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A b s t r a c t

Neurogenesis occurs during the embryological development of the brain. However, it is universally accepted that in 
all adult mammalian brains, there are two sites of high-density cell division: the subventricular zone of the lateral 
ventricles (SVZ) and the subgranular zone (SGZ) of the dentate gyrus of the hippocampal formation.
Doxorubicin (DOX) is an anthracycline agent which results in cognitive deterioration and memory impairment, 
whereas memantine (MEM) is an NMDA receptor antagonist which is approved for the treatment of Alzheimer’s 
dementia. Many studies have revealed MEM’s positive impact on memory and demonstrated that it stimulates neu-
ronal division in the hippocampus. 
This study aimed to assess the effect of MEM on spatial memory and neural proliferation in the hippocampus in 
adult male rats treated with DOX. For this purpose, forty male Sprague-Dawley rats were divided into four groups of 
ten rats each according to the agent: control, MEM (2.5 mg/kg), DOX (2 mg/kg), and DOX with MEM. The rats were 
given seven intraperitoneal injections every other day. We tracked the rat’s weights to assess the weight-reducing 
effects of the drugs. In order to test spatial memory, the rats were subjected to the novel location recognition (NLR) 
task 30 minutes after the last injection. Additionally, Ki67 immunohistochemistry was performed to examine hippo-
campal proliferation.
The results showed a significant reduction in discrimination index (DI) in the DOX-treated group compared to MEM- 
(p < 0.001) and MEM with DOX-treated groups (p < 0.001). There was a significant increase in Ki67-positive cells in 
the MEM-treated group compared to the saline-treated group. Treatment with DOX impaired hippocampal prolifer-
ation compared to treatment with MEM or saline. The co-administration of MEM with DOX ameliorated the decline 
in hippocampal proliferation compared to treatment with DOX alone. There was a significant weight reduction in the 
DOX group in comparison to the control group, but MEM attenuated DOX-induced weight loss.
Rats treated with DOX displayed a drop in memory, hippocampal proliferation, and weight compared to  
the MEM-treated group, whereas the co-administration of MEM with DOX protected memory, hippocampal prolifer-
ation, and doxorubicin-induced weight loss.
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Introduction 

According to the World Health Organization 
(WHO), cancer is the second leading cause of death 
worldwide after cardiovascular diseases, and it is 
expected to cause 13.1 million deaths in 2030 [51,56]. 
Doxorubicin (DOX) is a chemotherapeutic agent that 
is classified as an anthracycline antitumor antibiotic. 
It is used in the treatment of many cancers including 
lung cancer, breast cancer, gastric cancer, paediatric 
cancer, and multiple myeloma [61]. 

An estimated 17-75% of cancer patients receiv-
ing chemotherapy experience cognitive impairment 
stemming from agents including DOX [29]. Some 
patients have shown improved cognition over time 
after the completion of chemotherapy treatment; 
however, more than 50% continue to experience 
impairment [53]. In addition, some animal studies 
using the novel location recognition (NLR) task have 
found that chronic exposure to DOX impairs memo-
ry function consistently with disrupting hippocampal 
neurogenesis [8].

The hippocampus, a formation of densely packed 
neurons in the limbic lobe, plays a fundamental role 
in learning, memory, and spatial navigation [3,46,60]. 
It facilitates learning via its connections to the neocor-
tex; in particular, it is involved in acquiring new mem-
ories and then solidifying them, thus transforming 
short-term memory into long-term memory. The hip-
pocampus itself is composed of two major grey matter 
elements: the cornu ammonis and the dentate gyrus 
[22]. Each component consists of distinct types of cells 
that, together with the entorhinal cortex, interact with 
each other through circuits and contribute to the learn-
ing and memory process [2,19,30,49,50]. Furthermore, 
high expression of NMDA receptors on pyramidal cells 
is observed in the hippocampus, which are required for 
spatial memory [44,45]. 

It is universally accepted that in all adult mam-
malian brains, there are two sites of high-density cell 
division: the subventricular zone of the lateral ven-
tricles (SVZ) and the subgranular zone (SGZ) of the 
dentate gyrus of the hippocampal formation [18]. 
Hippocampal neurogenesis in adults is of particular 
interest in our research since it has been shown to 
significantly influence cognition and the formation of 
new memories, thereby considerably affecting learn-
ing. Several papers have shown that adult hippocam-
pal neurogenesis improves memory and cognition 
[15,20,33]. Adult hippocampal neurogenesis has also 

been associated with improved pattern separation, 
which is increasingly recognized as the underlying 
mechanism of memory and learning [9,12,58]. Fur-
thermore, brains experiencing a reduction in neuro-
genesis have shown decreased memory performance, 
whereas those with increased rates of neurogenesis 
have displayed increases in cognitive function [13,65]. 

Memantine (MEM) acts as an NMDA receptor 
antagonist. Previous studies have shown that NMDA 
receptor antagonists enhance neurogenesis in the 
brains of adult rats. Accordingly, MEM is being pre-
scribed by clinicians for the treatment of Alzheimer’s 
disease (AD). The excitotoxic process that results 
from overactive NMDA receptors, which is mediated 
by the excessive influx of calcium during a sustained 
release of glutamate, has been associated with 
strokes, trauma, and chronic degenerative diseases 
such as AD [11]. Memantine has shown a function-
al role in the improvement of memory and learning 
processes after neuronal damage, and it prevents the 
damage from progressing [5,11].

Memantine acts as a neuroprotective agent rather 
than a disease-reversing agent [64]. In addition, since 
it has low affinity to the receptor-associated ion chan-
nel, it detaches from its binding site relatively quick-
ly. This results in the alleviation of undesired adverse 
effects as it is not active for prolonged time periods 
[35]. Hence, we can deduce that MEM does not alter 
normal brain signalling and can be predicted to be well 
tolerated in clinical trials [36]. Due to these properties 
and its unique mechanism of action, clinical trials have 
been initiated to study the effects of MEM on other 
forms of dementia, depression, glaucoma, and severe 
neuropathic pain [36]. Furthermore, MEM’s effect on 
malignant diseases, like breast and prostate cancer, is 
being investigated [1,59].

Memantine offers hope for improved quality of 
life for patients by preventing or at least minimizing 
the toxic effects of DOX on neural cells and memory.

The current study examined the effects of MEM 
on both memory and hippocampal proliferation in 
DOX-treated adult male rats.

Material and methods

Ethics statement

All experiments and animal care were performed in 
accordance with the University of Jordan’s guidelines 
and with the approval of the local ethics committee.
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Animals and drug preparations

Forty male Sprague-Dawley rats (190-225 g) were 
bought from the University of Jordan’s animal office 
and randomly allocated to four groups: control (n = 10),  
MEM (n = 10), DOX (n = 10), and DOX with MEM  
(n = 10). The animals were allowed to habituate for 
two weeks prior to drug administration.

Rats in the MEM group were administered 7 i.p. 
2.5 mg/kg doses of memantine (Lundbeck, Denmark) 
every other day. This dose was modified from a study 
conducted by Cole et al. [10]. Rats in the control group 
were given an identical volume of 0.9% sterile saline 
(i.p.). Rats in both the DOX and DOX with MEM groups 
were administered 7 i.p. 2 mg/kg doses of doxoru-
bicin (EBEWE Pharma, Egypt) every other day. The 
rats were provided with a 12-hour light/dark cycle 
(7.00/19.00 h) and free access to food and water. 

Behavioural testing

Novel location recognition

In order to test spatial memory, the rats were sub-
jected to the NLR task 30 minutes after the last injection 
[37]. The NLR task was a spatial variant of a two-trial 
object recognition task adapted from Dix and Aggleton 
[14] (see Fig. 1). The apparatus consisted of an arena 
(a semi-transparent perspex box 49 cm wide × 66 cm 
long × 40 cm high) and objects (pink, weighted water 
bottles 15 cm high and 7 cm in diameter). The boxes 
and the water bottles were cleaned with 20% ethanol 
prior to each experiment and between trials to remove 
olfactory cues. A square black card was displayed on 
the wall of the room during the trials to provide prom-
inent cues for spatial orientation.

This apparatus was modified from a previous pro-
tocol [14] and was recorded by video camcorder as 
in our previous study [48]. The procedure consisted 
of habituating the animals for one hour in the box 
on the day prior to testing. The following day, as  
a familiarization trial, two identical objects (water bot-

tles) were placed in separate locations in the box, and 
the animals were allowed three minutes to explore. 
The animals were returned to their home cage for  
a five-minute inter-trial interval, during which the box 
was cleaned with 20% ethanol. In the choice trial, 
the animals were returned to the box for three min-
utes. One object remained in its original position (the 
familiar location), while the other object was moved 
to a new position (the novel location) (see Fig. 1). 

The rat was considered to be exploring the object 
when it sniffed, licked, or chewed the object or direct-
ed its nose at a distance ≤ 1 cm from the object [48]. 
Exploration was scored based on the total time spent 
on each object (familiar and novel locations). Data 
were converted to discrimination indices (DI) which 
means the time spent exploring the novel object 
minus the time spent exploring the familiar object 
divided by total exploration time [6,14,16].

Histology and immunohistochemistry

The day after behavioural testing was completed, 
the rats were put down by rapid stunning and cervical 
dislocation. Their brains were extracted, trimmed, and 
fixed in 3% glutaraldehyde overnight. The next day the 
brains were sectioned using a Leica vibrating micro-
tome. The 4 um sections were placed onto positively 
charged slides for routine staining with haematoxylin 
and eosin and for Ki67 immunohistochemical analysis. 
The tissues were dewaxed with xylene and rehydrat-
ed through a series of graded ethanols. To retrieve the 
antigens, the samples were autoclaved in 0.01 M sodi-
um citrate, pH 6.0, at 100°C for 20 minutes and then 
were heated in a microwave oven (800 W) for 5 minutes 
[55]. Endogenous peroxidase activity was quenched 
by incubating the slides in H2O2 (3% in methanol) at 
room temperature for 20 minutes. Non-specific immu-
noglobulin binding was blocked with 3% bovine serum 
albumin (manufactured by Merck) in phosphate buffer 
solution (PBS) at 37°C for 20 minutes. 

Fig. 1. Schematic representation of the novel location recognition task protocol.

	 Habituation	 Familiarization		 Choice

24 hours ITI

5 minutes
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The polyclonal antibody against Ki67 was bought 
from Thermofisher, Cat. RB-9043. The primary antibody 
was diluted in phosphate-buffered saline at a dilution 
rate of 1 to 50 and incubated at 4°C for 1 h followed by 
10 minutes incubation with Goat anti-Rabbit secondary 
antibody, Thermofisher Cat. A32732 (1 : 250) in PBS for 
10 minutes. The slides were counterstained with Mayer’s 
haematoxylin [55].

A systemic random sampling technique [41] was 
used to choose every twentieth section throughout the 
length of the dentate gyrus, selecting 10 sections in total. 
A Zeiss Primo Star microscope (Oberkochen, Germany) 
equipped with a Canon EOS 550D camera (Tokyo, Japan) 
was used to confirm the integrity of the selected sec-
tions and for counting the proliferating cells.

Counting was done by two independent observers 
using a double-blind method. Count of Ki67-positive 
cells was carried out within the SGZ, defined as the zone 
within three cell diameters of the inner edge of the den-
tate gyrus (see Fig. 2). Counts from all sections of one 
dentate gyrus were averaged and multiplied by twenty 
to provide an estimate of the total number of positive 
cells in the dentate gyrus [16].

Statistical analysis

Statistical analysis was undertaken and graphs were 
created using GraphPad Prism 4.0. P < 0.05 was regard-
ed as significant. Student’s paired t-tests were used to 

compare the exploration times for rats in each group in 
the NLR task choice trials. A one-way ANOVA with Bon-
ferroni’s post-test was used to compare the number of 
Ki67-positive proliferating cells and discrimination indi-
ces between groups, and a two-way ANOVA with Bon-
ferroni’s post-test was used to compare the replicate 
means of the rat’s weights over the injection period 
between all groups.

Results

The effect of treatment on the novel 
location recognition task

The NLR task shows interactions with objects either 
in familiar or novel locations within a test arena. During 
the familiarization trial, in which the rats explored two 
identical objects, both the control and the treatment 
groups showed no preference for either object in terms 
of the total exploration time (data not shown). During 
the choice trial, in which one object had been moved to 
a new location, saline, MEM and MEM with DOX inject-
ed groups all explored the novel object significantly more 
than the old location while rats in the DOX group failed 
to differentiate between the two locations (data not 
shown). The discrimination index was calculated as the 
time spent exploring the novel object minus the time 
spent exploring the familiar object divided by total explo-
ration time and compared between groups (Fig. 3). There 
was a significant reduction in discrimination index (DI) 

Fig. 2. Representative micrographs of anti-Ki67 immunostaining in the dentate gyrus of A) control group, 
B) DOX group, C) MEM group, D) DOX with MEM group. Ki67-positive cells (arrows) appear dark, indicating 
proliferation (scale bar = 100 μm).
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in the DOX-treated group compared to MEM- (p < 0.001) 
and MEM with DOX-treated groups (p < 0.001).

These findings indicate that the rats treated 
with MEM along with DOX had protected memory 
compared to those treated with DOX only and that, 
compared to MEM treatment, treatment with DOX 
impaired hippocampal recent memory. 

The effect of treatments  
on proliferating cell counts 

There was a significant increase in the total num-
ber of Ki67-positive cells in the MEM group com-
pared to the control group (p < 0.05). DOX treatment 
impaired hippocampal proliferation compared to 
both saline and MEM treatment (p < 0.001) for both. 
The DOX with MEM group showed increased hip-
pocampal proliferation compared to the DOX group  
(p < 0.01). Figure 4 shows these findings correlated 
with the results obtained from the NLR task.

The effect of different treatments  
on the rats’ weight 

As shown in Figure 5, there was significant differ-
ence between groups due to both treatment (p < 0.0001) 
and injection periods, which are indicated by arrows  
(p < 0.0001). DOX reduced the weights of the rats after 
each injection. Overall, there was a significant reduc-
tion in weight for rats treated with DOX compared to 
rats treated with saline throughout the injection period 
(p < 0.0001). Memantine attenuated this weight loss  
(p < 0.0001).

Discussion

This study aimed to assess the effect of MEM on 
spatial memory and neural proliferation in hippocam-
pus in adult male rats treated with DOX.

Previous animal studies have shown that chron-
ic administration of MEM improved spatial cognitive 
function as evidenced by decreased errors in a Mor-
ris water maze [4,42]. This was also suggested to be 
true in a transgenic mouse model of AD [43]. Pietá 
Dias et al. demonstrated that chronic MEM admin-
istration (20 mg/kg i.p.) over three weeks decreased 
age-induced spatial memory deficits as investigated 
through the NLR task. Different test regimens and 
doses may elucidate this controversy [54].

Enhanced hippocampal proliferation with MEM 
use was evident in the literature. A study has shown 
that a single intraperitoneal dose of 50 mg/kg stimu-

lated hippocampal dentate gyrus proliferation in both 
young and elderly rats [38]. A similar effect was found 
by Jin et al. [28]. 

Notably, in our study, the group of rats given 
seven i.p. injections of DOX failed to recognize the 
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novel location. This finding agrees with previous 
research showing that DOX disrupted many hippo-
campal-based memory functions including spatial 
memory and contextual conditioned fear memo-
ry [8,31,63]. In contrast, Fremouw et al. found that 
DOX-treated mice showed normal contextual fear 
memory and normal performance in the NLR task 
when compared to the control group [17]. This may 
be due to the different dosing regimens and differ-
ences in neuronal processes and biological factors 
between rats and mice. 

In concordance with our study, DOX-induced cog-
nitive decline may be attributed to decreased hippo-
campal neurogenesis [8], although one study showed 
that DOX administration alone did not significantly 
alter hippocampal neurogenesis unless co-adminis-
tered with cyclophosphamide [31].

Although the co-administration of MEM with DOX 
ameliorated DOX-induced cognitive decline and inhi-
bition of hippocampal proliferation, no causal rela-
tionship can be deduced based on this observation. 
Memantine was shown to have other neuroprotective 
effects like enhancement of synaptic plasticity [67] 

and inhibition of apoptosis [27]. In addition, recent 
in vitro studies have demonstrated that MEM ame-
liorated DOX-induced apoptosis in different types of 
neuronal cell cultures [25,26]. So further research is 
encouraged to investigate a causal relationship.

The molecular basis of MEM-induced hippocampal 
proliferation has not been made clear, although one 
plausible mechanism is through enhanced BDNF local 
expression and signalling. This hypothesis is based 
on a previous finding that MEM caused a dose-re-
lated increase in the expression of the BDNF gene,  
a member of the neurotrophin family, and its receptor 
TrkB in many cortical regions including the hippocam-
pus [40]. Increasing evidence suggests that increased 
BDNF levels promote hippocampal neurogenesis in 
response to different stimuli [24,39,57]. Recent stud-
ies have demonstrated that enhanced expression 
of BDNF contributed to MEM-related enhancement 
of synaptic plasticity [67] and to the anti-apoptotic 
effect of MEM [27], but further research is needed to 
elaborate the effect of BDNF on MEM-induced hippo-
campal proliferation.

Different NMDA receptor antagonists, including 
MEM, have shown great promise in reversing chemo-
therapy-induced cognitive deficits in animal models. 
A study revealed that methotrexate-induced spa-
tial cognitive impairment, which was attributed in 
part to increased levels of the excitotoxic glutamate 
analogue homocysteic acid, was ameliorated by the 
co-administration of MEM [10]. Another NMDA recep-
tor antagonist, Dextromethorphan, has also been 
shown to decrease negative cognitive outcomes in 
methotrexate-treated rats [62]. One study showed 
that MEM mitigated cisplatin-induced impaired 
performance of rats in the Morris water maze, and 
it attenuated the cisplatin-related reduction of the 
expression of PSD95 and ERK1/2 proteins, which are 
essential for the formation and maintenance of syn-
aptic plasticity [7]. These preclinical data support the 
hypothesis that NMDA receptor antagonists like MEM 
may be used for the treatment of chemotherapy-in-
duced cognitive deficits. 

Reduction in body weight is a toxic effect asso-
ciated with the administration of DOX [21,23,34,66]. 
We noticed a significant weight reduction in the 
DOX-injected rats in comparison to the control 
group during the two-week injection period. How- 
ever, MEM co-treatment effectively improved DOX- 
induced weight loss. Accordingly, MEM could be 
a potential agent for the attenuation and prevention 

Fig. 5. Animal body weight during the injection period 
between groups. There was a significant reduction in 
body weight of rats treated with doxorubicin (DOX) 
compared to rats treated with saline throughout the 
injection period (p < 0.0001). Memantine (MEM) 
attenuated this weight loss (p < 0.0001). Injections 
are indicated by arrows. The analysis was performed 
using a two-way ANOVA with Bonferroni’s post-test 
to compare replicate means on a GraphPad Prism 4.
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of weight loss induced by DOX in clinical practice. This 
can be partly supported by a randomized controlled 
trial done on Alzheimer’s patients showing that MEM 
was associated with a significant increase in body 
weight when compared to placebo [52]. In addition, 
two studies have shown that MEM attenuated weight 
loss in animal models of Huntington’s disease and 
ulcerative colitis [32,47].

Conclusions

Rats treated with DOX showed a deterioration 
in memory and an inhibition of cellular prolifera-
tion in the hippocampus, in addition to a noticeable 
decrease in weight. In contrast, the co-administration 
of MEM and DOX revealed a significant enhancement 
of memory, a promotion of hippocampal prolifera-
tion, plus a remarkable improvement of DOX-induced 
weight loss.
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