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A b s t r a c t

Synaptic vesicle (SV) will be transported to the bouton along the axon, once it is formed in a cell body. After docking 
in the active zone, neurotransmitters will be released upon the stimulation, and then transmission of chemical sig-
nals will be initiated. Presently, many advanced technologies and burgeoning molecular sensors are being used to 
explore the synaptic transmission. These studies provide a new sight into the presynaptic structure and its function. 
The present review summarizes the application of fluorescent proteins (FPs) for SV tracking and recycling. Some FPs 
and relevant imaging technologies such as fluorescence resonance energy transfer (FRET), fluorescence recovery 
after photobleaching (FRAP) and fluorescence lifetime imaging microscopy (FLIM), are introduced here. In addition, 
some examples are also analyzed to visualize the dynamics of SVs in living cells with the help of some FPs.
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Introduction

Synaptic vesicles (SVs) play essential roles in 
information transferring such as visual sense, audi-
tory sense and even emotions. The small spherical 
SV fuses with presynaptic membrane and releases 
its contents of the neurotransmitter (exocytosis). 
Subsequently, the neurotransmitters diffuse across 
the cleft between pre- and postsynaptic membranes, 
leading to the activation or inhibition of the post-
synaptic neuron. Consequently, an intact information 
transfer is accomplished during this period. At the 
same time, the components of SVs are recovered to 
the presynaptic membrane for next transfer prepara-
tion (endocytosis).

Researchers began their studies on SVs by elec-
trophysiological ways because some electrophysio-

logical parameters such as current across the 
membrane would be changed during exocytosis 
or endocytosis [97]. Therefore, ion fluxes through 
neurotransmitter-gated channels can be measured 
electrically via recording the whole cell from soma or 
dendrites of postsynaptic neurons [7,20]. Similarly, 
SV recycling [98], neurotransmitters secretion [40], 
and membrane fusion [65], have also been detect-
ed via electric current, capacitance and some oth-
er electrophysiological parameters. However, these 
methods usually face some difficulties in reporting 
the SVs release from an individual release site or 
synapse, and they cannot show the complete spatial 
information about the origin and destination [42].

As the fluorescent technology develops, biolo-
gical experts can employ the fluorescent probes to 

mailto:lbo@dlut.edu.cn


22 Folia Neuropathologica 2018; 56/1

Wang Li, Chunyang Geng, Bo Liu

report the neurotransmitters release at the level of 
individual synapse, and collect more information 
about vesicle tracking and fusion [49]. One of these 
probes adopted fluid phase markers such as fluores-
cent dyes to visualize membrane recycling through 
two basic formats (i.e., dye uptake and dye release) 
[3,41]. Dye-based methods mainly focus on lipid 
cycling in an active-dependent manner. Thanks to 
rapid uptake and release of the dye, the same vesi-
cle was found to be reused several times during rou-
tine neurotransmission with the help of FM1-43 [4]. 
These fluorescent dyes have high molar absorptivity, 
strong fluorescence and great photostability [23]. 
Interestingly, they also become brighter distinctly 
once their tail domains partition into the membrane 
[37]. For example, FM1-43 increases fluorescence 
100 times brighter in the membrane than in the 
aqueous solution [51]. Such changes in fluorescence 
intensity provide possibility for analyzing SVs fusion 
and internalization. Although it is easy to mark SVs 
with dyes [26], these measurements are still limited 
by the non-specificity of dyes since they stain the 
membrane randomly [86]. Furthermore, SVs release 
neurotransmitters in a millisecond time scale, which 
makes it tough for fluorescent dyes to be detect-
ed as their fluorescence changes in seconds [42].  
The worst thing is the toxicity of dyes. For example, 
FM1-43 behaves as a permeant blocker of mechano-
sensitive channels in sensory neurons [21,27].

Contrarily, some other probes take advantage of 
genetic expression of SV protein tagged with fluores-
cent proteins (FPs) to measure the kinetics of vesi-
cles intuitively [52]. These probes focus on proteins 
cycling without any perturbation to the original func-
tion mostly, since they are constructed on DNA by 
subcloning and expressed by cells themselves after 
transfection. Therefore, SV-related proteins could be 
labeled specifically and detected in real time with the 
help of FPs. The kinetics of SVs with an emphasis on 
the application of fluorescent proteins to SVs is intro-
duced below.

Fluorescent proteins and relevant imaging 
technologies

FPs technology has been confirmed to be a very 
useful tool for imaging living cells since its vast appli-
cation in the research field in recent years. The first 
FP found in jellyfish Aequorea victoria is green fluo-
rescence protein (GFP) with two different chromo-

phores [12,74]. A mass of FPs have been developed 
later, including short wavelength FPs derived from 
ECFP and long wavelength FPs derived from DsRed 
[92]. They supply various colored tools on a molecu-
lar level for the visualization of single or multiple tar-
get molecules in living cells [85]. These FPs can also 
be used to track the movement of vesicle-associated 
proteins in real time. For example, it is easy to view 
the distribution of synapsin Ia during stimulation 
by using EGFP-synapsin Ia fusion protein generated 
through subcloning synapsin Ia into pEGFP-C1 vec-
tor [18]. Some variants of FPs are found sensitive to 
regional changes like pH, ionic concentration or oxi-
dability [92]. For example, pHluorin is a widely used 
pH-dependent variant of GFP whose fluorescence is 
quenched at acidic pH while recovered after being 
exposed to near-neutral pH in the solution [2]. As 
the pH of SV lumen changes from acidic to near-neu-
tral during exocytosis and re-acidic after endocyto-
sis, the changes in fluorescence intensity caused by 
varying pH can reflect SVs’ recycling and can be used 
for quantitative assessment [50,93]. Moreover, a set 
of similar FPs have been attained via different direct-
ed point mutations [10,61,89]. Such properties have 
provided us with efficient tools for detecting ionic 
fluxes or pH changes in vivo.

With the development of diversified FPs, advanced 
imaging technologies based on FPs have been put for-
ward, including fluorescence resonance energy trans-
fer (FRET), fluorescence recovery after photobleaching 
(FRAP) and fluorescence lifetime imaging microscopy 
(FLIM). FRET is a quantum mechanical phenomenon 
where a donor FP transfers energy to an acceptor FP 
within a close distance if donor’s emission spectrum 
overlaps the excitation spectrum of the acceptor [53]. 
FRET efficiency, which is calculated by the acceptor/
donor emission ratio, has a  pally relationship with 
the distance and relative angles between the donor 
and the acceptor. Thus, the conformational changes 
of a  target molecule, which has been inserted into 
FRET pair proteins, result in a FRET signal which can 
be utilized to explore the interaction between two 
presynaptic proteins [16]. For instance, with EGFP and 
tdTomato fusing to presynaptic protein dNSF1 and 
synaptosomal-associated protein of 25kDa (SNAP-25) 
respectively, FRET efficiency increased once the two 
target proteins interacted with each other and short-
ened their distances [99]. FRAP is a process where the 
fluorescence signals are selectively photobleached 
and recovered in the same region over a  period of 
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time. Usually, this technology is usually used to ana-
lyze the mobility of fluorescent molecules [9]. For 
example, the mobility of dNSF1 tagged with EGFP 
could be estimated through the speed of fluorescence 
recovery after photobleaching [99]. FLIM is a  tech-
nique for visualizing the lifetime of the excitation state 
of the spatially distributed fluorescence molecules 
[91]. This technology can be applied to determine the 
interaction between the donor and the acceptor along 
with FRET because the fluorescence lifetime of donor 
changes during the occurrence of FRET [90,92].

Vesicle associated protein: fluorescent tags

SVs are released at the presynaptic active zone 
mainly in three steps: docking, priming and release 
[79]. The precursor vesicle is formed in the neural cell 
body and internalizes SV proteins which are synthe-
sized in endoplasmic reticulum (ER) or Golgi appara-
tus. Then the vesicle is transported to the synapse 
along the axon with a directed motion. After being 
placed SV proteins in the right position and embel-
lished with cofactors or other necessary proteins, 
basically the first SV comes into being [70]. Cur-

rently, the SV has no function until it is acidized by 
a proton pump called vATPase and filled with neu-
rotransmitters [22,73]. Then SV is driven to the active 
zone with an unclear docking mechanism. One mode 
holds a  view that soluble N-ethylmaleimide-sensi-
tive factor attachment protein receptors (SNAREs) 
[19], which are the core of the docking-fusion com-
plex comprised of syntaxin [96], synaptobrevin (also 
called vesicle-associated membrane protein, VAMP) 
[82], and SNAP-25 [28], tether vesicles to the presyn-
aptic plasma membrane via interactions of proteins 
(Fig. 1) [58,69,75]. In addition, Rab3-interacting mol-
ecule (RIM) helps the vesicle to connect with Ca2+ 
channel protein [39]. Complexin [59], which stabilizes 
SNAREs complex and RIM, promotes the process of 
dock and prepares the vesicle for release [80]. Under 
proper conditions like the sharp entry of calcium, SVs 
fusion and release may take place with the help of 
synaptotagmin [15,81].

Many other proteins have also taken part in the 
exocytosis, for example, RIM-binding protein (RIM-BP) 
[54], mammalian homologue of Caenorhabditis ele-
gans unc-13-1 (Munc13-1) [36], liprin [6] and so on. 
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Fig. 1. SVs are transported from soma to synapse [19,22,70,73]. SVs are first formed in neural cell body 
(termed precursor vesicle), and modified with SV proteins in ER and Golgi. Then they are transported along 
with microtubule toward presynaptic terminal. Within synapse, SVs are formed basically after sorting of SV 
components and being embellished with necessary proteins like cofactors and coats. After that, SVs are 
acidized and filled with neurotransmitters before being tethered to active zone for release, with the help of 
SNAREs, and maybe some other proteins like RIM and Munc13-1.
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These proteins play important roles in regulating 
SVs’ cluster, transport and recycle. In this section, 
some FPs-dependent sensors and FPs-associated 
technologies will be introduced along with some 
main presynaptic proteins in order to give an intu-
itionistic description of the kinetics of SVs.

Synaptobrevin/VAMP

VAMP is identified as an important regulator of 
vesicular transport with seven kinds of isoforms, 
VAMP-1/2/3/4/5/7/8, which are expressed differently  
in the central nervous system [84]. Previous stud-
ies have reported that VAMP was involved in rapid 
and slow endocytosis together with SNAP-25 and 
syntaxin [96]. Additionally, it may migrate with SVs 
synchronously during SVs’ activity because of its 
location on the SV membrane [38]. Thanks to this 
property, VAMP is usually used to explore the mobil-

ity of SVs. For example, synaptobrevin 2 tagged  
with EGFP (syb2-EGFP) was applied to measure the 
speed of moving SVs cluster by taking images of 
syb2-EGFP labeled material moving in intersynap-
tic areas [77]. Furthermore, by using DsRed2-syn-
aptobrevin2, the formation of presynaptic vesicle 
clusters could be seen during synapse maturation, 
and its regulation by N-cadherin could be visualized 
with EGFP-VAMP2 through the technology of FRAP 
[78]. Recently, VAMP-pHluorin (also named as synap-
tobrevin-pHluorin, spH) was also used to study the 
mobility of recycling SVs in living hippocampal nerve 
terminal combined with Atto647N-conjugated nano-
bodies [19]. Some researchers even took advantage of 
VAMP-pHluorin to test the effects of different genes 
on SV cycling [30]. VAMP-pHluorin is a common fluo-
rescent probe to monitor the exo- and/or endocyto-
sis [13]. Its pH-sensitive pHluorin lies in the SV lumen 
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Fig. 2. Balance between exocytosis and endocytosis revealed by VAMP-pHluorin [2,24]. VAMP-pHluorin 
was used to monitor the accumulation of SVs on the presynaptic membrane and its fluorescence increased 
about 20 times when exocytosis happened. According to the changes in fluorescence intensity induced by 
different frequencies of stimulation at physiological temperature, it was concluded that the releasable SV 
pool was not depleted significantly under stimulation up to 10 Hz. This result indicated that the other two 
pools supplemented releasable pool with SVs to maintain the balance between exocytosis and endocytosis.
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which has an acidic environment, so it has no fluo-
rescence until it is exposed to the near-neutral pH 
environment after vesicles fuse to membrane. There-
fore, a  change in fluorescence intensity can assess 
the synaptic transmission. Surprisingly, fluorescence 
intensity changed inhomogenously throughout an 
individual presynaptic terminal no matter which fre-
quency of stimulation was applied. Further experi-
ment revealed that changes in fluorescence intensity 
had a  significant linear correlation with the abun-
dance of local SVs [94]. According to the three-pool 
model, local vesicles come from readily releasable 
pool (RRP), recycling pool and reserve pool. RRP has 
the highest probability for releasing vesicles at each 
bouton while the other two pools act as replenish-
ments [2]. With the help of spH, it has been found 
that the releasable SV pool was not depleted signifi-
cantly under action potential (AP) stimulation (less 
than 10 Hz) at physiological temperature, indicating 
a balance between the exocytosis and endocytosis 
(Fig. 2) [24]. It was reported that VAMP also played 
its role in SVs fusion. Xia et al. developed a  FRET-
based biosensor comprised of YFP-synaptobrevin 
and CFP-SNAP-25. They found that the FRET efficien-
cy increased with given stimulation, suggesting the 
assembly of SNAREs by synaptobrevin and SNAP-25 
[95]. This assembly might help SVs get closer to the 
presynaptic membrane and be ready for release.

Synaptophysin

Synaptophysin is the most abundant intrinsic 
membrane glycoprotein of SVs with four transmem-
brane domains and two loops on the lumen side 
[5,87]. It has a Ca2+-binding site on the cytoplasmic 
side and may be involved in the Ca2+-trigger mecha-
nism that initiates the opening of a fusion pore [17]. 
Currently, synaptophysin is an important marker of SV 
which provides reliable data for the synaptic structure 
[43]. Moreover, it can be used to track the movement 
or recycling of SVs either through FRAP with synap-
tophysin I-EGFP or by fusing with FPs alone (Fig. 3) 
[29,63,102]. Amazingly, it was found that two distinct 
vesicles were endocytosed while only one vesicle 
fused with the presynaptic membrane when imaging 
the synaptophysin-pHluorin (SypHluorin) in an indi-
vidual vesicle under low-frequency stimulation [101]. 
This phenomenon seemed to disrupt the balance 
between exocytosis and endocytosis, shown by the 
application of spH to the vesicle pool [24]. In general 

perception, there are two pathways of SV recovery: 
one fast pathway in which the vesicles remain or are 
recycled around the active zone, and the other slow 
one, a  clathrin-involved pathway [32,71]. By using 
SypHluorin, it was found that the slower endocytosis 
was accelerated and became the predominant path-
way with increased stimulation frequency [101]. As 
a result, a new match was rebuilt between endocyto-
sed vesicles and exocytosed vesicles.

Besides, SypHluorin was also used to measure 
the release possibility of SVs which was an import-
ant component of synaptic strength [57]. Other func-
tional properties like evoked release and total vesicle 
pool size, were also studied upon SypHluorin appli-
cations [67]. Recently, SypHluorin has been widely 
used to test drugs and explore proteins function 
within synapses [31]. It was found that N-cadherin 
and Neuroligin 1 could significantly promote exocy-
tosis [88], and presenilin 1 could facilitate exocytosis 
directly by interacting with synaptotagmin 1 [102].  
In addition, synaptophysin marked with EYFP and 

Synapse

SV EGFP – synaptophysin

Fig. 3. Tracked SVs with EGFP-synaptophysin via 
the technology of FRAP [29,63,102]. The fluo-
rescence of selected region of interest (ROI, the 
red arrow) decreased drastically during pho-
tobleaching experiments, and recovered over 
a period of time after bleaching because sur-
rounding SVs marked with EGFP-synaptophysin 
migrated to ROI again. By recording the recov-
ery time, the speed of SVs’ movement could be 
measured easily. Besides, this biosensor could 
be used to explore the influences of proteins 
or protein interactions on the tracking of SVs 
through disturbing the expression of relevant 
proteins.
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ECFP-VAMP2 were designed for a FRET-based biosen-
sor, which could detect the interaction between syn-
aptophysin and VAMP2 during exocytosis by analyz-
ing the changes in FRET signals [68]. Moreover, with 
the development of calcium indicator GCaMP [60], 
more methods of combining two FPs with non-over-
lapping color spectra, such as SyGCaMP2 and SypHlu-
orin, have been used to monitor simultaneously the 
spatial and temporal relationships of calcium influx 
and the dynamics of SVs [48,100], which makes it 
possible for the detection of signals in parallel.

Vesicular glutamate transporter (VGLUT)

VGLUT has three isoforms named VGLUT1/2/3 
which are distributed in different places [34,77]. It 
participates in the probability of SVs release and syn-
aptic plasticity because it acts as a carrier that loads 
the neurotransmitter into SVs [72]. The relationship 
between changes in calcium ion concentration and 
vesicle recycling has been analyzed by means of 
VGLUT1-mOrange2 and SyGCaMP3 [47]. It has also 
been discovered that Ca2+ increases the SV fusion 
probability but decreases the rate of SV retrieval with 
VGLUT-pHluorin by contrast [45]. Focusing on the sin-
gle SV, Balaji and Ryan gave more details about the 
retrieval time. They found that the recovery occurred 
over a wide range of time with an average constant 
of 14 seconds, suggesting a  stochastic process of 
retrieval [8]. In addition, by utilizing VGLUT-pHluorin, 
the increase in fluorescence was viewed after using 
tetrodotoxin [46], a voltage-gated Na+ channel blocker. 
It was concluded that SVs should be released spon-
taneously except for responding to the action poten-
tial. Besides, the fluorescence delay was very short 
(less than 370 ms), indicating that SVs were recycled 
at an extremely fast speed [46]. It was supposed that 
vesicles were endocytosed into the recycling pool in 
a faster way that SNARE-binding protein Tomosyn was 
involved in the regulation of dynamic partitions of SVs 
pool, and knockdown of Tomo1 might lead SVs to total 
recycling pool, including RRP and recycling pool [14].

Other proteins

FPs have also been used to explore the function 
of some other proteins in synaptic vesicle dynam-
ics. Synapsin involves in managing the presynaptic 
reverse pool and plays an important role in synaptic 
short-term plasticity [62]. By using synapsin Ia-EYFP 
or synapsin IIa-EGFP with the application of FRAP, 

the extent of fluorescence recovery was found to be 
less than that in synapsin-triple-knockout neurons. It 
indicated that synapsins could immobilize SVs and 
control the mobility of the resting pool vesicle [63]. By 
employing the same probe, changes in fluorescence 
puncta could be seen clearly in the stimulated neu-
ron. Thus it was concluded that exocytosis and endo-
cytosis were necessary for synapsin to redistribute 
into the axon by analysis of fluorescence images [64]. 
Combined EGFP-synapsin I with FRAP, Huntingtin-as-
sociated protein-1 (HAP1) was found to be a  new 
partner of synapsin I and was involved in regulating 
the axonal transport of synapsin I-containing vesi-
cles [56]. Another presynaptic protein, GABAB recep-
tor, has been reported to regulate neurotransmitter 
release [55]. By labeling two subunits of GABAB recep-
tor with a FRET pair, CFP and YFP, respectively, Laviv 
et al. found that high FRET efficiency was associated 
with low SVs release probability, which suggested an 
important role of GABAB receptor played in mediating 
SVs release [44]. Furthermore, some other proteins 
tagged with FPs have also been used to explore the 
dynamics of SVs. For example, EGFP-DOC2B was used 
to study the prime process [25]. The GFP-vesicular 
monoamine transporter and GFP-vesicular acetylcho-
line transporter were used to view the release of rel-
ative neurotransmitters [76]. Thanks to FRAP, a faster 
process of endocytosis mediated by clathrin could be 
seen with clathrin-EGFP/mCherry application [66].

Conclusions

It is clear that SVs are indispensable for the 
information transfer between neurons, and a  large 
number of proteins participate in the regulation of 
this process. How do SVs travel from soma to neu-
ral terminal and fuse to the presynaptic membrane 
or exchange among different SVs pools? What kinds 
of modes do there usually exist in the cycling of SVs 
recovery? These questions remain unclear while part-
ly being answered with the help of FPs in this review. 
There is no doubt that FPs technology has widened 
the research field of life sciences and advanced our 
understanding of the presynaptic structure and func-
tion since the first GFP was discovered. FPs provide 
a powerful tool for direct observation and quantifica-
tion of cellular processes in living cells [11]. They are 
usually applied to view the distribution of proteins 
[33], track the migration of SVs [83], and study pro-
tein activity during stimulations in presynaptic termi-
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nal [35]. Applications of both target proteins labeled 
with FPs and relative fluorescent technologies allow 
us to follow the fate of an individual vesicle at synaps-
es with high spatial and temporal resolution, varying 
from the formation, cluster, transport, dock, prime and 
release. In addition, FPs also contribute to exploring 
the roles which SVs-associated proteins play in the 
regulation of the movement or recycling of SVs. Such 
fluorescent probes are convenient for us to study the 
dynamics of SVs visually especially on a molecularly 
specific level [1]. However, the fidelity and accuracy 
are limited when the biosensor is applied to visualize 
thick tissues. In addition, the fluorescent decay, which 
will cause deviation, cannot be avoided once utilizing 
pH-sensitive FPs. This shortcoming has to be taken 
into consideration if this kind of FP is employed to 
explore the fast process like exo- or endocytosis. Fur-
thermore, there are still some limitations in detecting 
the multiple molecular signals simultaneously, which 
means more colorful biosensors are needed to be 
developed. Hopefully, with advanced imaging devices 
and novel or improved biosensors, the kinetics of SVs 
can be studied more accurately and deeply.
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