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A b s t r a c t

Factors associated with survival were studied in 84 neuropathologically documented cases of the pre-senile dementia 
frontotemporal dementia lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43 kDa 
(TDP-43) proteinopathy (FTLD-TDP). Kaplan-Meier survival analysis estimated mean survival as 7.9 years (range: 
1-19 years, SD = 4.64). Familial and sporadic cases exhibited similar survival, including progranulin (GRN) gene 
mutation cases. No significant differences in survival were associated with sex, disease onset, Braak disease stage, or 
disease subtype, but higher survival was associated with lower post-mortem brain weight. Survival was significantly 
reduced in cases with associated motor neuron disease (FTLD-MND) but increased with Alzheimer’s disease (AD) 
or hippocampal sclerosis (HS) co-morbidity. Cox regression analysis suggested that reduced survival was associated 
with increased densities of neuronal cytoplasmic inclusions (NCI) while increased survival was associated with greater 
densities of enlarged neurons (EN) in the frontal and temporal lobes. The data suggest that: (1) survival in FTLD-TDP 
is more prolonged than typical in pre-senile dementia but shorter than some clinical subtypes such as the semantic 
variant of primary progressive aphasia (svPPA), (2) MND co-morbidity predicts poor survival, and (3) NCI may develop 
early and EN later in the disease. The data have implications for both neuropathological characterization and subtyp-
ing of FTLD-TDP.
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Introduction

Studies of the life expectancy of patients with 
dementia are important in calculating prevalence 
rates, while identifying factors that influence sur-
vival is useful both in counseling patients and their 
families and in public health planning [14,60]. How-
ever, there have been relatively few studies of surviv-
al especially in the pre-senile dementias [36] includ-

ing frontotemporal dementia (FTD), the second most 
common form of cortical dementia of early-onset 
after Alzheimer’s disease (AD) [55,59]. Frontotem-
poral dementia is associated with a variety of clin-
ical syndromes including FTD-motor neuron disease 
(FTD-MND), behavioral variant FTD (bvFTD), non- 
fluent variant of primary progressive aphasia (nfPPA), 
and the semantic variant of PPA (svPPA) [12].
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Frontotemporal dementia is a  clinical diagnosis, 
and pathological variants of the disease are termed 
frontotemporal lobar degeneration (FTLD). A specific 
pathological subtype of FTLD, viz., FTLD with trans-
active response (TAR) DNA-binding protein of 43 kDa 
(TDP-43) proteinopathy (FTLD-TDP), previously call-
ed FTLD with ubiquitin-immunoreactive inclusions 
(FTLD-U) [38,64], is characterized by a variable neo-
cortical and allocortical atrophy principally affecting 
the frontal and temporal lobes. In addition, there is 
neuronal loss, microvacuolation of superficial cor-
tical laminae, and a  reactive astrocytosis [10,19]. 
A  variety of TDP-43-immunoreactive inclusions are 
present in these cases including neuronal cytoplas-
mic inclusions (NCI), neuronal intranuclear inclusions 
(NII), dystrophic neurites (DN), and glial inclusions 
(GI) [10]. 

FTLD-TDP exhibits considerable pathological  
heterogeneity which may affect survival [10]. First, 
various genetic defects have been identified, the 
majority being caused by mutation of the progran-
ulin (GRN) gene (FTLD-TDP-GRN) [11,13,23,46,51,61]. 
A less prevalent disorder, FTLD with valosin-contain-
ing protein (VCP) gene mutation [28], also has TDP-43 
immunoreactive inclusions, and familial cases have 
also been shown to be caused by the chromosome 9 
open reading frame 72 (C90RF72) gene [39,52]. Sec-
ond, FTLD is associated with various co-morbidities 
including MND (FTLD-MND), such cases being asso-
ciated with a more localized pattern of frontal lobe 
atrophy [63] and with hippocampal sclerosis (HS) 
[1], in which significant neuronal loss occurs in the 
subiculum and sector CA1 of the hippocampus [35]. 
In addition, cases of later onset exhibit AD neuro-
pathological change (ADNC), viz. senile plaques (SP) 
and neurofibrillary tangles (NFT) [10]. Third, various 
subtypes of FTLD-TDP have been proposed based 
on pathological criteria [20,40,53]. Using the system 
proposed by Cairns et al. [20]: type 1 cases are char-
acterized by long DN in superficial cortical laminae 
with few or no NCI or NII, type 2 by numerous NCI 
in superficial and deep cortical laminae with infre-
quent DN and sparse or no NII, type 3 by pathology 
predominantly affecting the superficial cortical lami-
nae with numerous NCI, DN and varying numbers of 
NII, and type 4 by numerous NII, and infrequent NCI 
and DN especially in neocortical areas [20]. 

Many published studies suggest that survival 
rates in the dementias vary considerably and may 
depend on numerous factors [17]. Hence, survival 

may depend on age at diagnosis, sex, disease sub-
type, and severity of progression [5]. The objective of 
the present study was to investigate the influence of 
genetics, demographic variables, co-morbidity, and 
neuropathology on survival, as measured by dura-
tion of dementia, in a  sample of well-documented 
FTLD-TDP cases [10]. Kaplan-Meier survival analysis 
was used to determine whether survival was influ-
enced by genetics, demographic factors, or co-mor-
bidity, while Cox regression analysis was used to 
determine whether there were correlations between 
survival and predictor variables such as the densi-
ties of TDP-43-reactive inclusions in various brain 
regions [33,48,66].

Material and methods

Cases

Eighty-four cases of FTLD-TDP (see Table I) were 
obtained from dementia centers in the USA and 
Canada: (1) Washington University School of Med-
icine, St. Louis, MO, USA; (2) University of California, 
Davis, CA, USA; (3) University of Pittsburgh, Pitts-
burgh, PA, USA; (4) Vancouver General Hospital, Van-
couver, Canada; (5) Harvard Brain Tissue Resource 
Center, Belmont, MA, Emory University, Atlanta, GA, 
USA; (6) University of Washington, Seattle, WA, USA;  
(7) Columbia University, New York, NY, USA; (8) Uni-
versity of California, Irvine, CA, USA and (9) Uni-
versity of Michigan, Ann Arbor, MI, USA. All cases 
exhibited FTD with neuronal loss, microvacuola-
tion in the superficial cortical laminae, and reactive 
astrocytosis consistent with diagnostic criteria for 
FTLD-TDP [19,39]. A variety of TDP-43-immunoreac-
tive inclusions were present in these cases including 
NCI, NII, DN, and GI. Of the 84 cases, 39 (46%) were 
familial (one or more first degree relatives affected) 
and of these, 16 cases (19%) had GRN mutations 
[11,13,23,46,51,61], one had a  VCP gene mutation 
[28], and one case was associated with C90RF72 
[39,52]. The genetic defects in the remaining familial 
cases have not been identified to date. Nine of the 
cases (11%) had coexisting MND (FTLD-MND) [34,37] 
and seven (8%) were identified as having associat-
ed HS (FTLD-HS). Twelve cases (14%) were identified 
as having ADNC greater than expected from normal 
aging [44]. Braak staging was based on the densi-
ty and distribution of b-amyloid (Ab) deposits and 
NFT [15,16] and cases were also assigned to the four 
pathological subtypes [20].
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Case records

The following data were obtained from case and 
post-mortem records: (1) family history, (2) the pres-
ence of MND, HS, or AD co-morbidity, (3) age at death, 
(4) disease duration, measured from the onset of 
dementia symptoms, determined by clinical assess-
ment, and defined as cognitive dysfunction suffi-
ciently severe to impair activities of daily living, and 
(5) total brain weight.

Histological methods 

After death, consent of the next-of-kin was 
obtained for brain removal, following local Ethical 
Committee procedures and the 1995 Declaration 
of Helsinki (as modified in Edinburgh, 2000). Tissue 
blocks were taken from the frontal lobe at the level 
of the genu of the corpus callosum to study the mid-
dle frontal gyrus (MFG) and temporal lobe at the lev-
el of the lateral geniculate body to study the inferior 
temporal gyrus (ITG), parahippocampal gyrus (PHG), 
CA1/2 sectors of the hippocampus, and dentate 
gyrus (DG). Tissue was fixed in 10% phosphate-buff-
ered formal saline and embedded in paraffin wax. 
Immunohistochemistry (IHC) was performed on 4 to 
10 µm sections with a  rabbit polyclonal antibody 
that recognizes TDP-43 epitopes (dilution 1 : 1000; 
ProteinTech Inc., Chicago, IL). Sections were counter-
stained with hematoxylin. 

Quantitative analysis of 
neuropathology

In the MFG, ITG, and PHG of each case, histo-
logical features were counted along strips of tissue 
(1600 to 3200 µm in length) located parallel to the 
pia mater, using 250 × 50 µm sample fields arranged 
contiguously [3]. The sample fields were located in 
both the upper and lower cortex, the short edge 
of the field being orientated parallel with the pia 

mater and aligned with guidelines marked on the 
slide. Between 32 and 64 fields were used to quan-
tify each region. In the majority of cases, the upper 
and lower fields quantified lesions in lamina II and 
part of lamina III and in laminae V/VI respectively. 
In the hippocampus, the features were counted in 
the cornu ammonis (CA) in a region extending from 
the prosubiculum/CA boundary to the maximum 
point of curvature of the pyramidal layer before it 
extends to join the dentate fascia via CA3 and CA4. 
Hence, the region sampled encompassed approxi-
mately sectors CA1 and CA2, the short dimension of 
the contiguous field being aligned with the alveus. 
Little pathology was observed to extend into CA3/4 
in these cases [10]. To quantify pathology in the den-
tate gyrus [38,41,64], the sample field was aligned 
with the upper edge of the granule cell layer. The NCI 
are rounded, spicular, or skein-like in shape [24,65], 
while the GI morphologically resemble the ‘coiled 
bodies’ reported in various tauopathies such as corti-
cobasal degeneration (CBD), progressive supranucle-
ar palsy (PSP), and argyrophilic grain disease (AGD). 
The NII are lenticular or spindle-shaped [50] and the 
DN characteristically long and contorted [31]. Small 
spherical or asymmetrical nuclei without cytoplasm 
but with the presence of a thicker nuclear membrane 
and more heterogeneous chromatin were identified 
as glial cells [2]. Abnormally enlarged neurons (EN) 
had enlarged perikarya, lacked NCI, had a shrunken 
nucleus displaced to the periphery of the cell, and 
the maximum cell diameter was at least three times 
the nucleus diameter [2,4]. The number of discrete 
vacuoles greater than 5 µm in diameter was also 
recorded in each field [9]. 

Data analysis 

First, the survival data as a whole were tested for 
normality using the Kolmogorov-Smirnov and chi-
square (χ2) goodness of fit tests. The degree of skew 

Table I. Demographic details of the 84 cases of frontotemporal dementia lobar degeneration (FTLD) with 
TDP-43 proteinopathy (FTLD-TDP) used in the study. Data for age at death, survival, and disease onset are 
means with standard deviations (SD) in parentheses 

Patient group N Death
(years)

Onset
(years)

Mean survival
(years)

Sporadic cases 45 (22 M,23 F) 71.02 (1.49) 63.31 (1.43) 7.54 (0.80)

GRN mutation 16 (9 M,7 F) 70.33 (2.55) 61.27 (2.45) 7.61 (0.79)

Other familial cases 23 (11 M,12 F) 68.45 (2.10) 60.82 (2.02) 9.07 (1.01)

N – number of cases, GRN – progranulin, M – male, F – female
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in the data was also tested. Second, the Kaplan- 
Meier ‘product limit estimator’ was used to study the 
overall pattern of survival among the 84 cases and is 
the fraction of cases which survive for a certain pe-
riod after disease onset. In typical applications, the 
cases can also be grouped according to a categori-
cal predictor variable and the effect of the variable 
on survival tested. Where two groups were present,  
e.g., familial/sporadic, male/female, presence/absence  
of co-morbidity, survival was compared using the 
log-rank test which determines whether the hazard 
ratio (HR) is significantly different from unity [5].  
An assumption of this analysis is that the HR is rel-
atively constant across time intervals (‘proportion-
ality assumption’). This assumption was tested by 
two methods: (1) by examining changes in the HR 
over time and (2) by fitting a model that includes, 
in addition to a fixed covariate group, a time-depen-
dent variable. If the time-dependent covariate is not 
significant, then proportionality can be assumed and 
a model with the single fixed covariate is likely to 
be appropriate. Where more than two groups were 
present, survival was compared using the chi-square 
(χ2) test. In addition, a  life table analysis was per-
formed to predict the life expectancy of FTLD-TDP 
patients at each age. Third, Cox regression was used 
to study the relationship between survival and vari-

ous predictor variables. Two such groups of variables 
were tested: (1) demographic variables such as age 
at death, and disease onset, and gross neuropatho-
logical assessments such as brain weight, Braak 
stage and disease subtype and (2) quantitative esti-
mates of density of histological features. In each of 
these analyses, variables were modeled individually 
and were corrected for gender and age. Statistical 
significance in these tests was based on t and the 
Wald statistic [5].

Results

The distribution of the data as a  whole did 
not deviate from normality (KS d = 0.13, p > 0.05;  
χ2 = 9.52, DF = 5, p > 0.05; Skew = 0.45, SE = 0.26).  
Mean disease duration of the 84 FTLD-TDP cases was 
7.9 years (median: 7.0, range: 1-19 years, SD = 4.64).  
The survival function for all cases is shown in Fig-
ure 1, suggesting that 25% of cases died within 
four years, 50% within 6.9 years, and 75% within  
10 years after onset of dementia. In addition, the 
data are summarized as a ‘life table’ (Table II), sug-
gesting that median life expectancy was 7.58 years 
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Fig. 1. Kaplan-Meier survival analysis of all 84 
frontotemporal dementia lobar degeneration 
with transactive response (TAR) DNA-binding 
protein of 43 kDa (TDP-43) proteinopathy (FTLD-
TDP) cases. Survival data are plotted as the pro-
portion of individuals surviving at each time and 
at the upper limit of each yearly time interval.

Fig. 2. Kaplan-Meier survival analysis of the 
data grouped into those FTLD-TDP patients 
with no co-morbidity (None), and those with 
associated Alzheimer’s disease (AD) (HR = 0.51,  
CI = 0.30), hippocampal sclerosis (HS) (HR = 0.35,  
CI = 0.30), or motor neuron disease (MND)  
(HR = 2.23, CI = 0.18) (comparison between 
groups: χ2 = 6.83, p < 0.05). Survival data are 
plotted as the proportion of individuals surviv-
ing at each time and at the upper limit of each 
yearly time interval. 
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immediately after diagnosis, 3.4 years 10 years after, 
and 0.75 years 18 years after diagnosis.

The effect of various categorical predictor vari-
ables on survival is shown in Table III. The data sug-
gest no significant differences in survival between 
familial and sporadic cases (log rank = 0.03, p > 0.05) 
or among cases divided into sporadic, GRN muta-
tion, and remaining familial cases (χ2 = 1.81, DF = 2,  
p > 0.05). In addition, there were no significant dif-
ferences in survival in males and females (log rank 
= 0.68, p > 0.05). However, significant effects of co-  
morbidity on survival were evident (χ2 = 22.70, DF = 3, 
p < 0.001), cases with associated MND exhibiting 
reduced survival compared with those without co- 
pathology (HR = 2.23, CI = 0.18) and those with asso-
ciated AD (HR = 0.51, CI = 0.30) and HS (HR = 0.51,  
CI = 0.35) showing increased survival (χ2 = 6.83, DF = 2,  

Table II. Life table for 84 frontotemporal dementia lobar degeneration with transactive response (TAR) 
DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP) cases 

Interval
(mid-point)

Number
entering

Number
dying

Proportion
dying

Hazard
rate

Median LE 

0.5 84 0 0 0 7.58

1.5 84 8 0.10 0.10 6.67

2.5 76 1 0.01 0.01 6.50

3.5 75 8 0.12 0.11 5.58

4.5 67 5 0.07 0.08 5.21

5.5 62 8 0.13 0.14 4.57

6.5 54 10 0.19 0.20 4.25

7.5 44 3 0.07 0.07 4.50

8.5 41 6 0.15 0.16 3.87

9.5 35 7 0.20 0.22 3.63

10.5 28 4 0.14 0.15 3.40

11.5 24 4 0.17 0.18 2.80

12.5 20 4 0.20 0.22 2.50

13.5 16 5 0.31 0.37 2.33

14.5 11 2 0.18 0.20 2.17

15.5 9 3 0.33 0.40 1.50

16.5 6 3 0.50 0.67 1.00

17.5 3 0 0.17 0.18 1.60

18.5 3 2 0.67 1.00 0.75

19 1 1 0.50 – –

LE – life expectancy

Table III. Comparison of survival among various 
groups of cases of frontotemporal dementia lobar 
degeneration (FTLD) with TDP-43 proteinopathy 
(FTLD-TDP) using the Kaplan-Meier estimator 

Grouping factor Log-rank 
test

χ2 p

Familial/Sporadic cases 0.03 – > 0.05

Familial/GRN/Sporadic – 1.81 > 0.05

Gender 0.68 – > 0.05

Co-morbidity all groups – 22.70 < 0.001

Co-morbidity: None, MND 2.33 – < 0.01

Co-morbidity: None, AD, HS – 6.83 < 0.05

Co-morbidity: AD, HS – 0.80 > 0.05

P – probability, GRN – progranulin, MND – motor neuron disease, AD – Alzhei-
mer’s disease, HS – hippocampal sclerosis
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Table IV. Analysis of the influence of demographic variables, brain weight, Braak stage, and disease subtype 
on survival using Cox regression (b – regression coefficient, SE – standard error, p – probability, **p < 0.01). 
Each variable was modeled individually and adjusted for gender

Variable b SE t Wald
statistic

p

Patient age –0.03 0.01 2.73 7.48 < 0.01

Disease onset 0.01 0.01 1.07 1.14 > 0.05

Brain weight 0.01 0.01 3.07 9.43 < 0.01

Braak Ab stage –0.06 0.19 0.33 0.10 > 0.05

Braak tangle stage –0.06 0.08 0.74 0.55 > 0.05

Disease subtype 0.09 0.11 0.77 0.59 > 0.05

Table V. Analysis of the influence of the densities of neuropathological variables (NCI – neuronal cyto-
plasmic inclusions, GI – glial inclusions, NII – neuronal intranuclear inclusions, DN – dystrophic neurites, 
SN – surviving neurons, EN – abnormally enlarged neurons, Vac – vacuolation) on survival in various brain 
regions (MFG – middle frontal gyrus, ITG – inferior temporal gyrus, PHG – parahippocampal gyrus, HC – 
CA1/2 sectors of hippocampus, DG – dentate gyrus) (b – regression coefficient, SE – standard error, p – prob-
ability). Variables were modeled in groups for each brain region and adjusted for gender. 

Region Histology b SE t Wald p

MFG(U) NCI 0.60 0.79 0.74 0.56 > 0.05

GI 0.68 1.89 0.36 0.13 > 0.05

NII –0.33 0.83 0.59 0.35 > 0.05

DN –0.36 0.36 0.93 0.88 > 0.05

EN –0.16 1.14 0.32 0.10 > 0.05

N –0.01 0.09 1.83 3.34 > 0.05

Vac –0.04 0.02 1.89 3.50 > 0.05

MFG(L) NCI 1.81 1.07 1.67 2.80 > 0.05

GI –3.85 1.75 2.19 4.82 < 0.05

NII 0.42 0.76 0.56 0.31 > 0.05

DN 0.005 0.36 0.01 0.02 > 0.05

EN 0.81 1.42 0.57 0.31 > 0.05

N 0.24 0.10 2.54 6.45 < 0.05

Vac 0.05 0.03 1.91 3.64 > 0.05

ITG(U) NCI 1.46 0.48 3.56 12.69 < 0.001

GI –3.36 1.48 2.26 5.12 < 0.05

NII –0.44 0.82 0.53 0.29 > 0.05

DN –0.80 0.25 2.21 4.88 < 0.05

EN –0.73 2.19 0.33 0.11 > 0.05

N –0.19 0.07 2.86 8.21 < 0.001

Vac –0.03 0.03 1.15 1.33 > 0.05
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ITG(L) NCI 0.52 0.73 0.71 0.51 > 0.05

GI –0.91 1.58 0.57 0.33 > 0.05

NII –0.14 0.72 0.20 0.04 > 0.05

DN –0.64 0.70 0.91 0.84 > 0.05

EN –1.52 1.09 1.40 1.95 > 0.05

N –0.19 0.08 2.39 5.75 < 0.05

Vac 0.03 0.04 0.86 0.75 > 0.05

PHG(U) NCI 0.72 0.63 1.14 1.31 > 0.05

GI 1.85 1.88 0.98 0.97 > 0.05

NII 0.46 0.88 052 0.28 > 0.05

DN –0.15 1.19 0.43 0.18 > 0.05

EN 1.18 1.19 0.99 0.99 > 0.05

N –0.20 0.08 2.47 6.13 < 0.05

Vac –0.10 0.03 3.26 10.67 < 0.001

PHG(L) NCI –1.35 0.89 1.51 2.28 < 0.05

GI 0.57 1.91 0.29 0.09 > 0.05

NII –1.07 0.74 1.45 2.10 > 0.05

DN –0.76 0.49 1.55 2.42 > 0.05

EN –3.17 1.37 2.31 5.37 < 0.05

N 0.09 0.09 0.99 0.98 > 0.05

Vac –0.76 0.03 1.92 3.69 > 0.05 

HC NCI 3.68 1.38 2.67 7.11 < 0.05

GI –0.90 1.97 0.45 0.21 > 0.05

NII –0.27 0.60 0.44 0.20 > 0.05

DN –0.05 0.70 0.06 0.01 > 0.05

EN –1.83 1.04 1.77 3.11 > 0.05

N –0.06 0.11 0.55 0.31 > 0.05

Vac –0.09 0.03 0.69 0.03 > 0.05

DG NCI 0.09 0.33 0.29 0.08 > 0.05

NII –1.06 1.62 0.65 0.43 > 0.05

DN –2.53 4.32 0.59 0.34 > 0.05

EN –2.95 15.94 0.18 0.03 > 0.05

N –0.12 0.05 2.31 5.32 < 0.05

Vac –0.07 0.05 0.59 1.67 > 0.05

Table V. Cont.

Region Histology b SE t Wald p
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p < 0.05). The HR for MND and HS were relatively 
constant across time intervals and the time-depen-
dent covariates non-significant, suggesting that the 
proportionality assumption was valid. However, HR 
for AD varied between time intervals, and the time- 
dependent covariate was significant (t = 2.23, p < 
0.05), thus violating the assumption of proportionality.

The results of the Cox regression analysis, cor-
rected for gender, which included the demographic 
variables, brain weight, Braak staging, and patho-
logical disease subtype, are shown in Table IV.  
The data suggest: (1) a relationship between patient 
age and survival (t = 8.81, p < 0.01), better survival 
being associated with a  later age at death, (2) no 
significant association between survival and disease 
onset (t = 0.79, p > 0.05), (3) a significant relation-
ship with brain weight (t = 3.07, p < 0.01), lower brain 
weight being associated with increased survival, and 
(3) no significant association between survival and 
Braak stages (Ab: t = 0.33, p > 0.05; NFT: t = 0.75,  
p > 0.05), or disease subtype (t = 0.82, p > 0.05).

The results of the Cox regression analysis, cor-
rected for gender, applied to the quantitative neuro-
pathological variables measured in each brain region, 
are shown in Table V. Some histological features 
were associated with increased survival, including 
GI in the MFG (t = 2.19, p < 0.05), DN in the ITG  
(t = 2.21, p < 0.05), EN in the PHG (t = 2.31, p < 0.05), 
neurons in the MFG (t = 2.54, p < 0.05) and ITG  
(t = 2.86, p < 0.001), and vacuoles in the PHG (t = 3.26,  
p < 0.001). By contrast, density of NCI was associat-
ed with poorer survival in the ITG (t = 3.56, p < 0.001) 
and HC (t = 2.67, p < 0.05). A similar pattern of rela-
tionships was seen when the analysis was corrected 
for patient age. Only correlations between NCI in the 
ITG and EN in the PHG remained significant in these 
analyses after Bonferroni correction.

Discussion

Mean survival of the 84 FTLD-TDP cases was 7.9 
years, similar to the 7.1 years recorded in a recent 
study of 102 AD cases [5], but longer than the 5.2 
years and 6.5 years in AD estimated by Doody et al. 
[26] and Feldman et al. [27] respectively. Mean sur-
vival was also greater than the 6.08 years reported 
for a  large sample of pre-senile dementia cases in 
the north of England, UK, but which comprised large-
ly AD and vascular dementia (VD) [36]. Survival was 
increased compared with that reported for a specif-

ic group of AD cases, which had vascular disease 
co-morbidity, in which mean survival was less than 
five years [27]. This difference probably reflects the 
relative ages of the cases, vascular disease co-mor-
bidity being less of a factor in pre-senile dementia. 
Median survival of the group (7 years), however, 
was similar to that of 61 pathologically confirmed 
FTLD patients [32]. Survival was reduced compared 
with a  specific clinical subtype of FTLD, viz. svPPA, 
in which 50% of patients survived more than 12.8 
years [33]. 

Two distinct subtypes of dementia progression 
have been identified, especially in AD [47,54,58], 
cases having either a very short (median survival 10 
months) or a significantly longer survival and which 
may reflect education level [18,21]. Short survival 
cases were also evident in the present sample of 
FTLD-TDP, nine cases surviving for two years or less. 
A  multiple discriminant analysis (MDA) [6] which 
compared these cases with the remaining FTLD-TDP 
cases suggested that reduced survival was not asso-
ciated with different ages at death, disease onset, 
brain weight at post-mortem, difference in quantita-
tive neuropathology, or co-morbidity. 

No significant difference in survival was observed 
between males and females with FTLD-TDP, contrast-
ing with some studies which show poorer survival 
in males with dementia [21,26,29]. In addition, the 
data suggested that survival was similar in familial 
and sporadic FTLD-TDP. This result contrasts with AD 
in which familial cases in general and cases specifi-
cally linked to presenilin 1 (PSEN1) mutation exhibit-
ed increased survival [5]. 

The data suggest that the presence of co-mor-
bidity had a significant effect on survival, associat-
ed MND significantly shortening the lifespan. This 
result is similar to that previously reported for FTD-
MND, which exhibited substantially reduced survival 
(median survival 3 years) [33]. Similarly in AD, the 
presence of at least one co-morbidity decreased sur-
vival [5,67] and the presence of combined co-mor-
bidity and functional disability was an important 
predictor of lower survival [66]. In FTLD-TDP, howev-
er, the presence of associated AD or HS increased 
survival, suggesting possible synergistic interactions 
between competing pathologies. Consistent with 
this suggestion, Hodges et al. [32] found that the 
presence of tau pathology in FTLD improved progno-
sis (median survival 9.07). However, caution is nec-
essary in interpreting these results as, first, HR for 
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AD varied between time intervals and the time-de-
pendent covariate was significant (t = 2.23, p < 0.05), 
thus violating the assumption of proportionality, 
and, second, numbers of patients were small. Bowen 
et al. [14] also found a strong association between 
decreased survival in AD and cardiovascular disease 
(CVD), regarded as a significant determinant of pro-
gression to dementia. No effect of CVD or hyper-
tension on survival, however, has been observed 
in other studies of AD [62] or in Down’s syndrome 
(DS) patients [22], who frequently develop AD-type 
pathology [42,43,45]. Accurate quantitative data on 
CVD load, e.g., lacunar infarcts, micro-infarcts, and 
atherosclerosis of large vessels, were not available 
for many of the FTLD-TDP cases studied, but avail-
able data from some cases suggested that CVD load 
was significantly lower than in AD [5].

Whether brain weight significantly changes over 
the course of dementia has been controversial [5]. 
There are limitations in studying this complex vari-
able post-mortem as many factors can influence 
brain weight, including body height and weight and 
the presence of systemic disease such as osteopo-
rosis [5]. In the present study, lower brain weights 
were associated with better survival consistent with 
a gradual loss of brain volume in FTLD-TDP with dis-
ease progression. By contrast, in one study of AD, 
poorer survival was associated with lower gray mat-
ter volume, and smaller volume reductions in brain 
predicted better survival [56]. 

Cox regression analysis incorporating Bonferroni 
correction suggested that the density of NCI was 
positively associated with decreased survival in the 
ITG, suggesting either that abundant NCI could short-
en survival times or that NCI could be characteristic 
of the early stages of the disease, being lost as the 
disease progresses. By contrast, the density of EN in 
the PHG was negatively associated with decreased 
survival, suggesting either that EN developed later 
in the disease or they could represent the earliest 
affected regions exposed to accumulating patholo-
gy over time. Studies suggest that pathological pro-
teins in various neurodegenerative disorders may 
spread through the brain via anatomical connections 
[7,30,57]. In AD, for example, this spread frequently 
occurs from an origin in the medial temporal lobe to 
the cortical association areas and hippocampus, and 
then to the primary sensory areas [8,25,49]. Patho-
genic TDP-43 may also exhibit this property, and 
therefore changes in density with duration in specif-

ic areas could reflect this spread. That the density of 
a ‘signature’ pathological change, viz., NCI, may vary 
with degree of survival has implications for both the 
neuropathological characterization and subtyping of 
FTLD-TDP, which rely on the relative density and dis-
tribution of TDP-43-reactive inclusions [20]. 

In conclusion, factors associated with surviv-
al were studied in 84 cases of pre-senile dementia 
frontotemporal dementia lobar degeneration (FTLD) 
with transactive response (TAR) DNA-binding pro-
tein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP). 
The data suggested that survival in FTLD-TDP was 
greater than typical for the pre-senile dementias but 
shorter than some clinical subtypes such as SD. In 
addition, MND co-morbidity is a predictor of shorter 
survival times. There are also changes in the densi-
ty of some neuropathological changes with survival, 
and hence the data may have implications for both 
diagnosis and subtyping of FTLD-TDP.
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