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A b s t r a c t

In sporadic Alzheimer’s disease (SAD), the classic (‘dense-cored’) β-amyloid (Aβ) deposits are aggregated around 
the larger blood vessels in the upper laminae of the cerebral cortex. To determine whether a similar relationship 
exists in familial AD (FAD), the spatial correlations between the diff use, primitive, and classic β-amyloid (Aβ deposits 
and blood vessels were studied in ten FAD cases including cases linked to amyloid precursor protein (APP) and 
presenilin (PSEN) gene mutations and expressing apolipoprotein E (apo E) allele E4. Sections of frontal cortex were 
immunolabelled with antibodies against Aβ and with collagen IV to reveal the Aβ deposits and blood vessel profi les. 
In the FAD cases as a whole, Aβdeposits were distributed in clusters. There was a positive spatial correlation between 
the clusters of the diff use Aβdeposits and the larger (>10 μm) and smaller diameter (<10 μm) blood vessels in one 
and three cases respectively. The primitive Aβ deposits were spatially correlated with larger and smaller blood vessels 
each in four cases and the classic deposits in three and four cases respectively. Apo E genotype of the patient did not 
infl uence spatial correlation with blood vessels. Hence, spatial correlations between the classic deposits and larger 
diameter blood vessels were signifi cantly less frequent in FAD compared with SAD. It was concluded that both Aβ 
deposit morphology and AD subtype determine spatial correlations with blood vessels in AD.

Key words: clustering, frontal cortex, blood vessels, diff usion, perivascular clearance, spatial correlation.

Communicating author:

Dr. R.A. Armstrong, Vision Sciences, Aston University, Birmingham B4 7ET, UK, tel. 0121-359-3611; fax: 0121-333-4220; 

Email R.A.Armstrong@aston.ac.uk

Introduction

The involvement of the cerebral microcirculation 
in the pathogenesis of the β-amyloid (Aβ deposits in 
Alzheimer’s disease (AD) is controversial [11]. In the 
cerebral cortex of cases of sporadic AD (SAD), Aβ 
deposits often occur in clusters that are regularly 
distributed parallel to the pia mater [7]. Of the three 
morphological subtypes of Aβ deposit common in 
AD, viz., the diff use (‘pre-amyloid’), primitive (‘neu-
ritic’), and classic (‘dense-cored’) deposits [2,17], 

clusters of the classic Aβ deposits, which consist 
of a solid amyloid core surrounded by a ‘corona’ of 
dystrophic neurites [2], is the only subtype to exhi-
bit a consistent spatial relationship with the blood 
vessels [5,9]. Hence, in SAD, the classic deposits are 
often aggregated around the larger diameter (>10 
μm) blood vessels and especially the vertically pe-
netrating arterioles in the upper cortical laminae 
[5]. In addition, the density of the classic deposits 
declines exponentially with distance from the larger 
vessels, suggesting that proteins diff using from the 
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vessels may be involved in the pathogenesis of the 
classic deposits in SAD [5].

Vascular pathology may also be involved in the 
pathogenesis of Aβ deposits in the much rarer ca-
ses of familial AD (FAD). Hence, plasma Aβ may be 
increased in cases of FAD as well as in some SAD ca-
ses [33]. In addition, as in SAD, a proportion of FAD 
cases are associated with cerebral amyloid angiopa-
thy (CAA), viz., the deposition of Aβ in and around 
the major blood vessels. Mutations of the amyloid 
precursor protein (APP) gene [14,20] within the Aβ 
region are often associated with familial CAA [29] 
while APP mutations outside the Aβ region are asso-
ciated with a pathology defi cient in Aβ40 and with lo-
wer levels of CAA [22]. A larger group of FAD cases are 
linked to the presenilin (PSEN) genes PSEN1 [28] and 
PSEN2 [23] with selective PSEN mutations promo-
ting CAA [22]. In addition, the apolipoprotein E (apo 
E) gene is an important risk factor associated with 
late-onset familial and sporadic FAD [27,32]; posses-
sion of one or more E4 alleles signifi cantly increases 
the risk of the disease, and could also be linked to 
vascular pathology. For example, in transgenic mice, 
apo E markedly promotes CAA-associated vessel da-
mage [19]. Hence, the objective of this study was 
to determine the spatial correlations between the 
diff use, primitive, and classic Aβ deposits and blood 
vessels in a group of FAD cases and to compare the 
pattern of correlations with previously studied SAD 
cases [5,9].

Material and Methods

Cases

Ten cases of FAD (details in Table I) were obta-
ined from the Brain Bank, Department of Neuro-
pathology, Institute of Psychiatry, King’s College, 
London, UK. Informed consent was given for the re-
moval of all brain tissue according to the 1996 Dec-
laration of Helsinki (as modifi ed Edinburgh, 2000). 
Patients were clinically assessed and all fulfi lled the 
National Institute of Neurological and Communica-
tive Disorders and Stroke and the Alzheimer’s Di-
sease and Related Disorders Association (NINCDS/
ADRDA) criteria for probable AD [34]. The histologi-
cal diagnosis of AD was established by the presence 
of widespread neocortical senile plaques (SP) con-
sistent with the Consortium to Establish a Registry 
of Alzheimer’s Disease (CERAD) criteria [25]. Four 
of the cases were early-onset FAD (onset ≤65 yrs), 
two linked to the APP717 mutation and two to PSEN1 
mutations. All early-onset cases had apo E genoty-
pes 2/3 or 3/3. The remaining six FAD cases were 
of late-onset (≥65 yrs), two of which expressed the 
E4 allele. The remaining four late-onset FAD cases 
were not linked to any of the known genes and had 
apo E genotypes 2/3 or 3/3. All cases exhibited mild 
to moderate CAA in the frontal cortex and in the oc-
cipital cortex, the cortical region most signifi cantly 
aff ected in AD [10].

Table I. Details of familial Alzheimer’s disease (FAD) cases

Case Sex Age Cause of death Genetic link Apo E CAA

A M 61 Bronchopneumonia APP717 3/3 Mild

B F 52 Bronchopneumonia APP717 3/3 Mild

C F 37 Bronchopneumonia PSEN1 3/3 Mild/Mod

D F 57 Bronchopneumonia PSEN1 2/3 Mild/Mod

E F 86 Bronchopneumonia ND 3/4 Mod

F F 79 Bronchopneumonia ND 3/4 Mod

G F 89 Bronchopneumonia ND 3/3 Mild

H F 75 Bronchopneumonia ND 2/3 Mild

I F 69 Bronchopneumonia ND 3/3 Mild

J F 72 Ischaemic heart disease ND 3/3 Mild

M – male, F – female, APP – amyloid precursor protein, PSEN – presenilin, Apo E – apolipoprotein E genotype, ND – FAD not linked to any of the known genes, 
CAA – cerebral amyloid angiopathy, Mod – moderate.
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Histological methods 

A block of the superior frontal cortex was remo-
ved from each case at the level of the genu of the 
corpus callosum. Coronal sections, 7 μm in thickness, 
were stained with a rabbit polyclonal antibody (Gift 
of Prof. B.H. Anderton) raised against the 12-28 ami-
no acid sequence of the Aβ protein [30] to reveal the 
deposits. The antibody was used at a dilution of 1 in 
1200 and incubated at 4°C overnight. Sections were 
pretreated with 98% formic acid for 6 minutes to en-
hance immunoreactivity. Aβ was visualised using the 
streptavidin-biotin horseradish peroxidase procedu-
re with diaminobenzidine as the chromogen. Sec-
tions were also immunostained with collagen type 
IV antiserum (Europath Ltd, U.K.) to reveal the micro-
vessels [5,21,24]. The antiserum was used at 1:500 
dilution following protease digestion of the section 
with a solution of 0.04% pepsin. Collagen type IV sta-
ins a component of the cerebrovascular basement 
membrane [37] and hence reveals arterioles, venu-
les, precapillaries, and capillaries [5]. The three most 
common morphological types of Aβ deposit were 
identifi ed using previously published criteria [2,17]. 
Hence, diff use deposits were 10-200 μm in diameter, 
irregular in shape with diff use boundaries and lightly 
stained. Primitive deposits were 20-60 μm, well de-
marcated, more symmetrical in shape, and strongly 
stained, while the classic deposits were 20-60 μm, 
and had a distinct central ‘core’ surrounded by a ‘co-
rona’ of dystrophic neurites. 

Clustering of Aβ deposits and blood 
vessels

The spatial patterns of the Aβ deposits and blo-
od vessels were studied parallel to the pia mater in 
the upper 1 mm of the cortex using a magnifi cation of 
×100. Aβ deposits occur at high density and the verti-
cally penetrating arterioles are especially prominent in 
this region [5,12]. A strip of cortex 17600 to 25600 μm 
in length, and which included a sulcus and a gyrus, 
was studied using 1000 × 200 μm contiguous sample 
fi elds, the short dimension of the fi eld being aligned 
with the surface of the pia mater. Between 64 and 128 
contiguous sample fi elds were used to sample each 
gyrus. A micrometer grid with grid lines at intervals of 
10 μm was used as the sample fi eld. The number of 
Aβ deposits was counted manually in each fi eld. The 
frequency of the larger diameter (>10 μm) and smaller 

diameter (<10 μm) blood vessels in a fi eld was esti-
mated separately by ‘lattice sampling’, i.e. by counting 
the number of times a vessel profi le intersected the 
grid lines of the fi eld [3].

Statistical analysis 

The data were analysed by spatial pattern analy-
sis [1,6]. Essentially, the variance/mean (V/M) ratio is 
used as an index of non-randomness and determines 
whether the Aβ deposits and blood vessel profi les 
were distributed randomly (V/M = 1), regularly (V/M 
< 1), or in clusters (V/M > 1) along the strip of cortex 
parallel to the pia mater. V/M ratio is calculated at va-
rious fi eld sizes, e.g. 200 × 1000 μm (the original fi eld 
size) and then at 400 × 1000 μm, 800 × 1000 μm, etc., 
up to a size limited by the length of cortex sampled. 
The V/M ratio is plotted against the increasing fi eld 
size to reveal the spatial pattern. If the deposits or 
blood vessels were clustered, then the analysis indi-
cates whether the clusters themselves are randomly 
or regularly distributed and provides an estimate of 
the mean dimension of the clusters parallel to the 
pia mater. There were too few cases to compare spa-
tial patterns between APP and PSEN cases, but cases 
expressing diff erent apo E genotypes were compared 
using analysis of variance (ANOVA).

The degree of correlation between the density of 
each Aβ deposit subtype and the larger and smaller 
diameter blood vessels was tested at each fi eld size 
using Pearson’s correlation coeffi  cient [4]. Correla-
tions at small fi eld sizes (≤400 μm) indicate a close 
spatial relationship between individual blood vessels 
and Aβ deposits while correlations at larger fi eld 
sizes only (≥1600 μm) probably refl ect the general 
abundance of blood vessels and deposits in a region 
of tissue [4,21,24].

Results

Examples of the spatial patterns exhibited by 
the Aβ deposits in the upper laminae of the fron-
tal cortex are shown in Fig. 1. The diff use deposits 
in the APP717 case exhibited a V/M peak at a fi eld 
size of 3200 μm, suggesting the presence of clusters 
of deposits 3200 μm in diameter regularly distribu-
ted parallel to the pia mater. In the PSEN1 case, the 
V/M ratio increased with fi eld size without reaching 
a peak, suggesting large scale clustering of the clas-
sic deposits (≥6400 μm in diameter). 
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The spatial patterns of the Aβ deposits and blood 
vessel profi les in each of the ten FAD cases are sum-
marized in Table II. The diff use, primitive, and classic 
Aβ deposits occurred in clusters, the diff use deposit 
clusters being regularly distributed along the cortex 
parallel to the pia mater in six cases, and the primitive 
and classic deposits each in fi ve cases. In the rema-
ining cases, the Aβ deposits occurred in larger clusters 
(diameter ≥6400 μm) without evidence of regular 
spacing. The large and small diameter blood vessels 
were also clustered, the larger vessels being regularly 
distributed parallel to the pia mater in eight cases and 
the smaller blood vessels in six cases. There were no 
signifi cant diff erences in the mean cluster sizes of the 
Aβ deposits in cases expressing diff erent apo E geno-
types (F = 2.87, p>0.05).

Correlations between the diff use Aβ deposits and 
blood vessel profi les for a single case (Case A, APP717) 
are shown in Fig. 2. The diff use deposits were positi-
vely correlated with the larger diameter blood vessels 
at fi eld sizes 200-800 μm inclusive but there were no 
signifi cant correlations with the smaller blood vessels 
at any fi eld size. Spatial correlations between the den-
sities of the Aβ deposits and blood vessels in the data 
as a whole are shown in Table III. There was a positive 
spatial correlation between the clusters of the diff use 

Table II. Mean cluster sizes (μm) of the diff use, 
primitive, and classic β-amyloid (Aβ) deposits and 
the larger diameter (>10 μm) and smaller diame-
ter (<10 μm) blood vessels in ten cases of familial 
Alzheimer’s disease (FAD)

Case Diff use
Primi-
tive

Classic >10 μm <10 μm

A 3200 3200 ≥6400 ≥6400 3200

B 3200 ≥6400 3200 400 ≥6400

C 400 ≥6400 ≥6400 ≥6400 200

D ≥6400 3200 ≥6400 200 400

E 3200 1600 – 800 6400

F 1600 ≥6400 ≥6400 200 400

G ≥6400 ≥6400 1600 200 ≥6400

H ≥6400 3200 3200 800 ≥6400

I ≥6400 6400 1600 400 ≥6400

J 6400 ≥6400 6400 200 3200

Data preceded by ≥ indicate large scale clustering of Aβ deposits or blood 
vessel profi les of at least 6400 μm. Data not preceded by ≥ indicate clusters 
that are regularly distributed parallel to the pia mater. (-) density of classic 
deposits was too low to determine spatial pattern. Comparison of cluster 
sizes: Analysis of variance (ANOVA): Aβ deposits: Genetic group, F = 1.88 
(p>0.05), Blood vessel type F = 0.48 (p>0.05), Interaction F = 0.53 (p>0.05); 
Blood vessels: Genetic group, F = 1.10 (p>0.05), Blood vessel type F = 2.79 
(p>0.05), Interaction F = 2.14 (p>0.05).

Fig. 1. The spatial distribution of the diff use-ty-
pe β-amyloid deposits along the upper laminae 
of the frontal cortex of a patient (Case A) with 
familial Alzheimer’s disease (FAD, APP717) and of 
the classic deposits in a case linked to a PSEN1 
mutation as revealed by spatial pattern analysis 
(** indicates signifi cant V/M peak)
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Aβ deposits and the larger (>10 μm) and smaller dia-
meter (<10 μm) blood vessels in one and three cases 
respectively. The primitive Aβ deposits were spatially 
correlated with larger and smaller blood vessels each 
in four cases and the classic deposits in three and four 
cases respectively. There were no diff erences in the 
frequency of spatial correlation in cases expressing 
diff erent apo E genotypes (χ2 = 3.73, 2DF, p>0.05).

A comparison of the spatial correlations in FAD 
with previously published data for SAD is shown in 
Table IV. The frequency of spatial correlation of the dif-
fuse and primitive deposits with the larger and smal-
ler diameter blood vessels is similar in SAD and FAD. 
By contrast, the classic deposits were highly spatially 

correlated with the larger blood vessels in all 11 cases 
of SAD but more weakly correlated in only three FAD 
cases (χ2=8.61, p<0.01), the majority of FAD cases sho-
wing no signifi cant correlation with blood vessels.

Discussion

Spatial correlations between the Aβ deposits and 
the blood vessels were present in a small number of 
the FAD cases studied. The frequency of signifi cant 
spatial correlations between the diff use and primi-
tive types of deposit and the blood vessel profi les 
in FAD was similar to previously published SAD data 
[9]. The most signifi cant diff erence between FAD and 

Table III. Spatial correlations between the diff use (D), primitive (P), and classic (C) β-amyloid (Aβ) depo-
sits and the larger diameter (>10 μm) and smaller diameter (<10 μm) blood vessels in 10 cases of familial 
Alzheimer’s disease (FAD)

Case
Large blood vessels (>10 μm) Small blood vessels (<10 μm)

D P C D P C

A 1*,2*,4* NS 2*,4*,8* NS NS 2*,4**,8*

B NS 2*,4* NS NS 1***,2**,4** 1**,2**,4*

C NS 1*,4* NS NS NS NS

D NS NS NS NS NS NS

E NS NS 1*,2* 1*,2* NS NS

F NS NS NS 2* 1*,2* 2*,4*

G NS 1*,2* NS NS NS 16*

H NS NS NS 1** 1*,2*,4* NS

I NS NS 1* NS NS NS

J NS 1*,2* NS NS 4*,8** NS

Data show the fi eld size (1 – 200 μm, 2 – 400 μm, 4 – 800 μm, 8 – 1600 μm) at which a signifi cant spatial correlation occurred (*p<0.05, **p<0.01), NS – no 
signifi cant correlations at any fi eld size.

Table IV. Comparison of the frequency of signifi cant spatial correlations between Aβ deposits and the large 
(>10 μm) and small (<10 μm) blood vessels (BV) in familial Alzheimer’s disease (FAD) and previously publi-
shed data for sporadic Alzheimer’s disease (SAD) (P – probability level)

Aβ type P
FAD SAD

>10 μm BV <10 μm BV >10 μm BV <10 μm BV

Diff use
<0.05 1 3 1 4

<0.01 0 0 0 0

Primitive
<0.05 4 3 2 1

<0.01 0 1 0 0

Classic
<0.05 3 3 0 0

<0.01 0 1 11 4

Comparison of proportion of cases in FAD and SAD in which classic deposits show a signifi cant spatial correlation with larger diameter (>10 μm) blood vessels 
(χ2 = 8.61, p<0.01).
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SAD involved the correlation of the classic deposits 
and the larger diameter vessels. In FAD, three cases 
showed a signifi cant spatial correlation at a relative-
ly low level of probability (p<0.05) while in SAD, all 11 
cases studied showed a highly signifi cant spatial cor-
relation (p<0.01 or p<0.001) with the larger diameter 
blood vessels [5]. There were no signifi cant diff eren-
ces in the mean densities of the classic deposits in 
FAD and the previously reported SAD cases (t=1.27, 
p>0.05) [5]. The mean cluster size of the classic Aβ 
deposits, however, was signifi cantly greater in FAD 
(t=3.56, p<0.01). Hence, clusters of classic deposits in 
FAD are larger but less dense than in SAD.

A number of hypotheses could explain the diff e-
rence in spatial correlation between the classic Aβ 
deposits and larger diameter blood vessels in FAD 
and SAD. First, spatial correlations might refl ect dif-
ferences in the pattern of the vasculature in SAD and 
FAD. However, neither the mean cluster size (t=1.57, 
p>0.05) nor the spatial pattern of the blood vessels 
diff ered in the FAD and SAD cases [5]. Hence, if amy-
loid deposition limits or reduces capillary density le-
ading to the observation of less amyloid deposition 
in relation to capillaries but more in relation to the 
larger vessels [5], then this eff ect is similar in the FAD 
and SAD cases.

Second, variations in the pattern of spatial cor-
relation could result from diff erences in patient age. 
Haem-rich deposits (HRD) <200 μm in diameter as-
sociated with blood vessels and with Aβ deposits, 
for example, are more common in individuals older 
than 50 years [16]. In addition, Aβ deposition around 
the larger blood vessels (CAA) could refl ect impaired 
drainage since extracellular fl uid is drained from the 
brain to the cervical lymph nodes via the perivascular 
channels [35] and there may be more resistance to 
this drainage in older patients. However, there were 
no overall diff erences in mean age between the FAD 
and SAD patients [5] (t=1.48, p>0.05). In addition, in 
FAD, there were no diff erences in the pattern of spa-
tial correlation with blood vessels in those patients 
where age at death was <65 yrs compared with tho-
se >65 yrs (χ2 =0.39, p>0.05).

Third, the severity of CAA may vary between the 
FAD and SAD cases and infl uence the spatial correla-
tion with blood vessels. For example, the density of 
the classic Aβ deposits in proportion to the diff use 
deposits is signifi cantly greater in cases with prono-
unced CAA [8]. In addition, there is an inverse rela-
tionship between parenchymal load of Aβ and de-

gree of CAA [13,36]. Hence, a greater degree of CAA 
in the SAD cases could lower the load of Aβ in the 
brain parenchyma but increase it in the region closer 
to blood vessels, resulting in enhanced formation of 
the classic deposits. However, there were no signifi -
cant diff erences in the degree of CAA in the occipital 
or frontal cortex in the FAD and SAD cases studied.

Fourth, diff erences in spatial correlation could be 
associated with apo E genotype and specifi cally the 
number of E4 alleles expressed by the patient [13]. 
There were no diff erences, however, in apo E geno-
type profi le of the SAD and FAD cases studied and 
in addition, within the FAD group, no diff erence in 
the pattern of spatial correlation in cases expressing 
diff erent apo E genotypes. 

Fifth, in FAD, the pathogenesis of the classic de-
posits may be more closely related to specifi c genetic 
abnormalities than in SAD. AD genotype, for example, 
may have a profound eff ect on the morphology of Aβ 
deposits. High densities of classic deposits associa-
ted with severe CAA are features of specifi c PSEN1 
mutations [18], while a PSEN1 deletion resulted in 
non-congophilic Aβ and ‘cotton-wool’ type plaques 
[31]. In addition, APP692 mutations result in extensi-
ve CAA and numerous classic deposits with especially 
large cores clearly distinct in morphology from those 
of SAD [15,26]. Hence, the most likely explanation is 
that diff erences in spatial correlation with blood ves-
sels refl ect diff erences in pathogenesis of the classic 
Aβ deposits in SAD and FAD, being closely linked to 
the microvasculature in SAD and more directly linked 
to patient genotype in FAD.

In conclusion, the classic Aβ deposits are signifi -
cantly less spatially related to blood vessels in FAD 
than in SAD. This diff erence is unlikely to be attribu-
table to diff erences in the microvasculature, patient 
age, apo E genotype, or degree of CAA. It is possible 
that the classic deposits have a distinctly diff erent 
pathogenesis in FAD than in SAD, being more closely 
linked to patient genotype, and less dependent on 
the microcirculation. Hence, at least two factors de-
termine the spatial correlations of Aβ deposits with 
blood vessels in AD, viz., deposit morphology and AD 
subtype, and may explain the controversy in the li-
terature [11].
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