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A b s t r a c t

When performing scientific research we are so “embraced” to use the tool of
inductive logic in our reasoning that we often express more generalized opinions
on the population of interest based on relatively small sample(s) of a general
population. What we take care about in such situations is that chosen segments
are representative for a whole set of elements in the general population. To cope
with such a demand we always want to know how large our selected
subpopulation should be to enable us to detect the experimental effect of interest
not only at a certain level of significance, but also with the highest possible power
of statistical reasoning. Thus, when designing our experiment, we have to
compromise between a sample size not too small to ensure that our sample is
sufficiently representative, and not too large to benefit from the sampling
procedure at all. The tools for the estimation of minimum required sample size
and the analysis of power, which help us to make quick decisions on how to
compromise reasonably between significance, statistical power and sample size,
are discussed in this paper. 

KKeeyy  wwoorrddss::  sample size, statistical significance, statistical power, hypothesis testing,
experimental design.

Usually we do not have access to the entire population of interest, or
we simply do not want to investigate all elements of such a population.
The reasons for the latter are usually very trivial: the entire population
may be too large to be exhaustively measured, or it is too expensive and
too time-consuming to allow more than some small fragment of the
population to be monitored. Therefore, we often express our opinions
on the population of interest based on a relatively small sample (s) of
the general population. What we take care about in such situations is
that chosen segments are representative for a whole set of elements of
the general population. Random selection of these elements is an
absolute ‘must’ in all respected procedures, and in most experimental
approaches we also care that our data are independent of each other.
The significance of these two basic requirements in sampling elements
from the general population are discussed in considerable detail in
another paper in this journal [1]. 

Sampling – theoretical background

On the basis of a small amount of sample data we try to compute the
so-called statistic in order to evaluate some characteristic of a population
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called a parameter. Mean and standard deviation
are typical parameters characterizing a population
under study. How close these parameters are to the
real ones, representing the entire population, reflects
how good a representation of the whole population
our sample data are. For example, we want to
estimate the mean weight of boys in the age range
of 15-17 years, inhabiting a certain city with a total
population of, say, 100,000. Such a mean value, μ,
is a parameter of the general population of boys in
the age range of 15-17 inhabiting the city. Assuming
that the population of our interest numbers 17,500
boys, we will not investigate all of them but rather
will draw a random sample of 100 boys. It is obvious
that the number of boys to be pooled (n) will be quite
small relative to the size of the total city population
of these boys (N=17,500). Once the sample is
selected we can estimate the mean weight of 100
boys, x–, which is called a statistic of the sample
population. Of course, x– will never be identical to μ;
it will always deviate at least a little by a value which
may be called the sampling error or imprecision of
measurement. This is so simply because  x– involves
what may be referred to as “the luck of the draw”.
This means that each single draw may result in
slightly different  x– values, desirably close to, but not
identical to the real μ. Obviously, in any analyzed
sample, we may be absolutely sure that there will
be some sampling error concerning the variable of
interest. The main problem is that we are never
certain how large this error is. If we knew how large
this error was, we would actually know the exact
value of the measured parameter, so we would never
need to do any approximation.

Based on theoretical considerations we are of
course not able to estimate what will happen in any
particular experiment, but rather what will tend to
happen in a larger population of a given size that we
examined. Of course, the distribution of a measured
parameter is given by some statistics over repeated
measurements, with the estimated measure of
a central tendency, the sample mean x–, getting
closer to the population mean μ with increasing
sample size (N). Due to natural variability and
experimental error, in our sample of data there will
always be a small percentage of values that are
greater or less than μ. The distribution of values
around μ reflects that our x– is simply an imperfect
indicator of μ, and shows how big is the “noise”
around the “signal” when monitoring a given
parameter of interest. Recalling the equation for SEM

SDSEM = –––
√

––
N

we may notice that the experimental error gets
smaller (and the accuracy increases) with increasing
N. We have clearly shown that in the example
discussed above. At large enough N we can be very

certain that our estimated x– will get very close to the
population μ; we may say that large N leads us to
nearly perfect accuracy.

The general rule governing the relation between
sample size and sampling error is that the larger the
sample size (n), the smaller the sampling error.
Therefore, to increase the accuracy of our
estimations we would desire to have our sample size
large enough in order to make sampling error as
small as possible. However, making a sample large
enough to minimize sampling error and produce
a reasonable accuracy of measurements inevitably
means waste of time and money. So, there is a point
in diminishing sample size, although not too much,
as data would tend to be not precise and thus not
of much use. Then we have to compromise between
sample size not too small to ensure sufficient
representativeness of our sample, and not to large
to benefit from the sampling procedure at all. 

The tools for the estimation of minimum required
sample size and the analysis of power are thought
to help us in making quick decisions on how to
compromise reasonably between significance,
statistical power and sample size. 

The logic behind hypothesis testing

Undoubtedly, the most often used statistical
technique in experimentation is testing of statistical
hypotheses. First, before presenting the logic behind
this strategy, we need to distinguish between two
often misused terms: research hypothesis and
statistical hypothesis. A research hypothesis is
a general statement describing some natural
phenomenon, association, difference, mechanism,
likelihood of a given process, etc. We may refer to
a research hypothesis as the hypothetical scenario
of an examined phenomenon (or phenomena). 

In contrast, a statistical hypothesis is a kind of
a mathematical equation, precisely defining what
we are comparing, linking or neglecting. As such, we
may consider a statistical hypothesis as a (smaller)
part of a more general and complex research
hypothesis. Behind such a relation it stands that any
research hypothesis may be “decomposed” into
a few or several statistical hypotheses, each of which
verifies a single equation or association. 

Hence, as we can easily guess, the logic of how
one can build up the statistical hypotheses is a kind
of firm estimation – we are not absolutely free in
how to state the null hypothesis and the alternative
hypothesis. This originates from the fact that we are
merely able to reject the null hypothesis at a certain
likelihood, and never to accept it (to prove it is true). 

It is habitual that statistical hypotheses are stated
as logically compounding theses. They are coupled
in such a way that the null hypothesis (the basic one)
assumes equality and lack of differences (μ1=μ2),
while, in contrast, the opposing alternative
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hypothesis assumes the occurrence of differences
(μ1≠μ2). Such a parity of statistical hypotheses
naturally implies that these two opposite statements
must by mutually exclusive. 

The principle underlying the statistical evaluation
showing that a hypothetical inequality μ1≠μ2
becomes true is the calculation of the so-called test
statistic, based on our experimental data. Further,
the outcome of the calculated test statistic equal to
zero identifies two (or more) identical means.
Relevant to that, the more the calculated value of
the test statistic differs from zero, the higher the
likelihood that the compared means are statistically
(i.e. not by pure chance) different. In other words,
the higher the estimated test statistic, the lower the
chances that the null hypothesis (stating an equality)
is true. Accordingly, a higher test statistic assures us
that the calculated difference between means
should be considered regular and not accidental. The
important conclusion of the above is that we are only
able to classify statistical hypotheses as true or false
with a given likelihood, more or less differing from 1,
and never with absolute certainty. If we are not able
to deny the null hypothesis, it cannot be rejected at
a given stage, but it certainly does not mean that it
is true. It inevitably means that we are aware of
committing an error in one of two circumstances:
• when we erroneously reject the null hypothesis in

the case when we have no evidence that in fact it
is false, or 

• when we accept the null hypothesis when in fact
it is not true. 

The risk of such a misleading decision is defined
as the likelihood of committing one of two statistical
errors (incidentally, there are two types of statistical
errors simply because there is parity in the assigning
of two opposing and logically compounding
hypotheses) (Table I). If we erroneously reject a “true”
null hypothesis, we commit statistical error
type I (error α). If we do not reject a “false” null
hypothesis, we make statistical error type II (error β).
In other words, the significance of a statistical test
is nothing else but the risk of the error α. In turn, the

likelihood of rejection of a “false” null hypothesis is
known as the power of statistical testing (Figure 1).

This clearly explains why we always try to use
tests of the highest statistical power of testing: to
minimize the risk of not rejecting a null hypothesis
which is not true. Powerful tests lead us to more
reliable rejection of untrue null hypotheses, as far as
the tested difference really occurs. The conventions
are much more rigid with respect to α than β: while
it is commonly accepted that α should be kept at or
below 0.05, β is required not to exceed 0.2, which of
course means that the statistical power should be
at least 80% to detect a reasonable difference from
what is stated in the null hypothesis (see also below). 

Let us suppose that we are interested in showing
that boys aged 15-17 years are on average taller than
girls at the relevant age. We can state it as an equation:
x–boys > x–girls. We intuitively believe it is true, but we
need to prove it statistically. To perform the analysis,
we need to arrange two opposite statistical hypotheses
prior to collecting the experimental data. We remember
that a null hypothesis (H0) may only be rejected (and
never accepted) and we know it is something logically
opposite to the alternative hypothesis (HA), which we
believe is true. Now, we need to gather data and, using
the statistical theory behind the hypothesis testing,
we have to show from our data that it is likely that H0
is false, and should be rejected. Thus, by rejecting the
null hypothesis, we actually support what we believe.
This kind of statistical reasoning is often called

TTaabbllee II..  Comparison of type I and type II statistical errors

ttyyppee II eerrrroorr ttyyppee IIII eerrrroorr

designation: α designation: β

definition: incorrect rejection of true H0 definition: incorrect acceptance of false H0

set in advance dependent on other input parameters

not affected by sample size when set in advance strongly depends on sample size and significance

increases with the number of tests or end points may be estimated only as a function of the true 
(correction for multiple testing needed) population effect

becomes smaller as the sample size gets larger

becomes smaller as the number of tests or end points increases

rreejjeecctt  HH00 ttyyppee  II  eerrrroorr  ddeecciissiioonn  ccoorrrreecctt
(probability = (probability =
significance) test power)

aacccceepptt  HH00 ddeecciissiioonn  ccoorrrreecctt ttyyppee  IIII  eerrrroorr
(probability = (probability =
1 – significance) 1 – test power)

HH00 iiss  ttrruuee HH00 iiss  ffaallssee

rreeaall  wwoorrlldd

ddee
ccii

ssii
oonn

FFiigguurree 11.. Principle of hypothesis testing and logical
outcomes for committing type I and type II statistical
error
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reject-support (RS) testing, because while rejecting H0
we support our experimental theory. In practice, an RS
type experiment usually concerns the comparison of
two means of a control and experimental group, when
the experimenter believes that the tested treatment
has an effect and tries to confirm it using a significance
test that allows the null hypothesis to be rejected. In
the case of RS testing the commitment of α (type I)
error is relevant to a false-positive outcome for the
experimenter’s theory. From the researcher’s point of
view an α error is extremely undesirable, because it
means a waste of time and energy, particularly when
such a false-positive outcome is interesting from
a theoretical standpoint. It stimulates further research,
which obviously will not replicate the results of the
original work, which was incorrect. It leads to confusion
and frustration originating from inability to confirm
the primary results. On the other hand, not a lesser
tragedy is committing a β (type II) error in RS testing,
because a “true” theory is rejected. Thus, we may not
gain a benefit from a better therapy (which is
incorrectly not shown as interesting compared to the
control) and we lose a worthwhile procedure and
discount an interesting idea of a researcher. Ultimately,
we benefit if both errors are kept reasonably low,
although in practice, especially at low sample sizes,
there is often a trade-off between α and β errors. 

Clearly the opposite logic occurs in so-called
accept-support (AS) testing. In AS testing it is H0 which
we believe and intend to accept. Such a situation is
routine e.g. in the pharmaceutical sciences, when
proving that some preparation or analysis is not worse
than another one (usually earlier performed). By
accepting the null hypothesis in AS testing the
researcher’s theory is supported. Therefore, under
such conditions an α (type I) error is a false negative
for our theory (we deny a true H0), whereas a β
(type II) error is a false positive (we accept a wrong
H0). Consequently, favouring a very low type I error in
RS testing is relevant to maximizing the belief in the
researcher’s theory in AS testing. 

Considering the above, we are always challenged
to compromise in how to get enough power of
statistical reasoning with the lowest possible sample
size. Small samples imply of course low power, but
too high power may also be an obstacle. In RS testing
even trivial differences between means in very large
groups lead us unreservedly to reject the null
hypothesis regardless of the real difference between
groups. It is even worse in AS testing, since very high
sample size often makes a researcher decide against
a theory, even if the theory corresponds to the data
nearly perfectly. In this particular case, high precision
is “against” the researcher.

In summary, when we test the hypotheses in
reject-support research we are intuitively interested in
rejecting the null hypothesis, while there is a demand
to keep the risk of type I error (α, significance) very low.

High sample size works for the researcher; therefore
the estimation of minimal sample size always pays off.
We should be very concerned about the risk of
type II (β) error and the appropriate statistical power.
We have to keep in mind, however, that too much
power is against us, as it makes trivial differences
inappropriately become highly significant. In AS testing,
we want to accept H0. We are required to control
type II (β) error and avoid accepting a false H0, but we
should also pay a lot of attention to minimizing
type I (α) error and not to reject a true null hypothesis
too hastily. Paradoxically, large sample sizes work
against us, because if there is too much power, our
theory may be “rejected” based on even very trivial
fluctuations in our data.

Statistical significance

Conventionally, the term “significance” is used to
describe our belief that we do not reject the true null
hypothesis. Significance level refers to the risk of
committing a type I error in such a meaning that
higher significance denotes numerically a lower risk
(Table 1). The latter is designated by the Greek alpha,
whereas “p” or “P” is used to denote the significance
level: low and very low “p” (or α) values are relevant
to high or very high significance levels. There is a bit
of a mix-up in the literature as regards use of either
“α” or “p”, and some researchers, less familiar with
statistical terminology, are often confused as to
which notation should be used to describe statistical
significance. It has been accepted that “α” “should
be reserved for a pre-chosen probability at the stage
of experiment planning, while the term “p value”
should be used to indicate a probability a posteriori,
i.e. the one calculated after performing our study.
Importantly, we can consider a significance level
either a binary or exploratory measure. In the first
case, we simply accept a priori a certain level of
significance (α) and use it for hypothesis testing.
Say, we decided to test our hypotheses at the
significance of α<0.001. This means that if we reject
the null hypothesis, there will be less than 1 in 1000
chance of being wrong (i.e. that we rejected a true
H0). Then we of course calculate the test statistic
based on our experimental data, and compare the
estimated value with the theoretical one, tabular, for
α=0.001 at a given number of degrees of freedom.
If our calculated “experimental” value of test statistic
is higher than the tabular value, we reject the null
hypothesis and accept the alternative one.
Otherwise, we have no right to reject H0. Overall, this
approach is qualitative, because our choice is one of
two possibilities and the employed test gives
a one-bit outcome (1 or 0, YES or NO). When we
reject H0 and our calculated test statistic is much
greater than the tabular one, it is quite likely that
our rough description “less than 1 in 1000” may even
approach the value of “1 in 5000” or “1 in 10,000”.



Arch Med Sci 1, March / 2007 9

Sample size and significance – somewhere between statistical power and judgment prostration

However, it is usually of no further interest for us:
we are satisfied that H0 was rejected at the minimal,
satisfactory for us, level of significance. There is
a quite opposite approach when thinking about
significance in exploratory terms. When using
statistical software we often get the result expressed
as the exact value of a posteriori significance,
evaluated from the exact estimated value of the test
statistic calculated from our experimental data.
Using this analogue, quantitative approach, we
do not need to use any convention in saying that 1%
may be accepted as sufficiently significant, while 5%
may not. The exploratory manner of viewing
significance is particularly readily employed in
multivariate statistical methods, when we are often
at “the balance” of significance when juggling with
various regression models including a variety of
parameters. 

Statistical power and sample size

These two techniques are milestones in the
process of designing an experiment. They allow us
to decide a) how large a sample is needed to enable
statistical judgments that are accurate and reliable
and b) how likely our statistical test will be to detect
effects of a given size in a particular situation. Both
sample size estimation and the analysis of statistical
power are so important because without these
calculations we may risk the possibility that sample
size will be too high or too low. In the first case, if
sample size is too low, the experiment will lack the
precision to provide reliable answers to the questions
raised by the investigator. On the other hand, if
sample size is too large, you risk that you waste your
time and resources, and you gain a minimal benefit.
Hence, both seem crucial to perform a study in
a cost-effective and scientifically useful manner. 

Statistical power

When designing our experiment we should take
care to level up the statistical power of our reasoning
high enough to be able to detect a reasonable
falsification of our null hypothesis. We remember that
in powerful statistical procedures (tests) the risk of
committing type II statistical error is minimal. This
means that H0 is rejected always when it is false, the
researcher gets the support for what (s)he believes
in, and therefore an experiment is worth doing at all.
Numerous factors may have a considerable impact on
statistical power. The most important include a)
sample size, b) expected size of experimental effect,
c) variation of data gathered in the experiment, and
d) the type of test used in the calculus. 

Obviously, the larger the sample size, the greater
the power. We are aware, however, that increasing
sample size needs investment of more energy and
effort, longer time and higher costs of an experiment.

That is why it is much more logical to make sample
size large enough, but not unreasonably and
wastefully large. Further, expecting high experimental
effect we assume that our null hypothesis will be false
to a substantial extent. The larger the expected
difference, the higher the power of our reasoning.
Remember, however, that the magnitude of
experimental effect should be significant practically
(clinically), and not merely statistically. High variability
in the monitored parameter(s) means lower power.
Consequently, better precision and higher consistency
of experimental data improve statistical power. Finally,
not all tests are equal with respect to statistical power:
some of them are more powerful than others.
Therefore we should choose the test wisely, according
to its applicability to our data and our benefit to
minimize type II error.

Sample size

Prior to running any experiment we are always
confronted with several questions:
• how many measurements/readings should we

gather to reason on the significance of an
experimental effect with adequate power? 

• can we be sure that having investigated a large
group of elements we will be able to reason on the
occurrence or lack of significant differences?

• what is our estimation of sample size based on?
in other words, what do we need to input to
calculate a sample size?

• is it reasonable to bother with the estimation of
sample size? maybe it would be enough to continue
our study as long as we still have financial support
and there are still available data to be gathered,

• should the estimation of sample size be performed
a priori (before running an experiment) or a posteriori
(after the collection of data)? in other words, do we
need to know how many to collect in advance of our
experiment? or do we estimate the power, which
comes off the already performed study?

The answer given by the leading statistical
advisors of contemporary scientific research is
definite and clear. The estimation of sample size
mmuusstt be performed before running any experiment
to ensure a priori that our statistical testing will be
done with adequate power. Leaving the above
statistical argument aside, we may give two practical
reasons why the estimation of sample size makes
sense in research. We do the estimation to avoid
collecting wastefully large number of data under
circumstances when: 
• we are able to see at first sight (even after

collecting very few data) that our experimental
effect is evident,

• there is no real experimental effect and we have
no chance to show it even after collecting large
samples (maybe there is a need to employ another
methodology to perform measurements).
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The logic of the estimation of sample size in these
two situations is the same: in both cases we only
risk wasting time, effort and money when we
unreasonably continue our experiment, without
considerably improved impact on significance and
statistical power.

On the other hand, we should not stop our
experiment too early. With too small sample size we
risk inadequate power and erroneous acceptance of
a false null hypothesis. Even if our experimental
effect is obvious and we are “too impatient” to finish
the study appropriately from a statistical point of
view, we may not detect the expected effect, which
makes our experiment hardly worth doing. 

Let us analyze the following example. We are to
investigate the effectiveness of two medical
treatments, denoted A and B. Our initial assumption
is that treatment A is more effective than treatment
B in at least 70% of examined patients. This means

of course that in 7 of 10 patients treatment A will
turn out to be more effective than B, for which the
proportion will be 5 of 10 patients. We are interested
in showing a significant difference between these
two treatments with significance of at least 5%, and
we would like to detect the difference with the power
of at least 90%. Our question is: how many patients
should we enrol in the study?

First, let us assume that we will perform the study
with 20 patients. We know that our result will reach
statistical significance of at least 5% if it departs from
a central value by at least 1.96-fold of the value of the
standard error of the mean. Our null hypothesis says
that the proportion of patients equals p=0.5 for both
treatments (A and B), which clearly means that in one
half of the patients treatment A will be effective,
whereas in the other half it will not. Further, we expect
a minimum experimental effect of 0.7–0.5=0.2. The
standard error for the conditions of our null hypothesis
will be:

SE = √(0.5 × 0.5)/20 = 0.1118

and our confidence intervals will be respectively:

+95%CI = p + 1.96 × SE = 0.5 + 1.96 × 0.1118 = 0.72,
and
-95%CI = p – 1.96 × SE = 0.5 – 1.96 × 0.1118 = 0.28

This means that a value significantly different 
(at α=0.05) from p=0.5 should be either lower
than 0.28 or higher than 0.72. Keeping in mind that
the real, expected proportion will be at least 0.7, we
may ask: what is the probability that our
observations will provide a result lying above 0.72
significant at α=0.05? This probability is relevant to
the shaded area under the normal distribution curve
in Figure 2 (upper plot), for which the mean value
equals p=0.7 and SE = √(0.7 × 0.3)/20 = 0.1025. The
estimated z value of the normal distribution equals:

0.72 – 0.7––––––––– = 0.19510.1025

and the cumulative distribution (the area under the
normal curve for x ≥0.72) is 0.421. In other words, in
a sample of 20 patients we have only a chance
of 42.1% to detect a difference of at least 0.2 between
treatments A and B (or proportion greater than the
“cut-off” value of 0.72 required to reject H0). If we
increase the sample to 50 patients we will have:

SE = √(0.5 × 0.5)/50 = 0.0707
+95%CI = p + 1.96 × SE = 0.5 + 1.96 × 0.0707 = 0.64,
and
-95%CI = p – 1.96 × SE = 0.5 – 1.96 × 0.0707 = 0.36.

For SE=√(0.7 × 0.3)/50=0.06481 the calcu-
lated z value of the normal distribution is

FFiigguurree 22..  Probability of detecting an experimental
effect (statistical power) at the significance of 5% and
various sample sizes, when testing the hypothesis
assuming the predominance of medical treatment
A over B in at least 70% of cases (p (HA)=0.7, while
H0 assumes the equality of treatments, p (H0)=0.5)

n=20

0 0.5 0.7 1

0.28 0.72

pprrooppoorrttiioonn  ooff  ppaattiieennttss  sshhoowwiinngg  pprreeffeerreennccee
((bbeetttteerr  eeffffeeccttiivveenneessss))  ooff  ttrreeaattmmeenntt  AA

rraannggee  ooff  
ssiiggnniiffiiccaannccee

rraannggee  ooff  
iinnssiiggnniiffiiccaannccee

rraannggee  ooff  
ssiiggnniiffiiccaannccee

probability of
significant result (grey

area under curve) 
is 42.1%

n=50
becomes
narrower

0 0.5 0.7 1
0.36 0.64

rraannggee  ooff  
ssiiggnniiffiiccaannccee

rraannggee  ooff  
iinnssiiggnniiffiiccaannccee

rraannggee  ooff  
ssiiggnniiffiiccaannccee

probability of
significant result (grey

area under curve) 
increased up to 

82.4%

n=62

estimated
minimum

sample size

rraannggee  ooff  
ssiiggnniiffiiccaannccee

rraannggee  ooff  
iinnssiiggnniiffiiccaannccee

rraannggee  ooff  
ssiiggnniiffiiccaannccee

probability of
significant result (grey

area under curve) 
increased up 

to 90%

0 0.5 0.7 1

0.28 0.72



(0.64–0.7)/0.06481=–0.926, and the respective
cumulative distribution equals 1–0.1762=0.8238.
Hence, in the sample of 50 patients there is
a probability of 82.4% to show that treatment A is
more effective in at least 70% of cases (Figure 2,
middle). 

The power of our reasoning has increased from
about 42% to over 82% and we may easily notice that
it is clearly due to a lower SE and narrower distribution
curve. However, we are still a little bit away from the
demanded 90% power of detecting the departure from
the null hypothesis stating that p=0.5. To reach the
threshold values, we need to increase the sample size
a little bit more. How much? We know that our
outcome will remain significant (at α=0.05) below the
value 0.5–1.96 × SE or above the value 0.5 + 1.96 × SE.
Thus, we need a sample large enough to ensure
that 90% of the area of our distribution lies above the
“cut-off” point of 0.5 + 1.96 × SE (Figure 2, lower). The
z statistic of a normal distribution corresponding to the
cumulative distribution of 90% equals –1.28 and is
relevant to the observed value of 

0.7–1.28 × SE = 0.7–0.28 × √(0.7 × 0.3)/n

Therefore, the estimated sample size should be
large enough to ensure that:

0.7–1.28 × √(0.7 × 0.3)/n >0.5 + 1.96 × √(0.5 × 0.5)/n,

which gives

1.96 × √(0.5 × 0.5) + 1.28 × √(0.7 × 0.3)0.7–0.5 > –––––––––––––––––––––––––––––––––
√

––
n

[1.96 × √(0.5 × 0.5) + 1.28 × √(0.7 × 0.3)]2

n > ––––––––––––––––––––––––––––––––––
(0.2)2

n >61.36

Our sample should include at least 62 patients to
be able to detect with the power of 90% the
difference between two treatments at the
significance of 5%, if we assume that treatment
A should be more effective than treatment B in at
least 70% of observations.

Overall, in planning a study we must estimate
what constitutes the reasonable minimum effect that
we wish to detect, the minimum power to detect that
effect, and the sample size that will achieve that
desired level of power. In an approach to estimate the
minimum sample size we have to know:
• within-group variability (i.e. SD, SEM; what the level

of experimental error is, what the accuracy/precision
of the monitoring technique we use is),

• size of experimental effect (e.g. expected
discrimination between groups being compared,
how far we expect the compared groups to be
different from each other),

• significance of a monitored experimental effect
(risk of committing type I statistical error), and

• power of detecting the effect (risk of committing
type II error).

It is worth emphasizing that all the above
parameters (possibly except for the first under some
circumstances) are set by the researcher. We decide
on the values of these parameters even without
doing any research, just based on the appropriate
design of what we are supposed to study. Thus, we
create the final “image” of our experiment ourselves,
prior to collecting data. This may be hard to believe
and we further may ask: how can we figure out e.g.
the parameter variability or the size of experimental
effect without calculating these parameters for the
collected data? I can assure you, we are able to do it.
If we think we are not, it simply means that we are
not yet prepared mentally well enough to perform
the experiment and we need more time to think it
over. Let us briefly discuss the nature of each of the
input parameters. 
• The within-group variability of a parameter may be

a derivative of either experimental error (originating
e.g. from imprecision of a given detection technique),
natural biodiversity within a population, or both,
depending on the nature of the investigated issue.
Only in extremely rare situations we have no idea
how large such variation is. It could happen when
we investigate parameter(s) or use a methodology
which has never been examined or tested before,
i.e. if our approach is absolutely novel in respect of
what we monitor and how we monitor. Usually we
are able to extrapolate the information on such
variability from other studies performed earlier. Thus,
it is just a matter of good and efficient literature
search in order to learn more about the parameter
we are supposed to study. 

• Also the size of experimental effect is what we
decide and not what we accept. Or at least, it should
be so. It should be our decision what extent of the
effect is “satisfactory” for us to consider e.g. that
a given medical treatment is effective. Thus, we are
not satisfied with any significant effect, but only with
that which seems reasonable in terms of a clinically
important impact. It seems reasonable to expect an
effect visible in clinical practice and not any recorded
change. What the satisfactory size of experimental
effect should be depends of course on the particular
study; however, effects exceeding 20% are usually
considered clinically important. 

• We remember that the level of significance means
for us the risk of committing type I statistical error
(rejection of non-false null hypothesis). In more
frequently performed RS testing not too high
significance (moderately low α) means simply not
accepting the researcher’s theory too hastily. 
With extremely high significance we assure ourselves
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that accepting our theory will almost never be wrong.
In the clinical sciences it reflects a reliable diagnosis
and trustful prognosis. When deciding about 
the significance level appropriate for our experiment,
we forget for a while about its exploratory capabilities.
We look at the value of significance not in terms 
of quantity (what is the exact likelihood that
a rejected H0 may be true?), but rather in terms 
of quality (is it true or false?). The latter requires us
to accept some convention on what may be referred
to as “true”, and what should be referred to as
“false”. Such a convention is nothing but an 
arbitrarily chosen threshold value of significance 
level used for rejecting or not rejecting H0. 
As discussed above, the exploratory (quantitative)
approach is much more informative. Here, we employ
a binary (qualitative, 0/1) approach, but we have to
decide ourselves where the threshold lies and what
is the significance value that justifies acceptance 
of our theory. In the social sciences, and sometimes
also in the biological sciences, the arbitrary chosen
significance is usually 5% (which means a value of
α=0.05), serving as a kind of universal threshold in
a binary approach. Less often it may be 1% or 0.1%
(meaning α=0.01 or α=0.001) for designating
so-called “high significance”. What does it mean that
α=0.05? It means that for every 100 statements,
conclusions, decisions, etc. you are wrong in 5 cases.
We may say that we are secure of being right in
95 per 100 cases. Is it much or little? If we state the
diagnosis in 100 patients and we are wrong in 5 of
them, is this few enough to be acceptable, or is it so
many that we are disqualified? This clearly shows
that in clinical research, further extrapolated to clinical
practice, there is no such thing as one commonly
accepted boundary significance value. The tolerable
significance level depends on a particular problem
in a given clinical study. Usually it is set much lower
than 0.05, but it is we, the researchers, who decide
on this value based on our knowledge of what we
investigate, what we are supposed to show, and
what we would like to evidence. Therefore, we might
say that any arbitrarily chosen significance level, in
disjunction with a given scientific problem that needs
resolving, deludes us with a false sense of security. 

• Power of detecting the searched effect is the last
parameter which we need to determine for
successful experiment design. We remember that
statistical power has be specified wisely, not too
low to enable reliable detection, but also not too
high to avoid showing unreal effects. Commonly,
it is set within the range of 80-90% (see the
discussion above). 

There are plenty of available statistical packages,
either professional [2, 3] or public domain [4-7], which
enable us to estimate sample size and/or establish
statistical power based on the input parameters of the
minimum expected difference (experimental effect)

and significance. More professional statistical programs
offer detailed analysis of graphs showing the
relationships of power vs. sample size for different
extents of discrimination and different levels of
experimental errors. The sample size can then be
deduced by analyzing such graphs. In addition, some
software packages can directly calculate the desired
sample size for the input values of the user’s choice.
The second approach, though faster and apparently
more convenient, is not good for inexperienced
researchers. If you have the possibility to analyze the
graphs, do it. It will always provide you with more
information than some raw calculations. For instance,
for a given statistical power, the plot of sample size vs.
level of experimental error or expected experimental
effect can show us how sensitive the estimated sample
size is to the actual variability in our sample or the
amount of difference we would like to see [2]. By
playing a little bit with such estimators you will see for
example that to reliably detect a small difference from
the null hypothesis, we would need much greater N
than for detection of a larger discrepancy. Look at the
comparison given below [3]:

Sample size for a paired or single sample
Student’s t test

Significance (α) 0.05 0.05
Power (1-β) 0.9 0.9
Difference of mean from zero 5 10
Standard deviation 10 10
Estimated minimum sample size 45 pairs 13 pairs
Degrees of freedom 44 12

Concluding remarks

In general, it is much better if we are aware of the
overall properties of a statistical test under different
circumstances before we run an experiment instead
of being confronted with unexpected difficulties after
the fact. First of all, we have to keep in mind that even
minor departures from the expected values of an
experimental error and experimental effect may require
a huge increase in sample size. We may not always be
prepared to accommodate our research appropriately,
e.g. due to budget limitations. Therefore, it is
reasonable to play a little with different variants of our
input parameters used to calculate a sample size, and
not to accept the most optimistic variant. Certainly, we
should do it at the stage of experimental design, before
running our experiment, in order to create a wider
“window of opportunities” for proper adjusting of
sample size in our research.
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