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Abstract

With an unstable atherosclerotic coronary plaque, episodes of myocardial ischemia
associated with release of debris and microembolization and subsequent
restoration of more or less sufficient coronary blood flow can precede ultimate
plaque rupture, complete coronary occlusion and impending acute myocardial
infarction. Such scenario involves both coronary microembolization with its
established detrimental consequences for the dependent myocardium and
repeated, transient episodes of myocardial ischemia/reperfusion which can induce
protection by ischemic preconditioning. The current review aims to study the
interaction between these adverse and beneficial effects. Experimental coronary
microembolization in anesthetized pigs does not induce nor prevent acute
preconditioning against infarction. However, six hours after coronary
microembolization a third window of protection exists, which results from the
upregulation of TNF-alpha. Apparently, TNF-alpha exerts bidirectional effects, i.e.
induces contractile dysfunction but protects from infarction.

Key words: infarct size, coronary microembolization, ischemic preconditioning,
adenosine, TNF-alpha.

Coronary microembolization in patients

The rupture of an atherosclerotic plague in an epicardial coronary artery
with subsequent occlusive coronary thrombosis has been established as
the decisive event in the pathogenesis of acute myocardial infarction
[1, 2]. Milder forms of plaque rupture with subsequent embolization of
atherosclerotic and thrombotic debris into the coronary microcirculation
have also been recognized before [2-5], but the clinical frequency and
importance of coronary microembolization in the clinical setting have only
recently been appreciated [6-8].

Microemboli were identified in post-mortem autopsy of patients who
had died from sudden cardiac death but without overt myocardial infarction.
These patients had microinfarcts in the perfusion territories of atherosclerotic
coronary arteries. Qualitatively, the microemboli were characterized by platelet
aggregates, hyalin and atherosclerotic plaque material, including cholesterol
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crystals. The microemboli were associated with
microinfarcts and an inflammatory reaction of the
myocardium (for detailed review see [8]).

The transient elevation of enzymatic markers
such as creatine kinase (CK), CK-MB isoenzyme and
more sensitively troponin [9] is now regarded as
a characteristic sign of microinfarction in patients
with unstable angina and may just reflect the
consequences of coronary microembolization. The
elevation of troponin is also associated with worse
prognosis in patients with unstable angina [10, 11].
Such considerations have found their way into the
consensus document on the definition of myocardial
infarction by the European Society of Cardiology and
the American College of Cardiology [12] which
particularly acknowledges microemboli from the
atherosclerotic lesion that has been disrupted during
angioplasty or from the particulate thrombus at the
site of the culprit lesion.

Not only in spontaneous plaque rupture, but also
during coronary interventions, microembolization is
in fact induced, again leading to myocardial
microinfarcts, as reflected by elevated CK and
troponin [13-16] and electrocardiographic (ECG)
alterations [14]. New imaging techniques have
facilitated the detection of epicardial coronary plaque
rupture, when ulcerations have developed, and thus
the potential source of coronary microembolization.
Intravascular ultrasound provided evidence that
indeed the reduction in epicardial atherosclerotic
plague volume in patients undergoing a percutaneous
coronary intervention for acute myocardial infarction
[17] or unstable angina [18] induces microemboliza-
tion and contributes to inadequate reperfusion, as
assessed by TIMI frame count [17], and CK-MB
release [18]. Microinfarcts were also visualized by
contrast-enhanced MRI technique in patients who
had mild elevations of CK-MB after percutaneous
coronary intervention [19, 20].

Vasoconstrictor and inflammatory mediators

Apart from the particulate debris leading to distal
mechanical microvascular obstruction and infarctlets,
plaque rupture also results in the release of
vasomotor, thrombogenic, and proinflammatory
soluble substances [7, 21, 22]. Such substances
possibly contribute to impaired microvascular
perfusion (the slow or no reflow phenomenon) [23].
We have recently studied this aspect of plaque
rupture in patients who underwent stent
implantation into a significant stenosis of
a saphenous vein aortocoronary bypass graft; these
grafts are known to be very susceptible to plaque
rupture [24]. A distal balloon protection device was
used to trap and aspirate particulate debris and
soluble substances released from the atherosclerotic
lesion during stent implantation. Since human
coronary arteries and rat mesenteric arteries are

characterized by a comparable receptor arrangement
for thromboxane A,, norepinephrine, and serotonin,
the vascular action of the aspirate was analyzed in
isolated rat mesenteric arteries with intact and
mechanically denuded endothelium using a Mulvany
myograph bath chamber. Using this rat mesenteric
vasomotor bioassay, we identified serotonin and
thromboxane A, as potent endothelium-dependent
vasoconstrictors in the aspirate, the action of which
could be inhibited by a combined blockade of
serotonin 5-HT,/,c and 5-HT;a/15 receptors and of
the thromboxane A, TP-receptor [25]. Serotonin was
measured via HPLC and thromboxane A, indirectly
via measuring its metabolite thromboxane B, via
ELISA. Serotonin (in nmol/l: 582481 before vs.
25404366 after stenting, p<0.05 vs. before; n=10)
and thromboxane A, (in pg/ml: 1012 before vs. 3045
after stenting, p<0.05 vs. before; n=10) were released
into the aspirate in relation to the angiographic
severity of the stenosis and to plaque volume, as
assessed by intravascular ultrasound.

Inflammatory responses are also seen in those
clinical scenarios where coronary microembolization
is likely to occur. Nuclear factor-kappa-B is activated
in patients with unstable angina [26], and serum
C-reactive protein is increased in patients who died
from an acute coronary syndrome [27]. Also the
cytokine interleukin-6 was higher up to 48 h in
patients with unstable angina who experienced a
major adverse cardiac event [28]. These markers of
inflammation were always assumed to originate
from the rupturing atherosclerotic plaque, but they
might be derived from microcirculatory inflammation
in response to myocardial microinfarction equally
well [29].

We have very recently also found an increased
TNF-alpha release from stented saphenous vein
bypass grafts which was not only correlated to the
amount of plaque extrusion but importantly also to
restenosis 5 months later [30]. The importance of
inflammation secondary to coronary microemboliza-
tion is also supported by a recent study, in which
preprocedural treatment with HMG-CoA reductase
inhibitors in patients undergoing stenting of a de-
novo stenosis resulted in a reduced incidence of peri-
procedural myocardial injury, as assessed by analysis
of CK and troponin T, and better event-free survival
[31]. This beneficial effect is most likely attributable
to anti-inflammatory properties of HMG-CoA
reductase inhibitors, such as favourably altered plaque
composition and plaque stabilization, but possibly
also to attenuated myocardial inflammation [32].

An experimental model

of coronary microembolization
Perfusion-contraction mismatch

We have developed an experimental model of
coronary microembolization using intracoronary
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infusion of microspheres (diameter of 42 pm) in
anesthetized dogs and pigs. The stepwise
intracoronary infusion of microspheres up to a final
dose of 3.000 spheres per ml/min baseline coronary
blood flow causes a typical response with an
immediate decrease in coronary blood flow upon
infusion of the embolizing particles, followed by
a more prolonged reactive increase in coronary blood
flow. Concomitantly, regional myocardial function is
stepwise reduced and does not fully recover [33].
During the hours following acute coronary
microembolization, regional myocardial function is
progressively further decreased. Interestingly, this
myocardial dysfunction is not associated with
a decrease in regional myocardial blood flow. Quite
different from the consequences of a severe stenosis
of an epicardial coronary artery, where myocardial
function and myocardial blood flow are proportionally
reduced in a typical perfusion-contraction matching
pattern [34], the progressive myocardial dysfunction
following coronary microembolization is characterized
by a profound perfusion-contraction mismatch [35].
Patchy microinfarcts, which affect about 5% of the
respective myocardium are observed in the
microembolized myocardium [36]. Less than 0.1% of
the cardiomyocytes are apoptotic, and apoptotic cells
are always localized with the microinfarcts [36].

Microinfarcts and inflammation

The microinfarcts are characterized by leukocyte
infiltration, including monocytes/macrophages.
Such leukocyte infiltration cannot be attributed to
chemoattractant properties of the embolizing
microspheres per se [35]. The only small amount
of infarcted myocardium and the almost
unchanged myocardial blood flow after coronary
microembolization raised the notion that the
observed inflammatory response is responsible for
the profound regional contractile dysfunction
following coronary microembolization. Indeed,
supporting this idea, the profound contractile
dysfunction recovers spontaneously back to
baseline over about one week. Moreover, unspecific
inhibition of inflammation by methylprednisolone
abolishes the progressive contractile dysfunction,
even when given as a single bolus and even when
given 30 min after coronary microembolization [37].

TNF-alpha, contractile protein oxidation
and progressive contractile dysfunction

More specifically, we identified TNF-alpha to play
a causal role in contractile dysfunction following
coronary microembolization, supporting and
extending prior findings by Arras et al. who reported
enhanced TNF-alpha expression and leukocyte
infiltration after coronary microembolization in pigs
[38]. Importantly, the increased TNF-alpha expression
is an autocrine/paracrine response of cardiomyocytes

surrounding the microinfarcts, possibly mediated by
the local shear stress between contracting and non-
contracting, infarcted myocardium. The increased
tissue TNF-alpha concentration is causal for
contractile dysfunction, since the intracoronary
infusion of exogenous TNF-alpha in the absence of
microembolization induces a similar progressive
dysfunction and conversely, pre-treatment with
TNF-alpha antibodies prevents myocardial dysfunction
following coronary microembolization [36].

To further clarify the signal transduction cascade
of TNF-alpha-induced dysfunction we have studied
the role of nitric oxide and sphingosine, both known
elements of the signal transduction cascade of
TNF-alpha in ischemia-reperfusion injury and
chronic heart failure [39, 40]. With coronary
microembolization, both TNF-alpha and sphingosine
contents in the myocardium are increased. Pre-
treatment with the nitric oxide-synthase inhibitor
NG-nitro-L-arginine-methylester attenuated the
progressive myocardial contractile dysfunction and
prevented increases in TNF-alpha and sphingosine
contents [41]. Surprisingly, nitric oxide appears to
be located upstream of TNF-alpha in the signal
transduction of inflammatory dysfunction. Pre-
treatment with N-oleoylethanolamine (NOE), which
blocks the enzyme ceramidase and thus the
catalytic conversion of ceramide to sphingosine [42,
43], also abolished the progressive contractile
dysfunction following coronary microembolization,
but the myocardial tissue concentration of TNF-
alpha remained increased [41]. These results
suggest that the microembolization-induced
progressive contractile dysfunction is signalled
through a cascade with nitric oxide located
upstream of TNF-alpha and sphingosine located
downstream of TNF-alpha (Figure 1) [41]. As
a potential target in excitation - contraction coupling
we addressed the oxidative modification of
contractile proteins as a potential mechanistic link
between the inflammatory signal transduction and
the contractile impairment following coronary
microembolization. We looked at tropomyosin as
a marker protein since it contains only a single cystein
residue which can be oxidized and then forms
disulfide bonds. Increased formation of disulfide
crosslinks in tropomyosin were observed in pig
and dog hearts 6-8 hours after coronary
microembolization, a time point when there was
pronounced microembolization-induced myocardial
dysfunction. The extent of oxidative tropomyosin
modification correlated inversely with contractile
function, and TNF-alpha content was increased in
parallel with tropomyosin oxidation [44]. The
reversible tropomyosin oxidation is most likely caused
by reactive oxygen species. In various cell types TNF-
alpha synthesis depends on reactive oxygen species
formation [45, 46], but on the other hand TNF-alpha

Arch Med Sci 2, June / 2007

85



Philipp Heusch, Andreas Skyschally, Kirsten Leineweber, Michael Haude, Raimund Erbel, Gerd Heusch

also promotes reactive oxygen species formation [47,
48]. Such bidirectional link amplifies the inflammatory
response by exacerbating the oxidative stress. The
notion that oxidative myofibrillar protein modification
is responsible for the contractile dysfunction following
coronary microembolization was further supported
by experiments in which ascorbic acid was given as
an antioxidant. Pretreatment with ascorbic acid
prevented the microembolization-induced myocardial
dysfunction, the increase in myocardial TNF-alpha,
and the oxidation of tropomyosin [44]. The oxidation
of tropomyosin might represent an end-effector of
the transduction pathway triggered by microembo-
lization that links the inflammatory response to the
failure of contraction. Interestingly and supporting
a causal role for tropomyosin oxidation, increased
disulfide bridges are no longer observed one week
after coronary microembolization when contractile
function has fully recovered [44].

Ischemic preconditioning

Ischemic preconditioning is the experimental
gold standard paradigm of cardioprotection since
its first report by Murray et al. 20 years ago [49].
There are excellent reviews on ischemic precondi-
tioning and its signal transduction (Figure 2) which
will not be recapitulated here [50-52]. Briefly,
protection by ischemic preconditioning resulting
from transient episodes of myocardial ischemia/
reperfusion is apparent within minutes and lasts
for 2-3 hours; a second phase of delayed precondi-
tioning re-appears 12-24 hours later and lasts for
3-4 days.

Coronary microembolization
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Figure 1. Schematic diagram of cellular mechanisms
inducing contractile dysfunction in response to coronary
microembolization. L-NAME: L-nitroarginine methylester,
NO: nitric oxide, NOE: n-oleylethanolamine, ROS:
reactive oxygen species

Ischemic preconditioning in humans:
the evidence

The existence and significance of ischemic
preconditioning in man are less clear [53, 54], largely
because the most rigorous endpoint, i.e. infarct size,
is not easily available for controlled, prospective
studies in man, for obvious ethical reasons.
Prospective clinical studies are therefore available
with short episodes of fully reversible myocardial
ischemia, such as induced by percutaneous
transluminal coronary angioplasty (PTCA) [55-58]
or by brief surgical ischemic cardiac arrest [59, 60].
Certain parts of the experimentally established
signal transduction of ischemic preconditioning
have been verified using PTCA, such as
preconditioning by adenosine [61, 62] or bradykinin
[63] and the prevention of ischemic preconditioning
by the KATP blocker glibenclamide [56] or the opioid
antagonist naloxone [64]. Surrogate endpoints in
such studies include ST-segment shifts in the surface
or intracoronary ECG, metabolic markers such as
lactate and ATP, or release of CK and troponin.
Whereas new troponin assays appear to provide
reliable clinical markers of myocardial injury [65], the
association of alterations in energy and substrate
metabolism with infarct size reduction even in the
experiment is still elusive. Importantly, in the animal
experiment attenuation of ischemic ST-segment
elevation appears to be an unreliable marker of
ischemic preconditioning, reflecting activation of
sarcolemmal KATP channels whereas ischemic
preconditioning’s protection is induced through
activation of mitochondrial KATP channels [66]. Apart
from the potentially unreliable endpoints, these
clinical studies using PTCA are confounded by the
potential of collateral recruitment that may attenuate
ischemia and its consequences, independently of any
preconditioning. Clearly, the exclusion of angiogra-
phically visible collaterals [67, 68] is not sufficient to
exclude significant collateral recruitment, and more
rigorous approaches such as the pressure-derived
collateral flow index [57, 69] are required. This
concern does not apply to the global ischemia during
surgical cardiac arrest. All the existing clinical studies
using PTCA or ischemic cardiac arrest address the
early phase of ischemic preconditioning only.

Support for the existence of ischemic precondi-
tioning in man is also derived from retrospective
analyses of patients undergoing thrombolysis who
had pre-infarction angina. Patients with pre-
infarction angina appear to have reduced infarct size,
as estimated by reduced CK release and less Q
waves on their ECG [70, 71], better functional
recovery [72] and better prognosis [70]. These earlier
retrospective studies were confirmed in an ancillary
study to the TIMI-9B trial in a prospective study
design, though only in terms of improved prognosis
[73]. However, patients with pre-infarction angina
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Figure 2. Sche:matic diagram of intracellular signal transduction of ischemic preconditioning. A, — adenosine A, receptor,
ATP — adenosine triphosphate, B, — bradykinin B, receptor, 3, — beta;-adrenoceptor, Cx43 — connexin 43, CytC — cytochrome
C, 3 — 8 opioid receptor, EP; — prostaglandin E receptor 3, Gi — inhibitory G-protein, GSK 3  — glycogen synthase kinase
3 B isoform, IM = inner mitochondrial membrane, KATP — ATP-dependent potassium channel, mPTP — mitochondrial
permeability transition pore, NO — nitric oxide, OM — outer mitochondrial membrane, p38p — p38 mitogen activated
kinase B isoform, PIsK — inositol triphosphate kinase, PKA — protein kinase A, PKC — protein kinase C, PKG — protein
kinase G, PTK — protein tyrosine kinase, ROS — reactive oxygen species

have also more rapid thrombolysis and possibly
therefore smaller infarcts and better prognosis [74].
The time frame of occurrence of angina before
myocardial infarction in those studies varied widely,
and the protection observed can therefore not be
attributed to either early or delayed preconditioning.

Experimental studies on the interaction of
coronary microembolization and ischemic
preconditioning

In consideration of the above, we have conducted
a series of experiments in our established porcine
model of coronary microembolization (see above).

Adenosine, coronary microembolization
and acute ischemic preconditioning

Common to both, ischemic preconditioning and
coronary microembolization, is the involvement of

adenosine. Adenosine is an established trigger of
ischemic preconditioning [51] and the hyperemic
response after coronary microembolization is
caused by adenosine, released from ischemic areas
in the microembolized myocardium [75]. Thus, the
surrounding non-embolized tissue may be protected
against infarction from subsequent sustained
ischemia/reperfusion. Infarct size after 90 min
ischemia and 2 h reperfusion was determined by
triphenyl tetrazolium chloride staining and served
as the major endpoint of our studies. Under
conditions of some residual blood flow during
ischemia, as in the present study, it is a major
determinant of final infarct size and must be taken
into account [76]. Therefore, we analyzed not only
infarct size but also the relationship between infarct
size and subendocardial blood flow during sustained
ischemia as a more specific endpoint of cardio-
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myocyte protection. Coronary microembolization
failed to protect the myocardium from infarction
after 90 min sustained ischemia and 2 h reperfusion
(Figure 3A) [77]. This lack of protection could be
attributed to the lack of increase of the interstitial
adenosine concentration (measured by HPLC from
microdialysis samples) with coronary microemboli-
zation (Figure 3B) [77], since a transient increase in
the interstitial adenosine concentration prior to the
sustained ischemia is mandatory to establish
protection by ischemic preconditioning [78]. The
superimposition of infarction induced by coronary
microembolization per se [36] even increased the
final infarct size after sustained ischemia in
microembolized myocardium [77].

In fact, coronary microembolization and ischemic
preconditioning could interfere such that microem-
bolized myocardium may even loose its ability to be
classically preconditioned by a brief period of
ischemia/reperfusion. A potential loss of protection
by ischemic preconditioning could result from a critical
loss of adenosine through enhanced washout with
coronary blood [75, 77, 79] and lymph flow [80]
subsequent to coronary microembolization. However,
in our model ischemic preconditioning was still
operative, even when induced upon acute coronary
microembolization. Thirty minutes after coronary
microembolization a preconditioning stimulus of 10
min ischemia followed by 15 min of reperfusion was
still sufficient to induce the mandatory transient
increase in the interstitial adenosine concentration
and to reduce the final infarct size caused by
subsequent sustained 90 min ischemia and 2 h
reperfusion (Figures 4A and 4B) [81]; yet the infarct
size was larger than with ischemic preconditioning of

naive myocardium, due to the aggregate infarct size
caused by microembolization per se.

TNF-alpha, coronary microembolization
and delayed ischemic preconditioning

We now wondered whether the increased TNF-
alpha expression might not only mediate progressive
contractile dysfunction but also induce delayed
protection against infarction. In fact, in isolated rat
hearts pretreatment with TNF-alpha reduces the
infarct size after ischemia/reperfusion [82]. This
protective effect was confirmed in mouse [83] and
rabbit models [84]. Moreover, TNF-alpha is also
involved in the endogenous protection by ischemic
preconditioning. In TNF-alpha knockout mice, acute
[83] and delayed ischemic preconditioning [85] are
abrogated, and TNF-alpha-antibodies inhibit delayed
ischemic preconditioning in rats [86].

The myocardium was indeed protected against
infarction at 6 h after coronary microembolization.
Infarct size was reduced almost by 50% (Figure 5)
[87], although coronary microembolization per se is
expected to increase infarct size by about 5% [77].
The observed protection was a direct effect of TNF-
alpha per se and not an indirect protection secondary
to reduced contractile function before ischemia/
reperfusion, since thiopental induced almost identical
dysfunction but no reduction in infarct size. The
pretreatment with the neutralizing TNF-alpha
antibodies prior to coronary microembolization
attenuated not only the progressive myocardial
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line was shifted up towards higher infarct size at increased after the onset of the sustained ischemia.
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Figure 4A. The linear relationship between infarct size
and subendocardial blood flow in placebos was not
different from that with coronary microembolization
(ME) and ME followed by ischemic preconditioning
(IP). When comparing the relationships between
infarct size and subendocardial blood flow in
myocardium with ME (ME vs. ME plus IP) ischemic
preconditioning shifted the regression line significantly
downwards, reflecting smaller infarct size at a given
subendocardial blood flow. Reproduced with permis-
sion from [81]

dysfunction, as already observed in dogs [36], but
also abolished the infarct size reduction by coronary
microembolization, establishing that increased TNF-
alpha is causal both for contractile dysfunction and
protection against infarction.

Apart from the causal role of TNF-alpha in
progressive myocardial dysfunction and delayed
protection against infarction following coronary
microembolization, there are further similarities in
the signal transduction cascade. Myocardial
protection by exogenous TNF-alpha depends on
a sphingolipid signaling pathway. The ceramidase
inhibitor NOE abolishes TNF-alpha preconditioning,
and ceramide or sphingosine 1-phosphate mimic
TNF-alpha protection [82]. Similarly, for the
microembolization-induced progressive myocardial
dysfunction we have identified a signal transduction
cascade with nitric oxide upstream and sphingosine
downstream of TNF-alpha [41].

Conclusions and perspective

There is solid evidence that coronary microem-
bolization occurs in patients, both spontaneously
and during percutaneous coronary interventions.
The deleterious consequences of coronary micro-
embolization, such as microinfarcts, inflammation,
contractile dysfunction, arrhythmias and impairment
of coronary reserve, are seen clinically and are
reproduced in an experimental model with intraco-
ronary infusion of microspheres.

There is also good, though mostly indirect evidence
for ischemic preconditioning in patients, notably in
patients with preinfarction angina and in patients
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Figure 4B. In placebo controls the interstitial adenosine
concentration increased after the onset of the
sustained ischemia. The interstitial adenosine
concentration remained unchanged with coronary
microembolization, but increased after the onset of
the sustained ischemia. The interstitial adenosine
remained unchanged after coronary microembolization
and increased 3.7-fold during reperfusion following
ischemic preconditioning.

With coronary microembolization alone and coronary
microembolization plus ischemic preconditioning
before the sustained ischemia, the maximal increases
in the interstitial adenosine concentration during the
sustained ischemia were attenuated. Reproduced with
permission from [81]
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Figure 5. Area at risk (as % of the left ventricle) and
subendocardial blood flow at 5 min of ischemia were
comparable between groups. Infarct size was reduced
by coronary microembolization compared to placebo.
The protective effect of coronary microembolization
was abolished by pretreatment with TNF-alpha
antibodies. The TNF-alpha antibodies per se had no
influence on infarct size. Reproduced with permission
from [87]

undergoing repeated transient coronary occlusion
during percutaneous coronary interventions.
Unstable angina preceding an acute impending
myocardial infarction most likely entails both
coronary microembolization and ischemic precon-
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ditioning. In the experimental model, there is
obviously neither the induction nor the prevention
of acute ischemic preconditioning by coronary
microembolization. In contrast, coronary microem-
bolization induces profound delayed ischemic
preconditioning through upregulation of TNF-alpha.
Obviously, in this realistic model of preinfarction
angina, a third window of protection exists which
is separate from, located in between and mechani-
stically distinct from the established classical first
and second windows of protection by ischemic
preconditioning.

The bidirectional role of TNF-alpha which causes
contractile dysfunction on the one hand and delayed
protection against infarction on the other hand might
contribute to explain the controversial results of anti-
TNF-alpha therapy in patients with heart failure.
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