominal pain and nausea-vomiting occurred at different rates independently of the short-axis diameter of the mesenteric lymph node (Figure 4 and Table IV). In a recent study, there were no significant differences between laboratory and clinical parameters and lymph node size [6]. We have also shown that there is no correlation between EAR results and lymph node size.

In the ROC curve analysis, the L/M ratio was the most specific and the most sensitive parameter we used when making a differential diagnosis between AA and AML groups (Figure 1). We found that the previously reported percentage of L [6] was less sensitive and specific. We detected that the same result presented in the ROC curves for indicating whether patients with AML could need to be hospitalized or discharged (Figure 2).

Since our study was retrospective, we could not obtain the body temperature precisely from the records. However, it was previously reported that high fever did not show any significant difference in the differential diagnosis [7]. Unlike adults, discriminating between children with and without appendicitis usually requires more effort. In other words, a 100% reliable laboratory test and the clinical feature have not yet been reported in the differential diagnosis. There is a need for more specific studies regarding the inflammatory process for AA and AML. For example, cytokines such as IL-1β, IL-1ra, and IL-6 used for the clinical approach to ulcerative colitis relapse can be investigated in AA and AML [12, 23, 24]. Colonoscopy may be used for higher diagnostic reliability of AML in children as in a recent study in which esophagogastroduodenoscopy was performed in children with chronic abdominal pain [25]. Thus, in an acute stage of AML, colonoscopy may detect the intestinal changes which could be associated with AML by the same logical approach. In differential diagnosis, anamnestic factors are also important; for example, when the abdominal pain of a patient with chronic renal failure is questioned, it is malpractice to try to make the AA or AML discrimination instead of performing dialysis-related tests immediately [26]. Another limitation is that, as in Gross’s study [6], the analysis of results based on three categories may not be as realistic as a prospective study for the parameter under the heading “symptoms” associated with the physical examination. Although the EAR is used less frequently in clinical practice, it is still used, for example, in the diag-
nosis of intestinal perforation [27]. In addition to the approaches mentioned above, we made a dif-
ferential diagnosis of diseases such as intestinal perforation or intussusception via EAR.
In conclusion, when a child with abdominal pain is admitted to the emergency department, a complete blood count should be performed after the physical examination. Even if the WBC is within standard limits, the L/M ratio seems to be reliable for initial differential diagnosis between AA and AML. If it is not found that there is an appendicitis sign in the US, after this stage, it would be diagnosed in some diseases other than AA and AML using EAR, and thus patients will not be exposed to more radiation with CT. Computed to-
mography examination, which is one of the best technological facilities, is recommended in cases where the differential diagnosis between AA and AML is not possible with the USG examination or EAR made after USG examination.
Based on these results, we propose to take into account the L/M ratio and EAR from the para-
ters in the differential diagnosis between AA and AML in addition to previously reported parameters. Also, we recommend that the same features be used to determine whether AML patients under observation are hospitalized or not. But there is a need for prospective studies on the accuracy and effectiveness of all the parameters we used.

Conflict of interest
The authors declare no conflict of interest.

References
3. Macari M, Hines J, Balthazar E, Megibow A. Mesenter-
5. Simanovskiev N, Hiller N. Importance of sonographic de-
7. Toorenhout B, Vellekoop A, Bakker R, et al. Clinical different-
etion between acute appendicitis and acute mesen-
9. Sikorska-Wisniewska G, Leberek A, Gekka MG. Mesen-
teric lymphadenopathy – a valid health problem in chil-
12. Rao PM, Rhea JT, Novelline RA. CT diagnosis of mesen-
lymhcocyte ratio in the diagnosis of childhood appendi-
16. Alvarado A. A practical score for the early diagnosis of
18. Bhatt M, Joseph L, Ducharme FM, et al. Prospective val-
20. Bachur R. Evaluating appendicitis scoring systems using
22. Karmazyn B, Werner EA, Rejall B, Applegate KE. Mesen-
24. Wędrychowicz A, Tomasik P, Zajac A, Dyderek K. Prognostic value of assessment of stool and serum IL-1beta, IL-
1ra and IL-6 concentrations in children with active and
25. Akbulut UE, Emekisz HC, Kokcak FG, Livaoglu A. Diagnos-
26. Adamczuk D, Roszkowska-Blaim M. Long-term out-
comes in children with chronic kidney disease stage 5
27. Ashidoitiang JA, Atoyebi AO, Arogundade RA. The value of
plain abdominal radiographs in management of ab-