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Therapeutic strategies for brachial plexus injury
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A b s t r a c t

Brachial plexus avulsion (BPA), a  severe acute peripheral nerve injury in adults, results in total loss of the 
motor function in the upper limb. Although immediate re-implantation surgery is widely performed to repair 
this lesion, the motor function cannot be fully restored. The main cause is that the growth velocity of axon 
is extremely slow in order to re-innervate the target muscles before atrophy develops. Therefore, the survival 
of spinal motoneurons (MNs) is considered to be a prerequisite for the recovery of motor function. The intro-
duction of survival-proactive agents with anti-oxidative stress and anti-inflammation properties has emerged 
as a new approach to the motor function recovery following BPA. In the current review, we summarized the 
treatments of BPA in both mouse and rat models following re-implantation surgery. Furthermore, the pain 
treatment options following BPA were discussed.
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Introduction

The number of patients suffering from brachial 
plexus injury (BPI) has been increasing steadily, 
mostly due to motorbike accidents [23,30,69]. 
Despite neurosurgical repair strategies to restore 
anatomical continuity between the injured motor 
axons and the distal nerves, function recovery of 
the distal musculature is often disappointing [50]. 
Functional loss is caused by the degeneration of 
nerve fibres, deficits of synapses and the nerve fibre 
growth inhibitory effect of glial scarring [10]. Signif-
icant motoneuron (MN) loss is reported following 
root avulsion lesions in adults [52,92,102] and most 
of the affected MNs ultimately die [39], causing the 
paralysis of the target muscle groups, as the brachial 
plexus is the unique nerve reserve to the upper limb. 
Very little axon regeneration occurred in the spinal 

cord after acute or chronic injury, due to the stimu-
lation of inhibitory molecules at the injury sites and 
the low intrinsic capacity for axon growth in neurons 
in the adult central nervous system (CNS). Multiple 
treatments have been performed on animal models 
to investigate the recovery of motor function follow-
ing brachial plexus root avulsion (BPRA). Re-implan-
tation of avulsed ventral roots temporarily delays MN 
degeneration and allows staggered regeneration of 
motor axons over the implantation site into the nerve 
root [26,73]. However, in patients with BPI, axons 
need to regenerate over distances of up to 80 cm 
before reaching their distal target muscles in the low-
er arm and hand. With an average axonal outgrowth 
velocity of 1-2 mm/day, axon regeneration is a pro-
tracted process, which requires several months, or 
even years [24]. To bridge this distance, an extended 
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period of regeneration is required, resulting in lim-
ited distal regeneration and suboptimal recovery 
of voluntary function [28,84]. Re-implantation sur-
gery, a widely performed approach, cannot entirely 
repair the motor function due to the slow velocity 
of axonal growth for the spinal MNs to re-innervate 
the target sites prior to the development of muscle 
atrophy [8,9]. The survival of MNs is necessary for 
the functional recovery. As a  consequence, early 
and effective protection of neurons is necessary for 
lengthening the time window of the treatment and 
promoting the survival of lesioned MNs [65]. 

Maintaining the survival of affected MNs is 
extremely essential for axonal regeneration [40]. 
Eggers et al. discussed the clinical features and 
intervention strategies, including acute and delayed 
implantation, cell implantation, macromolecular 
intervention, neurotrophic factors and interfer-
ence with neurite outgrowth inhibitors, presenting 
a  general description of neurotrophic factor treat-
ment and cell-based pharmacological approaches 
that have been applied in combination with sur-
gical re-implantation [27]. Herein we reviewed the 
underlying mechanisms associated with oxidative 
stress and inflammation, and the genes with axonal 
growth and regeneration, brain changes and other 
treatments of BPA aimed at promoting MN survival 
and alleviating pain. 

Inflammation and oxidative stress 

Spinal root avulsion causes a multitude of patho-
physiological events, including modified expression 
of genes and proteins associated with inflammation, 
oxidative stress, and apoptosis, which collectively 
cause substantial neuronal death [82]. After a  pri-
mary mechanical injury, the secondary cascade pro-
duces reactive oxygen species (ROS) that cause cell 
damage and apoptosis [49]. Inflammatory cells and 
microglia accumulate at the injury site and cause 
neuronal death, aggravating oxidative damage and 
triggering inflammatory responses [58]. 

An experimental model of spinal root avulsion 
simulates the characteristics of human BPA injury 
[75]. In adult rodent models, ventral root avulsion 
injury triggers the excessive generation of reactive 
nitrogen species (RNS), including NO, and ONOO– 
[81,91], and ROS as well as O2

•–, H2O2 and •OH 
[59,64]. Accumulation of ROS/RNS can overwhelm 
the body’s antioxidant capacity, induce lipid peroxi-

dation, protein oxidation and DNA modification [15], 
and cause oxidative damage at the injury site, lead-
ing to progressive MN loss [20]. In addition, another 
important hallmark of spinal root avulsion is the  local 
neuroinflammatory response in the affected stage, 
characterized by excessive activated microglia/mac-
rophages and astrocytes infiltrating the lesion sites 
[5,105], which produce pro-inflammatory cytokines 
and further inhibit axonal and dendrite regeneration 
[70], thereby resulting in aggravation of the oxida-
tive insult [37]. Glial activation was observed in mice 
following BPRA [113]. Effective anti-oxidant and 
anti-inflammatory treatments can reduce neuronal 
death and lay the foundation for nerve regeneration.

Molecular changes

Significant changes of key molecules are associ-
ated with neuronal injury, which may be a powerful 
tool for ameliorating the inflammatory microenviron-
ment and improve nerve regeneration. Activation of 
c-Jun was suggested to be associated with cell death 
in neonatal sympathetic neurons [6,29] and hippo-
campal neurons [77] due to a deprivation of neuro-
trophic factors. Early up-regulation of the neuronal 
NOS (nNOS) or inhibition of c-Jun phosphorylation 
in injured spinal cords may serve as the molecular 
targeted strategies for preventing the degeneration 
of MNs in BPRA in the future [24]. Elevated phos-
phorylated c-Jun level in neonatal spinal MNs after 
axonal injury has been associated with MN death 
and regeneration [104]. 

Previous studies have shown that c-Jun partici-
pates directly in regulating the growth-associated 
protein 43 (GAP-43) [43]. GAP-43 is a  small acidic 
membrane protein associated with successful axo-
nal growth and regeneration in the nervous system 
[43,80]. Both the mRNA and protein levels of GAP-43 
elevate after BPI, and the GAP-43 protein is close-
ly related to the axonal regeneration and function-
al recovery [11]. Yuan et al. reported that GAP-43 
increased synchronously with the regeneration of 
spinal avulsed MNs after BPRA [103]. It was reported 
that, despite the colocalization of nNOS and GAP-43 
in avulsed MNs, GAP-43 plays a more important role 
for MNs regeneration [101].

Several transcription factors and enzymes have 
been implicated in BPRA. Estrogen-related receptor γ 
(ERRγ) is a vital component in injured MNs and a com- 
mon marker of γMNs following BPRA [100]. Endog-
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enous protein kinase C (PKC) and phospholipase-Cγ 
(PLCγ) were activated in spinal MNs in the unilater-
al BPRA model. Moreover, suppression of the PLCγ/
PKC axis was shown to promote avulsion-induced 
MN death, while stimulation of the PLCγ/PKC axis 
remitted avulsion-induced MN death [111]. It was 
also reported that reducing apurinic/apyrimidinic 
endonuclease 1 (APE1), a  ubiquitously expressed 
rate-limiting enzyme of DNA damage repairing, ren-
ders spinal MNs susceptible to oxidative stress [20]. 
However, further exploration using human systems 
is required to define other transcription factors 
mediating MN survival.

Brain changes 

Several studies suggest that the neurons in 
the brain undergo fundamental changes after BPA 
injury. Elevated brain-derived neurotrophic factor 
(BDNF) and GAP-43 are beneficial for cerebral tran-
shemispheric functional reconstruction after con-
tralateral C7 root transfer following BPA injury [88]. 
Up to 12 months post operation, faster transhemi-
spheric reorganization is observed after transfer of 
the contralateral C7 in young recipient nerves with 
total BPRA [71]. The expression of major histocom-
patibility complex class I  (MHC-I), paired-immuno-
globulin-like receptor B (PirB) and cluster of differen-
tiation 3ζ (CD3ζ) in motor cortex, neurons exhibited 
an initially decreasing trend both at the mRNA and 
protein levels on day 7, which was reversed at  
3 months post-injury in BPRA rats [107]. Factors par-
ticipating in the network of motor cortical remod-
elling after BPRA display dynamic changes. Major 
microRNAs (miRNAs/miRs) distributed in the motor 
cortex, such as miR-101-3p, miR-132, miR-134, miR-
137-3p and miR-485, play vital roles in regulating 
neural plasticity and transhemispheric functional 
reorganization dendrite morphology, spontaneous 
synaptic responses and transmitter release after 
cervical spinal nerve root transfer following BPA 
injury [61,81,86]. Functional MRI studies revealed 
that the levels of proinflammatory cytokines, such 
as interleukin (IL)-1β, IL-6, tumour necrosis factor 
α (TNF-α), are important mediators in the neural 
plasticity and transhemispheric functional reorga-
nization [33,36,57,98]. A growing body of evidence 
offers novel insights into the mechanism through 
which altered expression of these factors in the 
brain can improve or impair the MN survival [108]. 

These results suggest that elucidating the molecular 
mechanisms underlying the brain changes accom-
panying by BPA injury may uncover new therapeutic 
targets for improving motor function recovery.

Interventions for motoneuron survival

Several combinatorial strategies have been 
adopted for nerve reimplantation in multiple animal 
models of root avulsion injury [4,19]. Exogenous gli-
al cell-derived neurotrophic factor (GDNF) combined 
with foetal lumbar cells transfer resulted in improved 
MN survival, axonal sprouting and functional recov-
ery after avulsion of spinal roots [74]. Besides, dif-
ferent sources of stem cells are ideal seed cells in 
peripheral nerve deficit models. Stem cells hold the 
merits of boosting tissue repair and regeneration by 
releasing considerate neurotrophic, angiogenic and 
anti-inflammatory factors which lead to structure 
remodelling, neovascularization and function resto-
ration [46,47]. Interestingly, embryonic spinal cord 
neurons grafted to the injured distal nerve alleviated 
MN death, but also promoted axonal regeneration 
and generation of MNs with locomotive function 
[109]. Transplantation of human embryonic stem 
cells overexpressing fibroblast growth factor 2 (FGF-2)  
exerted a  neuroprotective effect following spinal 
cord ventral root avulsion (VRA), retaining synaptic 
stability and reducing astroglial reactivity [3]. The 
injection of embryonic spinal cord-derived cells may 
be beneficial for preserving the muscle endplates 
and initiating earlier functional recovery through 
reducing muscle atrophy after peripheral nerve injury 
[76]. Contralateral C7 transfer combined with acellu-
lar nerve allografts loaded with differentiated adi-
pose stem cells were beneficial for nerve restoration 
in BPI rats [60,97]. Though several studies have 
reported varied success using stem cell-based thera-
py to improve BPRA outcomes, more pre-clinical and 
clinical experiments are needed to testify the con-
stancy of the efficacy before consensus is reached. 
In general, stem cell-based therapy had increased 
the proportion of the viable MNs and regained the 
neurological function, thus indicating the expect-
ant clinical benefits and potential translational val-
ue. Further, future explorations are required to lay 
emphasis on the implications of applying modified 
stem cells and the optimization of cell implantation 
protocols. Moreover, axotomized MN regeneration 
and reinnervation improved by ~2-fold after timed 
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GDNF gene delivery in a  rat cervical VRA model 
[24,25]. These improvements were associated with 
a 2-fold increase in regeneration and enhanced rein-
nervation of the hand musculature. Elucidating the 
mechanisms involved in the interventions used to 
promote MN survival may provide new perspectives 
to recognize biomarkers or identify novel therapeu-
tic targets for enhancing neuronal regeneration in 
spinal root avulsion injury (Fig. 1).

Application of compounds from plants

Treatment with plant-derived compounds may 
exert neuroprotective effects through enhancing 
nerve regeneration and functional restoration via 
suppressing neurological oxidative response, inflam-
mation and apoptosis [66]. Tea-derived L-theanine 
combined with NEP1-40, a  competitive antagonist 
of Nogo receptor (NgR), significantly promoted neu- 
ron regeneration after BPRA, and the possible 
mechanisms included alleviation of oxidative dam-
age and inflammatory responses at the injury sites 
and antagonism of myelin inhibition [42]. Berber-
ine treatment can upregulate the L1 expression 
and axonal remyelination [12], markedly alleviated 
the avulsion-induced neuroinflammation via down- 

regulating microglial and astroglial response, while 
increasing the expression of the antioxidative 
enzyme superoxide dismutase (SOD), and activat-
ing the PI3K/Akt pathway [110]. Intrathecal infusion 
of paclitaxel, a  diterpene alkaloid, represses the 
expression of neuronal nitric oxide synthase (nNOS) 
and maintains mitochondrial function in addition 
to improving MN survival in the ventral horn after 
spinal root avulsion injury [79]. EGb761, which is 
a  Ginkgo biloba extract containing crucial bioac-
tive constituents, displays neurotherapeutic effects 
against neuronal apoptotic death and oxidative 
stress [2,17,63,90,106]. Its therapeutic effects partly 
rely on inhibiting the expression of inducible nitric 
oxide synthase (iNOS) and nitric oxide (NO) produc-
tion in a dose-dependent manner [7,51]. Epigallocat-
echin gallate (EGCG), an active polyphenol isolated 
from green tea, enhances survival and functional 
restoration of MNs after BPRA by regulating FIG4 
[83]. Trehalose protects MNs in rats by enhancing 
autophagy and inhibiting apoptosis [53]. Artemisinin 
(ART), a famous antimalarial medicine, can facilitate 
the survival of MNs and axonal remyelination to 
promote the motor function recovery via inhibiting 
oxidative stress [14]. The aforementioned findings 
indicate that the application of plant-derived com-
pounds may be a new treatment approach to neuro-
nal damage, and efforts must be made to optimize 
the utilization of active plants components.

Small molecular compounds

As the application of small molecular compounds 
has been associated with gene regulation, elucidat-
ing the central factors that affect the occurrence and 
pathophysiological events in BPRA may be of value. 
Small molecular compound therapy is likely to be 
a promising way to improve the outcome of BPRA. 
Combined injection of melatonin and chondroitin 
sulfate ABC (ChABC), boosted axonal regeneration 
via decreasing inflammation, oxidative damage and 
glial scar formation after BPRA [41]. Minocycline, 
both intraperitoneally and intrathecally improved 
MN survival by decreasing microglial proliferation 
following avulsion of nerve roots [18]. Administra-
tion of epothilone B, a microtubule-stabilizing drug, 
facilitated motor functional recovery after spinal 
root avulsion causing peripheral nerve injury [55]. 
In delayed spinal cord-brachial plexus reconnection 
after C7 ventral root avulsion, injured MNs were res-

Fig. 1. Ways to promoting nerve survival, regener-
ation and functional restoration. Representative 
interventions and selected examples involved in 
nerve regeneration functional restoration men-
tioned in this review. ISP – intracellular sigma 
peptide, EPO – erythropoietin, LINGO-1 – immu-
noglobulin-like domain-containing NgR-inter-
acting protein 1, Se-PTC – (R)-Se-phenyl thiazo-
lidine-4-carboselenoate, TSA – trichostatin A, 
EZH2 – enhancer of zeste homolog 2.
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cued by riluzole treatment [38]. System delivery of 
the intracellular sigma peptide (ISP) enhanced the 
number of axons by targeting the neuronal pro-
teoglycan receptor protein tyrosine phosphatase σ 
(PTPσ) in a  ventral root avulsion rat model [54]. 
c-Jun inhibition together with Bcl-2 overexpression 
promoted regeneration and functional restoration 
of MNs, whereas valproic acid reduced MN death 
induced by BPRA [89]. Erythropoietin (EPO) reduced 
the apoptosis of neurons led by BPRA via inhibiting 
JNK phosphorylation, c-Jun expression and PARP 
cleavage [56]. Lithium treatment following spinal 
root avulsion and reimplantation accelerated motor 
axon regeneration and remyelination, ameliorated 
denervated muscle atrophy and promoted earli-
er motor functional recovery in rats [32,35]. Nrg1β 
improved the functional recovery of elbow flexion, 
promoted the survival of MNs, enhanced the re-in-
nervation of biceps brachii and decreased muscle 
atrophy, providing a promising therapeutic approach 
to root avulsion [13]. Local administration of riluzole 
may also rescue injured MNs via promoting neuro-
protection and increasing nerve regeneration [31].

Non-coding RNAs

Non-coding RNAs (ncRNAs), such as miRNAs and 
long non-coding RNAs (lncRNAs), act as post-tran-
scriptional regulators to decrease their downstream 
target protein expression. Differential expression 
of the specific ncRNAs at different time points is 
important after unilateral BPRA. The alterations of 
associated mRNAs participate in inflammation and 
regulate the calcium-signalling pathway in the ear-
ly phase of BPRA and MN death [99]. Tang et al. 
demonstrated that root avulsion resulted in up-reg-
ulation of miR-137-3p, which target calcium-acti-
vated neutral protease-2 (calpain-2) and further 
reduced nNOS expression in spinal MNs, exhibiting 
a protective effect against MN death [81]. Ding et al. 
reported that knockdown of leucine-rich repeat and 
immunoglobulin-like domain-containing NgR-inter-
acting protein 1 (LINGO-1) by short hairpin (sh)RNA 
could promote axonal outgrowth and myelination, 
rehabilitate motor nerve endings, accelerate muscle 
reinnervation, enhance angiogenesis and promote 
avulsed forelimb recovery [22]. It was suggested 
that the increased number of motor endplates and 
improved angiogenesis was owing to lentiviral vec-
tors-mediated overexpression of hypoxia-inducible 

factor 1α (HIF-1α) into reimplanted C6 roots after 
BPA [85]. Intrathecally applied short interfering (si)
RNA to silence the expression of c-Jun manifested 
that this gene may be responsible for the survival of 
MNs after root avulsion injury [16]. In addition, tar-
geting miRNAs to indirectly regulate genes involved 
in inflammation initiated by injury and downstream 
signalling pathways contributing to tMN death may 
be a  new route to prevent MN degeneration [82]. 
The lncRNA JHDM1D-AS1 was shown to exert anti- 
inflammatory and neuroprotective effects via reg-
ulating the miR-101-3p/dual-specificity phospha-
tase 1 (DUSP1) axis in rats following BPRA [61]. 
Consequently, targeting the differentially expressed 
lncRNAs and miRNAs induced by BPA injury may 
uncover novel diagnostic and therapeutic options.

Interventions for pain

Neurogenic pain is a common and refractory com-
plication after BPA injury [94]. The C-C motif chemok-
ine ligand 2 (CCL2)-/C-C motif chemokine receptor 2 
(CCR2) axis can enhance NMDA receptor signalling 
to aggravate neuropathic pain induced by BPRA [93]. 
In addition to motor and sensory deficits, pain can 
be equally debilitating. The main characteristics of 
BPA pain are its rapid onset (an effect which occurs 
immediately after the trauma) and the development 
of long-lasting neuropathy, which may be observed 
at sites distant from the lesion [62,72]. The neuro-
pathic pain may lead to mechanical allodynia and 
cold allodynia. Approximately 80% of patients with 
BPA are left with long-term neuropathic pain [1]. 
Spinal astrocytes and microglia were shown to be 
quickly activated after BPA injury in a  neuropath-
ic pain rat model, which may partly explain the 
mechanism as well as indicate potential treatment 
options [44]. The antinociceptive organic selenium 
compound, (R)-Se-phenyl thiazolidine-4-carbosele-
noate (Se-PTC), displayed superior mechanical and 
thermal anti-hyperalgesic effects via adjusting can-
nabinoid receptors CB1 and CB2 in a mouse mod-
el of BPA-induced neuropathic pain [21]. Cerebral 
18F-FDG metabolism alterations were also observed 
in a  neuropathic pain model following BPA [78]. 
Treatment of pain post-BPI has been attempted 
using high-frequency spinal cord stimulation [34]. 
Administration of trichostatin A  (TSA), a  histone 
deacetylase inhibitor, was also shown to alleviate 
neuropathic pain through reducing neuroinflamma-
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tion, AKT phosphorylation and mTOR signalling in 
a rat BPA model [112]. Enhancer of zeste homolog 2 
(EZH2) was shown to modulate neuroinflammation 
and neuropathic pain via a  novel mTOR-mediated 
autophagy signalling pathway [68]. However, the 
majority of the traditional treatments have proven 
to be ineffective for neuropathic pain relief after BPA 
injury. Accumulating evidence indicates that miRNAs 
and proteins implicated in nerve development and 
pathophysiology also play a  critical role in BPA-in-
duced neuropathic pain, which may be a potential 
method for pain relief [87,112]. Meng et al. demon-
strated that the lncRNA Malat1 ameliorated neuro-
pathic pain by decreasing neuronal excitability via 
regulation of calcium flux in the spinal cord [67].  
The polyphenol curcumin may also alleviate BPA-in-
duced pain by suppressing the levels of proinflamma-
tory cytokines and neuropathic-associated proteins, 
and deactivating astrocytes [96]. Electroacupuncture 
and naprapathy have also been used to attenuate 
neuropathic pain following BPRA [45,48,95]. 

Conclusions

BPRA treatment demands various well-planned 
reconstructive procedures, including physiotherapy, 
surgery and medications, in addition to manage-
ment of the intractable neuropathic pain. More clin-
ical experiments are required to evaluate the safety, 
efficacy and adverse consequences of cell transfer. 
Other alternative treatments targeting the identified 
ncRNAs and related signalling pathways may hold 
promise as therapeutic methods for partial recovery 
of limb function. 
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