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A b s t r a c t

Parkinson’s disease (PD) is a well-known neurodegenerative disorder characterized by the degeneration of dopaminergic 
neurons, and oxidative stress and neuroinflammation are also associated with the pathogenesis of PD. Mitochonic acid 
5 (MA-5), an analogue of indole-3-acetic acid, exerts key protective roles in inhibiting apoptosis, oxidative stress and 
neuroinflammation in multiple diseases. However, whether MA-5 can be beneficial for PD remains unclear. Hence, the aim 
of this study was to investigate the neuroprotective role of MA-5 in PD. In the current study, MPTP-challenged mice were 
treated as the in vivo model, and the effect of MA-5 on the motor function, neuronal survival, oxidative stress, neuroin-
flammation and the underlying mechanisms involved with AMPK and autophagy were determined. We revealed that MA-5 
obviously up-regulated the phosphorylation of AMPK and promoted the autophagy (indicated by the increased LC3II/LC3I, 
parkin, pink and decreased p62) in substantia nigra (SN), ameliorated the motor deficits, up-regulated the expression of 
TH, suppressed the inflammation (indicated by the decreased protein levels of interleukin (IL)-1β, IL-6, tumour necrosis 
factor α) in SN in MPTP-induced mice. However, these patterns were reversed after the treatment of Compound C, an 
inhibitor of AMPK; also, after the application of CSA, an inhibitor of autophagy, MA-5 cannot play against the neurotoxicity  
of MPTP in mice. These combined results suggest that MA-5 can protect against MPTP-induced neurotoxicity to ameliorate  
the impaired motor function, which may be modulated via activation of AMPK-induced autophagy.
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Introduction
Parkinson’s disease (PD), a common neurodegenera-

tive disease in aging people, affects more than 4 million 
population around the world [4]. In this aging disorder, 
the degeneration of dopaminergic neurons was observed 

in substantia nigra pars compacta (SNpc), and resultant 
depletion of dopamine was detected in the striatum, 
accompanied by both motor and non-motor symptoms 
[13,14]. Current drug therapies for PD provide only symp-
tomatic treatment and do not prevent the progressive loss 
of dopaminergic neurons in PD patients and concomitant 
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decline [1]. It has been suggested that excessive gener-
ation of reactive oxygen species (ROS), oxidative stress, 
neuroinflammation, and mitochondrial dysfunction may 
account for the loss of dopaminergic neurons and neuro-
nal apoptosis [30,36,52]. In this setting, to find an agent 
that can reduce the oxidative stress and inhibit neuroin-
flammation may be beneficial for the treatment of PD.

Mitochonic acid 5 (MA-5), an analogue of indole- 
3-acetic acid with its key roles in reducing neuroinflam-
mation and preserving microglial function via synthesiz-
ing the indispensable neurotransmitters [38], is original-
ly isolated from the plant [44], which primarily benefited 
from mitochondrial function mitochondrial function  
via reducing mitochondrial oxidative stress and acceler-
ating mitochondrial energy metabolism [29]. MA-5 has 
been tested for treatment in patients with mitochondri-
al disease, cardiac myocyte damage and renal tubular 
injury [56]. MA-5 increases cellular ATP and protects 
mitochondrial patients’ fibroblasts from cell death [44]. 
MA-5 also upregulates cardiac and renal respiration in 
the mitochondrial disease model [34]. Moreover, accu-
mulating evidence indicates that MA-5 can attenuate 
the neuroinflammation and the apoptosis via activating 
the mitophagy [22,26,46].

Yet, since multiple mechanisms come into exert in PD, 
we then searched for other targets involved in MA-5 that 
can ameliorate PD. One of targets is autophagy, a path-
way related to the degradation of organelles and protein 
[32], which is associated with the pathology of PD [5]. 
Autophagic dysfunction has been identified in various PD 
animal models and samples obtained from PD patients 
[28]. Accumulated evidence reveals that autophagy exerts 
critical roles in neuroprotection [15,55], for instance, the 
autophagic pathway can protect the survival of dopami-
nergic neurons via removing the synuclein in SNpc in PD 
models [2]. AMP-activated protein kinase (AMPK)/mTOR 
signalling, playing an essential role in neuronal survival 
and cell death [50,53], is associated with the regulation 
of autophagy in PD [12]. It has been demonstrated that 
activation of AMPK ameliorates the phenotypes of PD in 
Drosophila genetic models [35]. In addition, the induction 
AMPK-mediated autophagy by a multiple of drugs, includ-
ing resveratrol and metformin, has recently been demon-
strated to accelerate the functional recovery after spinal 
cord injury (SCI) [54,55]. 

Given the key neuroprotective roles of MA-5 under 
diseased conditions, we were interested in the effect of 
MA-5 on PD, hence, hypothesizing that MA-5 may exert 
a neuroprotective role in PD by fostering neuroinflam-
mation via activating AMPK-mediated autophagy. In 
the present study, we reported a neuroprotective role of 
MA-5 against MPTP-induced neurotoxicity via activat-
ing AMPK-mediated autophagy, proposing that MA-5 is 
a novel candidate for the therapeutic strategy of PD.

Material and methods

Animals and groups
The 4-week-old male C57BL/6 mice with the body 

weight of 18 g were purchased from Hunan SJA Labo-
ratory Animal CO., LTD and maintained (4/cage) in an 
air-conditioned room (22 ±1°C) with a 12 h light/12 h 
dark cycle and water and food ad libitum. All experi-
mental protocols performed on animals were approved 
by the Laboratory Animal Ethics Committee of the First 
Affiliated Hospital, University of South China (Permit 
No. 20201226003). 

C57BL/6 mice received i.p. injections of MPTP  
(30 mg/kg) in a  volume of 10 ml/kg of body weight 
once daily for 7 days [43] and were randomly divided 
into 4 groups (n = 10/group): 1) MPTP + phosphate 
buffered saline (PBS) group treated with PBS; 2) MPTP 
+ MA-5 group treated with MA-5; 3) MPTP + MA-5 + 
Compund C group treated with MA-5 and Compound C; 
and 4) MPTP + MA-5 + CSA group treated with MA-5 
and CSA. The mice in the CTRL group were treated daily 
with 0.1 ml saline.

Open field test
The open field experiment is an efficient assay for 

evaluating the overall expression of motor deficits in 
mouse models of PD [41]. In this experiment, the open 
field consisted of a plaza box (50 × 50 cm), and a fence 
(40 cm tall). Mice were placed individually in the mid-
dle of the box and allowed to adapt to the new envi-
ronment for a few minutes. Then, their behaviour was 
recorded on video for approximately 5 min. The box 
was cleaned with 70% alcohol and dried between each 
experiment to remove odour trails. The movement of 
the each mouse within 5 min was observed, and the 
total distance of movement was calculated. After per-
forming the behavioural test, the mice were sacrificed.

Tissue preparation
Tissue preparation was performed according to 

the previous publications [6,8,9,49]. For western blot 
analysis, mice were sacrificed after anaesthesia by 
isoflurane. Briefly, the SN tissues (n = 3/group) were 
dissected and washed with 0.9% of ice-cold saline, and 
then, dissolved in 100 μl RIPA buffer with 1% PMSF and 
homogenised. The supernatants were collected after 
centrifugation at 14,000 g and 4°C for 15 min, and 
stored at –80°C for further analysis.

Western blot analysis
Western blot analysis was performed according to 

the previous publications [7,10,11,21,27,51]. The tissue 
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lysates mixed with a sample loading buffer were heated 
at 95°C for 15 min. Protein samples were subjected to 
10% SDS-PAGE and electroblotted onto polyvinylidene 
difluoride (PVDF) membranes. After being incubated in 
5% bovine serum albumin (BSA) diluted in Tris-HCl saline 
buffer supplemented with 0.1% Tween-20 (TBST, pH 7.4) 
for 1 h to block non-specific protein binding sites, mem-
branes were incubated overnight at 4°C with one of  
the following antibodies: rabbit anti-AMPK antibody  
(1 : 1,000; ab133448, Abcam), rabbit anti-LC3A/B anti-
body (1 : 1,000; ab128025, Abcam), rabbit anti-P62 
antibody (1 : 1,000; ab91526, Abcam), mouse anti- 
parkin antibody (1 : 1,000; ab77924, Abcam), rabbit 
anti-PTEN-inducible kinase 1 (PINK1) antibody (1 : 1,000; 
ab216144, Abcam), rabbit anti-β-actin (1 : 2,000; 
ab8227, Abcam). Then the membrane was washed with 
0.1% TBST 3 times for 5 min each at RT, horseradish 
peroxidase-conjugated goat anti-mouse (1 : 10,000; 
ab6789, Abcam) or goat anti-rabbit secondary anti-
bodies (1 : 10,000; ab97051, Abcam) diluted in TBST 
were incubated at RT for 1.5 h. Next, membranes were 
washed in 0.1% TBST 3 times for 5 min each at RT.  
The immunoreactive bands were visualized by an 
enhanced chemiluminescence (ECL) kit (170-5061, Bio-
Rad Laboratories). The signal intensities were quantified 
by ImageJ 5.0 software.

Statistics
All statistical analyses were performed using Graph-

Pad Prism 6 software. Data were expressed as mean 
±SD and one-way ANOVA was performed followed by 
a post-hoc Bonferroni test. P < 0.05 was considered sta-
tistically significant.

Results

MA-5 up-regulates the phosphorylation 
of AMPK and promotes the autophagy 
in SN of MPTP-treated mice
To determine the effect of MA-5 on the AMPK phos-

phorylation and the mitophagy in SN of MPTP-treated 
mice, western blot was carried out to detect the p-AMPK 
level and LC3-I, LC3-II, P62, parkin, and PINK levels.

We observed that, in comparison to the CTRL group, 
the phosphorylation level of AMPK was down-regulated 
in the MPTP-treated group, but after the treatment of 
MA-5, the phosphorylation level of AMPK was up-regu-
lated (Fig. 1A, B).

We also observed that, in comparison to the CTRL 
group, the ratio of LC3-II to LC3-I  was decreased in  
the MPTP-treated group, but after the treatment of MA-5, 
the ratio of LC3-II to LC3-I  was increased (Fig. 1C, D). 
The P62 level was down-regulated in response to the 

treatment of MPTP, but up-regulated in response to the 
treatment of MA-5 (Fig. 1C, E). In comparison to the CTRL 
group, the levels of parkin and PINK were decreased 
in the MPTP-treated group, but after the treatment of 
MA-5, the levels of parkin and PINK were increased  
(Fig. 1C, F, G).

MA-5 ameliorates the impaired 
motor function in MPTP-treated mice 
via activating the AMPK-mediated 
autophagy
To determine the effect of MA-5 on the recovery 

of the motor function in MPTP-treated mice, an Open 
Field Test was carried out and the total distance and 
average speed were calculated.

We observed that, in comparison to the CTRL group, 
the total distance and average speed were decreased 
in the MPTP-treated group, but after the treatment 
of MA-5, the total distance and average speed were 
increased, whereas, after inhibiting the AMPK and auto-
phagy, MA-5 did not increase the total distance and 
average speed (Fig. 2A, B).

MA-5 up-regulates the expression 
of TH in SN of MPTP-treated mice 
via activating the AMPK-mediated 
autophagy
To determine the effect of MA-5 on the TH expres-

sion in SN of MPTP-treated mice, western blot was car-
ried out to detect the TH level.

We observed that, in comparison to the CTRL group, 
the level of TH was down-regulated in the MPTP-treated 
group, but after the treatment of MA-5, the level of TH 
was up-regulated, whereas, after inhibiting the AMPK 
and autophagy, MA-5 did not increase the TH level  
(Fig. 3A, B).

MA-5 suppresses the inflammation  
in SN of MPTP-treated mice via 
activating the AMPK-mediated 
autophagy
To determine the effect of MA-5 on the inflamma-

tion in SN of MPTP-treated mice, western blot was 
carried out to detect the interleukin (IL)-1β, IL-6 and 
tumour necrosis factor α (TNF-α) levels.

We observed that, in comparison to the CTRL group, 
the levels of IL-1β, IL-6 and TNF-α were up-regulated 
in the MPTP-treated group, but after the treatment of 
MA-5, the levels of IL-1β, IL-6 and TNF-α were down- 
regulated, whereas, after inhibiting the AMPK and 
autophagy, MA-5 did not decrease the levels of IL-1β, 
IL-6 and TNF-α (Fig. 4A-C).
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Fig. 1. Effect of MA-5 on the phosphorylation of AMPK and the autophagy in substantia nigra of MPTP- 
induced mice was determined by western blot. A, B) Phosphorylation of AMPK was up-regulated, and 
the autophagy was activated, indicated by (C, D) increased ratio of LC3II/LC3I, C, E) decreased p62,  
C, F) increased parkin, and (C, G) increased pink levels, in response to the treatment of MA-5. **p < 0.01,  
*p < 0.05, n = 3/subgroup.
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Discussion
In the previous studies, we demonstrated that MA-5 

can exert beneficial effects on mitochondrial homeosta-
sis and increase microglial apoptosis by regulating mito-
phagy via Bnip3 through the MAPK-ERK-Yap signalling 
pathway [26] and promote the survival of microglial cells 
via Mitofusin 2-related mitophagy in response to lipo-
polysaccharide-induced inflammation [46]. In this study, 
we revealed that MA-5 can ameliorate the impaired 
motor function under MPTP-induced neurotoxicity via 
activating AMPK-mediated autophagy.

The dysfunctional autophagy has been well-known 
in relation to PD [31]. AMPK, acting as an energy sen-
sor in response to stress conditions, including oxidative 
stress and nutrition deprivation, serves as an important 
modulator in the development of autophagy [25]. LC3 
and P62 proteins are wide acknowledged to performed 
to monitor the autophagic flux [37]. The LC3-II/LC3-I, 
an indicator of autophagy status [42], is significantly 
up-regulated in PD [20]. P62, a proteolytic substrate in 
autophagy, is down-regulated with the increase of auto-
phagy [40], and is down-regulated in PD [48]. To date, 

Fig. 2. Effect of MA-5 on the recovery of the motor function in MPTP-induced mice was determined by  
the Open Field Test. MA-5 promoted the motor impairments of MPTP-induced mice, indicated by (A) total 
distance and (B) average speed. ***p < 0.001, **p < 0.01, *p < 0.05, n = 6/subgroup.
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Fig. 3. Effect of MA-5 on the TH level of substantia nigra (SN) of MPTP-induced mice was determined 
by western blot. The TH level in SN was up-regulated in response to the treatment of MA-5. **p < 0.01,  
*p < 0.05, n = 5/subgroup.
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the most well-known mitophagy pathway, has been 
mediated by PINK1 and Parkin, representing a crucial 
amplifying mechanism that renders mitophagy more 
efficient [18]. In the present study, we observed that 
MA-5 can promote the phosphorylation of AMPK and 
the autophagy in mice induced by MPTP.

As we all know, neurological function rehabilitation 
is beneficial for protecting against further worsening 
under the pathological condition of PD patients [45]. 
Assessment of the neurological function is widely car-
ried out to determine the therapeutic effect of strate-
gies. Multiple studies have reported that behavioural 
tests can be performed to evaluate the motor dysfunc-
tion in the MPTP-induced PD mouse model [39]. Loco-
motor dysfunction serves as a  wide-acknowledged 
clinical symptom of PD [23]. In our previous study, 
we observed that dietary tryptophan can ameliorate 

the impaired motor function in PD [47], in the current 
study, we revealed that MA-5 can promote the recovery 
of the motor function in mice induced by MPTP via acti-
vating the AMPK-mediated autophagy.

The main origin of PD and its related impaired 
motor function is the degeneration of dopaminergic 
neurons [19]. The lack of TH, a specific marker of dopa-
minergic neurons, is thought to contribute to the pro-
gression of PD [24]. TH, a rate-limiting enzyme during 
biosynthesis of L-dihydroxyphenylalanine (L-DOPA), is 
closely associated with the motor function [24]. In the 
current study, we revealed that MA-5 can up-regulate 
the TH level in SN of mice induced by MPTP via activat-
ing the AMPK-mediated autophagy.

Concentrations of IL-1β and IL-6 in SNpc and blood 
are significantly higher in PD than age-matched sub-
jects without any neurological disease [33]. Subse-

Fig. 4. Effect of MA-5 on the inflammation in substantia nigra of MPTP-treated mice was determined by 
western blot. The levels of proinflammatory cytokines including: A) IL-1β, B) IL-6, C) TNF-α were down- 
regulated in response to the treatment of MA-5. **p < 0.01, *p < 0.05, n = 5/subgroup.
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quently, it has been shown that the secretion of IL-1β, 
IL-6, and TNF-α is significantly enhanced in peripheral 
blood mononuclear cells of PD patients compared with 
age-matched controls [3]. Previous studies have also 
indicated that the survival of dopaminergic neurons 
could be protected via inhibiting the microglia-related 
neuroinflammatory responses [16,17]. In the present 
study, we observed that MA-5 can inhibit the expres-
sion levels of IL-1β, IL-6 and TNF-α in mice induced by 
MPTP via AMPK-mediated mitophagy via activating  
the AMPK-mediated autophagy.

In conclusion, MA-5 can exert a beneficial effect on 
PD, at least in part, via the AMPK-mediated autophagy, 
laying the foundation for providing invaluable thera-
peutic strategies for the treatment of PD.

Although the results seem promising, our study 
still exhibited some limitations. Further studies are no 
doubt needed to be performed to detect the surviv-
al rate of dopaminergic neurons using histochemical 
staining. All in all, MA-5 may be a novel candidate for 
the treatment of PD.
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