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A b s t r a c t

We compiled the current state of knowledge about the epidermal growth factor receptor (EGFR) in glioblastoma.

Glioblastoma is one of the most common primary brain tumours and has an unfavourable prognosis despite

aggressive treatment. These factors stimulate new research trials and a recent area of interest of neurooncologists

is EGFR. This molecule is frequently altered in glioblastoma and constitutes the potential target for therapy. We

decided to review the literature on biological structure of that molecule, its biological activity and the role in GBL

with potential targeting it in the future neurooncological practice. 
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Introduction

Astrocytic tumours of the central nervous system
(CNS) are the most common neoplasms of the brain.
These tumours form two well-defined groups of
lesions: well circumscribed astrocytomas and
diffusely infiltrating ones. The former are composed
of several entities, such as pilocytic astrocytoma,
subependymal giant cell astrocytoma and
pleomorphic xanthoastrocytoma. The latter are
divided into diffuse astrocytomas, WHO Grade II;
anaplastic astrocytoma, WHO Grade III and
glioblastoma (GBM), WHO Grade IV [1]. Glioblastoma
is one of the most common brain tumours and
accounts for 12-15% intracranial neoplasms [2]. High
frequency of glioblastoma and its grim prognosis
despite aggressive treatment stimulates new research
trials. A recent area of interest is the epidermal growth
factor receptor (EGFR), since its abnormalities are one

of the most common molecular aberrations in
glioblastoma. We decided to compile the current state
of knowledge about that molecule, its biological
activity and the role in GBL with potential targeting it
in the future neurooncological practice. 

Molecular structure of the EGF receptor

The epidermal growth factor receptor (EGFR)
belongs to a family of four closely related receptors
that includes also HER-2/neu (ErbB-2), HER-3 (ErbB-3),
and HER-4 (ErbB-4) [3,4]. They are membrane-bound
receptors that form type I receptor tyrosine kinase
family, and the organization of other receptor kinase
families (type II – insulin receptor; type III – c-kit, 

c-fms) has already been defined. The EGFR has close
homology to the transforming gene of the avian
erythroblastosis virus (v-erbB). This suggested that
the v-erbB gene is the oncogenic version of the EGFR.
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Therefore, ErbB1 is interchangeably used as
a synonym for the EGFR [5]. 

The epidermal growth factor receptor was
originally cloned in 1984 [6]. It has a molecular mass of
170 kDa [7], and consists of 28 exons [8]. The EGFR is
localized to chromosome 7p11-13 [9-11] and its protein
is synthesized from a 1210-residue polypeptide
precursor, as a result of N-terminal sequence cleavage.
The final product of that cleavage is the 1186-residue
protein, which functionally resides within the cell
membrane [12]. This glycoprotein consists of three
portions: extracellular, transmembrane and
intracellular (Fig. 1). The extracellular portion consists
of four domains: I (amino acids 1-165); II (a.k.a. CR1;
amino acids 166-309); III (amino acids 310-481); and IV
(a.k.a. CR2; amino acids 482-621). Domains I and III
have 37% sequence homology, are cysteine-poor and
contain the site for ligand binding. Cysteine-rich
domains II and IV contain N-linked glycosylation sites
and disulfide bonds that determine the tertiary
conformation of the external portion of the molecule
[13,14]. Domains I, II, and III of the EGFR have β-helix
tertiary configuration with structural and sequence
homology to the first three domains of the type
I insulin-like growth factor receptor [15]. An EGFR
ligand binds directly to domain III [16]. The II and IV
domains consist of a number of small modules, each
appearing to be held together by one or two
disulfide bonds. A large loop that protrudes from the
back of the II domain makes a molecular contact
with the respective domain of the other receptor.
Dimer formation between two EGFR molecules takes

place on a ligand binding and results in kinase
activation [16,17]. 

The identification that the transmembrane domain

consists of residues 622-644 was performed by visual
analysis of the EGFR sequence [12]. The nuclear
magnetic resonance analysis of a peptide
corresponding to the EGFR transmembrane domain
and to the beginning of the cytoplasmic domain
indicates that residues 626–647 are α-helical. An
intracellular domain contains an uninterrupted tyrosine
kinase site and multiple autophosphorylation sites
clustered at the C-terminal tail. The carboxy-terminal
domain of the EGFR contains tyrosine residues that
may be phosphorylated and then they modulate
EGFR-mediated signal transduction. There are also
several serine/threonine residues (and another
tyrosine residue) where phosphorylation has been
inferred to be important for the receptor
downregulation processes and sequences thought to
be necessary for endocytosis. The juxtamembrane
region appears to initiate a number of different
cascades of reactions that ultimately result in DNA
replication and cell division [3,17]. The earliest
consequence of kinase activation is
autophosphorylation of its own residues. This is
followed by phosphorylation and activation of signal
transducers, which lead to mitogenesis. 

Signalling pathways of the EGFR

There are several ligands which bind with high
affinity to the EGFR. The first known ligand is the
epidermal growth factor (EGF), which is a small
polypeptide of 53 amino acids derived by proteolytic
processing from a large protein precursor molecule of
1168 amino acids [18]. The second ligand identified
was the transforming growth factor-alpha (TGFα),
which has 50 amino acids and is derived from
a precursor molecule containing 160 amino acids [19].
Other ligands, such as TDGF-1, amphiregulin,
betacellulin, heparin-binding EGF and epiregulin, are
also derived from larger peptide precursors [20]. They
were identified as possible additional ligands of the
EGFR due to structural homologies (reviewed by
Novak et al. [21]). 

Intracellular signal tranduction 
from activated EGFR

The EGFR is important for the maintenance of the
normal cellular function and survival. In neoplastic
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FFiigg..  11..  Schematic representation of domains of the
epidermal growth factor receptor sequence
(according to [17]). The abbreviations used: L and
CR, for the ligand binding and the cysteine-rich
domains, respectively (a.k.a. I (L1), II (CR1), III (L2),
and IV (CR2) or S1 (CR1) and S2 (CR1), where L and
S refer to large and small); JM, juxtamembrane
domain; CT, carboxy-terminal phosphorylation
site; TK, tyrosine kinase domain. The
transmembrane domain (residues 622–644, TM) is
between the CR2 and the juxtamembrane domain

L1 CR1 L2 CR2 JM TK CT

TM

151 312 481 687 955 1 186621

644



Folia Neuropathologica 2005; 43/3 125

EGFR in glioblastoma

FFiigg..  22.. Intracellular signalling pathways of the EGFR. Abbreviations: GRB2 – growth factor receptor-bound
protein-2, mSOS – son of sevenless, PI3K – phosphatidylinositol 3-kinase, PIP2 – phosphatidylinositol-2, PIP3
– phosphatidylinositol-3, S6K – p70 S6 kinase, mTOR – mammalian target of rifampicin, PKC – protein kinase
C, PLCγ – phospolipase Cγ, IP3 – inositol 1,4,5-triphosphate, DAG – 1,3-diacylglycerol, MAPK – mitogen-
activated protein kinase

cells it contributes to their growth and survival
through various divergent pathways. Dimerization
of ligand-bound EGFR results in receptor
autophosporylation. In this process one receptor
molecule phosphorylates the other in the dimer
[22]. The signal is then propagated by the cascade
activation of several intracellular transducers. The
main kinases involved in this process are mitogen-
activated protein kinase (MAPK) and
phosphatidylinositol 3-kinase (PI3K). Indirectly,
they induce cell proliferation, tumour invasion and
angiogenesis by subsequent phosphorylation of
several transducers. These separate steps are
shown in Fig. 2. 

Ligand binding by EGFR results in activation of the
adapter proteins, such as mSOS and GRB2. This
pathway ultimately leads to phosphorylation of ras
protein. Ras, a GTPase, may present in the active (GTP
binding) and inactive (GDP binding) forms.
Inactivation of ras is attained by dephosphorylation of

GTP-binding form by GAP (GTPase activating protein).
The active form of ras transfers the signal down to the
distal kinases like MAP kinase, MEK or RAF. 

The other pathway leads through the activation of
PI3K that transduces the signal from the receptor by
generating the lipid second messenger,
phosphatidylinositol-3,4,5 triphosphate (PIP3). It is
derived from phosphatidylinositol-3,4 biphosphate
(PIP2) by phosphorylation at the 3`-OH position of
the inositol ring [23]. This reaction is opposed by
a dual-specific phosphatase, PTEN, which
dephosphorylates PIP2 and PIP3 [23]. In addition, PI3K
phosphorylates multiple cellular proteins, including
serine/threonine family of kinases, Akt. It consists of
three members – Akt1/PKBα, Akt2/PKBβ and
Akt3/PKBγ which share a high degree of structural
similarity [24,25]. These very important molecules
promoting many pro-tumorigenic responses regulate
the activity of p70 S6 kinase through mTOR. The Akt
targets or substrates play a key role in regulating
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critical cellular functions including proliferation,
apoptosis, glucose homeostasis, cell size, nutrient
response and DNA damage [26]. 

Overexpression and amplification 
of the EGFR in glioblastoma

The EGFR is associated with the growth of
malignant cells. Whereas its expression in the
normal cells is estimated as around 40.000-100.000
receptors per cell [27], in the malignant tumours it
may reach the level of 2 million per cell [28]. 

The EGFR amplification and mRNA overexpression
are frequent in high grade gliomas of astrocytic origin,

and are always strongly associated with an increased
level of the EGFR protein [29,30]. Protein overexpression
without gene amplification has been reported in up to
27% of GBMs [31], but less malignant astrocytomas and
oligodendrogliomas were also reported to
demonstrate the EGFR overexpression without the
underlying gene amplification [32]. The true molecular
background of that phenomenon is unclear at the
moment, but enhanced EGFR transcription by some
transcription factors (ETF, SP1, TP53) or cytokines
(TGFβ1, interferon-γ) have been suggested. 

The EGFR amplification is generally associated
with high protein expression levels, as measured by

FFiigg..  33..  Mutations of the EGFR (reviewed by Kuan et al. [89]) 
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Western analysis [33,34]. Observation of the
frequent amplification of the EGFR in GBM was
initially reported in 1985 by Libermann et al. [35],
and this association has been confirmed in several
subsequent studies. Amplification of the EGFR has
been described in about 30-62% of GBM [30,34-43],
but it was infrequent in anaplastic astrocytomas,
reported to occur in 3% of cases [11,44]. 

Clinically-based separation of secondary GBMs,
which develop as a result of progression from
a pre-existent lower grade astrocytoma, and primary
GBM, developing in a short time without precursor
lesion, was validated by molecular findings. The EGFR
amplification appeared to be prevalent in primary
GBM (~40% of cases) [31,45], but it was not found in
secondary GBM [31]. This difference was obvious also
at the protein level, as immunohistochemical analysis
of primary and secondary GBMs showed the EGFR
overexpression in 60% and 10% of cases, respectively. 

Several studies have found that the EGFR
overexpression in GBM varied with age of the patient.
The EGFR amplification/overexpression was
significantly more frequent in GBM in patients older
than 55 years of age [46-50] and this reflects also the
age prevalence of primary glioblastomas. 

Few investigators examined the EGFR
overexpression in pediatric GBMs. The results were
similar to those obtained in studies on young adult
patients with GBM. None of 18 pediatric GBMs had
the EGFR amplification in a study by Kraus et al. [51].
In another study, it was found in only 2 of 13 (17%)
cases of pediatric primary GBMs [47]. 

Genomic variants of the EGFR

In early studies on the EGFR amplification several
groups identified simultaneous structural
abnormalities of the amplified receptor [35,52,53].
Several genomic variants of the EGFR have been
detected, each of them showing identical splicing sites
within each group (see Fig. 3). These mutants arise in
a process of internal deletions or sequence duplication
and are not expressed in the normal tissue [53-56].
Most of the identified mutants (67%) contain an
identical deletion of part of the extracellular domain of
the EGFR molecule [54]. This mutant was called
EGFRvIII (a.k.a EGFR ∆2–7) [57]. It has an in-frame
deletion of 801 base pairs, corresponding to exons 2-7
in the mRNA. Loss of this portion of the gene is
suggested to be a consequence of recombination of

highly repetitive sequences (Alu) within the introns
1 and 7 [58]. At the protein level, this results in the
deletion of amino acids 6-273 in the extracellular
domain and the generation of a glycine at the fusion
site [59]. This truncated mutant receptor has
a molecular mass of 145 kDa compared with that of
170 kDa for wild type EGFR (EGFRwt). 

Confocal microscopy analysis confirmed that
subcellular localization of EGFRvIII was identical to
that described for EGFRwt. Both receptors had
predominant cell membrane expression, but they
were also identified in the perinuclear area, suggestive
of localization to the Golgi region [60]. Neither EGFRwt
nor EGFRvIII was found within the nucleus [60]. This
subcellular distribution of the receptors provides an
excellent opportunity for use of target-aimed
treatment specific for EGFRvIII (see below). 

There are some functional differences between the
EGFRvIII and EGFRwt. The activity of EGFRvIII is not
influenced by EGF or TGFα, as the mutation results in
the loss of ligand binding site of the receptor. However,
EGFRvIII has constitutively active tyrosine kinase
domain and has a defective downregulation activity
[61]. A weak but constitutive activity of the truncated
receptor results in enhanced tumorigenicity in nude
mice [62]. The functional background of that
phenomenon depends on increased proliferation and
decrease in apoptosis of tumour cells bearing EGFRvIII.
Furthermore, overexpression of EGFRwt did not confer
a similar growth advantage [61; 63]. The molecular
mechanism by which the EGFRvIII acquires
transforming activity is not yet clear. The EGFRvIII has
been found to be constitutively associated with
signalling adapter proteins Shc and Grb2, similarly to
EGFRwt (see above). These molecules are involved in
the recruitment of Ras to activated receptors, and that
process is not dependent on receptor dimerization
[64-66]. Studies of Fernandes et al. [67] showed that
the high kinase activity of the EGFRvIII is due to self-
dimerization, and that the kinase activity of the
dimeric EGFRvIII molecule is comparable to that of the
EGF-stimulated wild-type receptor. The patterns of
phosphorylation of both the EGFRwt and EGFRvIII
receptors are similar, and the receptor–receptor self-
association is highly dependent on a conformation
induced by N-linked core glycosylation [67]. 

Feldkamp et al. [10] confirmed that constitutively
active EGFRvIII enhanced the growth of glioblastoma
cells through the same signalling pathway of Ras-GTP
as EGFRwt. Moscatello et al. [68] demonstrated that

EGFR in glioblastoma
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EGFRvIII-positive cells demonstrate high levels of PI3K
activity which resulted from the kinase activity of the
receptor. Therefore, PI3K may play an essential role in
EGFRvIII transformation of the cells. In addition,
EGFRvIII up-regulates expression of vascular
endothelial growth factor (VEGF) in glioblastoma by
activation of PI3K-dependent signalling pathway [69].
Likewise, the c-Jun N-terminal kinase (JNK) pathway
was found to be constitutively active in the
EGFRvIII-positive cells [70] and high JNK activity was
not found in the cells overexpressing the EGFRwt.
This implicates that JNK pathway plays an important
role in cell transformation by EGFRvIII and is highly
specific for this variant receptor. 

The EGFRvIII was found in about 32-41%
glioblastomas with EGFRwt overexpression
[39,54,71,72], and 27-43% of all GBMs [39,71]. The
distribution and strength of EGFRvIII expression may
vary. In some cases it is more abundant in the
perivascular regions and less intense or lacking in the
perinecrotic areas [39,72]. In the recent study, we
have shown that the tumour cells usually
demonstrate overexpression of both EGFRwt and
EGFRvIII, however, in some cases mutated EGFR is less
extensively present in the tumour bulk [39]. Likewise,
molecular quantitative real time PCR showed that
EGFRvIII was predominantly amplified in only three of
eight cases having amplification of both wild type
and mutated EGF receptor genes [39]. These two
factors may, thus, influence the therapeutical success
of specifically EGFRvIII-aimed therapy. 

Correlation between the EGFR status 
and other molecular markers

The relationship of the mutation status of TP53

and EGFR amplification in glioblastomas has been
the subject of several investigations. In general, the
association between the TP53 and EGFR status
showed a tendency for under-representation of
combination of TP53 mutation and the EGFR

amplification in series GBMs, but this was not
statistically significant [73]. The TP53 mutation and
EGFR amplification were negatively associated in
another study of 123 GBM cases [45,74]. 

The PTEN suppressor gene, which encodes
dual-specificity phosphatase that negatively
regulates molecular pathways used by the EGFR
proteins family, is located on chromosome 10q23
[75,76]. Despite frequent association between the

EGFR amplification and loss of 10q in glioblastomas
[43], no significant correlation was found between
the EGFR amplification and PTEN mutations [31,77]. 

In glioblastomas, the EGFR amplification and
CDKN2A/p16 deletion are frequently simultaneous
molecular alterations [74,78]. In contrast, the TP53

mutation and EGFR amplification were mutually
exclusive in GBL and they were considered genetic
hallmarks of secondary and primary glioblastomas,
respectively [79,80]. 

The EGFR amplification and/or
overexpression status and prognosis 
and survival in patients 
with brain tumours

The prognostic implications of the EGFR
amplification/overexpression in brain tumours are
controversial. Some authors did not find any
influence of the EGFR amplification/overexpression
on survival of the patients [37,81,82] while the
others concluded that these alterations were
a negative prognostic factor [34,50,83,84]. 

The EGFR expression showed a significant
association with the prognosis in GBM patients’
subset, defined by age and p53 status. This
relationship was identified through the unexpected
finding that the EGFR positivity by immuno-
histochemistry was related to improved survival only
in elder patients. A shorter survival was observed in
younger patients with EGFR positivity. Moreover,
among the younger patients, the EGFR predicted
worse prognosis only in those with tumours that
were p53-negative by immunohistochemistry [46]. 

The finding that the EGFR amplification is
a predictor of longer survival only in older GBM
patients was confirmed by Smith et al [85]. 

In contrast with the above studies, a large
population-based study found no association of the
EGFR amplification and survival in GBM patients at
any age. This study demonstrated an impressive
association of patients’ age and the EGFR
amplification, i.e. the EGFR amplification was not
detected in any GBMs of patients below 35 years of
age. Such age-related distribution of the EGFR
parallels the age distribution of primary GBMs [48]. 

A recent study has demonstrated that patients with
∆EGFR-positive GBM have shorter life expectancies
[86], suggesting that this specific-specific genetic
alteration may be related to higher aggressiveness of
GBMs. 
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Prospects of using the EGFR-targeted
therapy in glioblastoma 

GBM is a primary high grade astrocytic neoplasm
which remains one of the most lethal malignancies,
despite a considerable progress in radiation and
chemotherapy. From the reviewed results of the
recent studies of the EGFR, it is apparent that this
molecule plays a pivotal role in the tumorigenesis
and anti-EGFR targeted therapy may appear
a promising tool against GBL, most likely in
conjunction with other treatment modalities. 

There exist a few treatment approaches to the
EGFR molecule on the cancer cell. The most
extensively studied are: specific antibody therapy by
means of unarmed antibodies or antibodies
conjugated with toxins, liposomes or nuclides, and the
use of inhibitors of the receptor tyrosine kinase. There
are several types of monoclonal antibodies directed
against the EGFRwt. Their use results in blocking
access to the receptor for its ligands (cetuximab)
and/or rapid internalisation of the receptor (ABX-EGF)
[87]. As the EGFRwt occurs also on the surface of
normal cells, side effects may limit its use. 

The mutated form of EGFR, i.e. EGFRvIII, provides
an excellent target for treatment, as it occurs
exclusively on the specific cell surface and this
decreases the undesirable effects of treatment that
are met with anti-EGFRwt antibodies. Thus, our
understanding of the distribution of the wild type and
various mutated forms of the EGFR in human gliomas
is critical for development and implementation of
anti-EGFR medications targeting specific form of
receptor expressed by specific cells [39]. 

EGFR inhibitors are molecules that specifically
inactivate the receptor tyrosine kinase. These are
mostly derivatives of anilinoquinazoline that
competitively bind to the kinase domain with ATP.
They will most likely be used together with
chemotherapeutic agents, as part of complex
treatment protocols. The extensive review of the latest
achievements in targeted therapy of GBL can be found
in the recent review by Mischel and Cloughesy [88]. 

Further investigations of intracellular interactions
of the EGFR and a neoplastic cell are necessary to
establish the most effective treatment regimens in
glioblastoma. Development of new and successful
treatment strategies will depend largely on our
understanding of basic pathogenetic processes
underlying its development. 
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