
The term proteomics was used for the
first time in 1995 to describe large-scale
protein analyses. At the same time pro-
teomics was distinguished as a new
domain of the life sciences. The major
object of proteomic studies is the pro-
teome, i.e. the set of all proteins accu-
mulating in a given cell, tissue or organ.
During the last years several new meth-
ods and techniques have been devel-
oped to increase the fidelity and effica-
cy of proteomic analyses. The most
widely used are two-dimensional elec-
trophoresis (2DE) and mass spectrom-
etry (MS).
In the past decade proteomic analyses
have also been successfully applied in
biomedical research. They allow one to
determine how various diseases affect
the pattern of protein accumulation. In
this paper, we attempt to summarize
the results of the proteomic analyses of
acute myeloid leukemia (AML) cells.
They have increased our knowledge on
the mechanisms underlying AML devel-
opment and contributed to progress in
AML diagnostics and treatment.
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Introduction

Acute myeloid leukemia (AML) is a malignant, clonal, highly genetically het-
erogeneous disease of blood-forming tissue. AML is characterized by impaired
production of normal morphotic blood elements, accumulation of abnormal cells
called blasts and invasion of various organs and tissues. For many years, AML
diagnostics was mainly based on classic laboratory blood tests (morphological
and cytochemical assessment of leukemic cells). On the basis of these tests, the
French-American-British AML classification was created, which makes it possi-
ble to distinguish eight basic subtypes of the disease (AML M0-M7) (Table 1) [1].
The currently used AML classification system was proposed in 2008 by the World
Health Organization (WHO). It considers the morphological features of
leukemic cells, their immunophenotype and the results of cytogenetic and ge-
netic analyses (Table 2) [2]. Its introduction resulted in increasing the number
of AML subtypes to approximately 30. The new AML classification is of significant
prognostic importance; however, it practically does not affect the therapeu-
tic patterns. Uniform treatment is recommended in the majority of cases, which
is not appropriate with the multitude of AML subtypes. In addition, the clini-
cal and laboratory test-based AML prognostic models are characterized by a low
predictive value. Therefore, it is absolutely necessary to take further action to
explain the molecular mechanisms that underlie leukemic transformations. Their
identification would certainly contribute to the development of new strategies
for AML treatment and new forms of the so-called targeted therapy. Current-
ly, the group of basic factors inducing cancer transformation include abnormal
activation of signal transduction pathways (STP), defective regulation of the
cell cycle and apoptosis disorders [3, 4]. 

Large-scale research techniques developed in recent years (genomic, pro-
teomic, metabolic) have created completely new possibilities of simultaneous
analysis of an enormous number of factors affecting all physiological and patho-
logical processes that occur in living systems. Solely, a comparative analysis
of gene expression profiles in various AML subtypes provided a sufficient amount
of information to propose a new classification system and define new sub-
groups of potential prognostic importance [5, 6]. The microarray techniques
used in this research made it possible to assess the level of individual mRNA
accumulation. Unfortunately, DNA microarrays based methods are bur-
dened with numerous flaws. Firstly, they are extremely complicated and cost-
ly. Additionally, the quantity of the generated transcript does not always cor-
respond to the quantity of protein produced. Hence, it is still necessary to identify
new and more reliable biomarkers. Comparative proteomic analysis is one of
the most interesting and promising approaches. It facilitates the examination
of very complex protein mixtures by quantitative and qualitative assessments
of their individual components. 

The term “proteomics” was first used in 1995 to define large-scale analy-
ses of proteins. At the same time, proteomics was defined as a new field of
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science focusing on the proteome, i.e. a set of all proteins oc-
curring at a given time and at a given place in an organism.
Depending on the character and scope of research conducted,
we can refer to a cellular proteome, tissue proteome or the
proteome of the whole body. In the last years, a range of tech-
niques and methods have been developed which increase the
efficiency and effectiveness of proteomic analyses. These pro-
cedures include two-dimensional electrophoresis (2DE),
mass spectrometry (MS), and complex chromatographic, bio-
chemical and immunolocalization approaches. Recently, the
techniques involving protein microarrays have been devel-
oped. Although, useful in both qualitative and quantitative
proteome analyses they are still not very popular. By using
them one can identify post-translational modifications or as-
sess the activity of a selected set of proteins. Protein mi-
croarrays are also free of limitations of conventional techniques,
such as Western blot and ELISA.

Proteomics in the studies of acute myeloid
leukemia pathogenesis and development

Hematopoiesis is a series of complex, dynamic and pre-
cisely arranged processes that include self-renewal and dif-
ferentiation of bone marrow stem cells. The differentiation
of the common myeloid precursor cells lead to the formation
of cells of granulocytic and monocytic lines (Fig. 1). Even slight
disturbances within just one process may result in the de-
velopment of various diseases, starting from bone marrow
aplasia to myelodysplastic syndromes and leukemia. There-
fore, all changes occurring during hematopoiesis are strict-
ly regulated by signal transmission pathways and transcrip-
tion networks modulating gene expression. In recent years,
several epigenetic regulatory networks have also been iden-
tified. They control DNA methylation and histone modifica-
tion and, in this way, shape the profiles of gene expression,
both protein and microRNA encoding ones [7]. By employing
high-throughput proteomic methods one can simultaneously
follow all of these processes at the protein level. Thus, pro-
teomic can play a very important role in the exploration of mol-
ecular mechanisms involved in leukemogenesis. 

In AML patients, C/EBPα-p30 mutation in the gene encoding
the transcription factor C/EBPα is observed particularly fre-
quently – in approx. 9% of patients. C/EBPα plays an important
role in granulopoiesis as its dysfunction or absence leads to
the inhibition of myeloid cell differentiation and, thus, to the
development of leukemia [8, 9]. Research on myeloblasts with
the mutated C/EBPα gene permitted the identification of sev-
eral events leading to leukemic transformation. 2DE and MS
analyses showed that the concentration of the Ubc9 protein
increases in these cells. As a result, an effector of the mutated
transcription factor which participates in the modification of
C/EBPα-p42 protein was identified. This post-translational
modification (sumoylation i.e. the attachment of SUMO
protein – a small ubiquitin-like modifier), inhibits C/EBPα-p42
at the transcription level and the process of granulocyte dif-
ferentiation is stopped. Proteomic methods were also used
to identify Max transcription factors. They bind with C/EBPα
and this interaction is necessary for granulocytic line differ-
entiation. These observations were additionally confirmed by
genomic analyses. It was demonstrated that the increased
expression of the Max and C/EBPα genes stimulates gran-
ulocyte differentiation, while Max gene silencing effectively
inhibits this process [11]. Additionally, Pulikkan et al. [12] have
recently shown that peptidyl-prolyl isomerase, PIN1, is
formed in AML cells. It was found that the mutated tran-
scription factor C/EBPα-p30 induces the expression of the PIN1
gene. The authors showed that the suppression of the PIN1
gene leads to the myeloid blast differentiation, and its in-
creased expression, causes the maturation block similar to
observed in patients with primary AML and the C/EBPαmu-
tation. It was also found that PIN1 increases the stability of
the c-June protein by inhibiting its ubiquitination, and this way
blocks granulocyte differentiation [12]. There are, however, sev-
eral other factors that influence the granulocyte differenti-
ation. Hahn et al. [13] discovered that inhibitors of the epi-
dermal growth factor receptor (EGFR) induce differentiation
by amechanism unrelated to EGFR. Tsao et al. [14], suggested
that the changes in cellular concentration of PPARgamma re-
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TTaabbllee  11..  French-American-British AML classification

AAMMLL  ssuubbttyyppee DDeessccrriippttiioonn

M0 AML with minimal differentiation, 3-5% of cases

M1 AML without maturation, 15-20% of cases

M2 AML with maturation, 25-30% of cases

M3 acute promyelocytic leukemia (APL), 10-15% of cases 

M4 acute myelomonocytic leukemia, 20-30% of cases 

M5a acute monoblastic leukemia; 2-7% of cases

M5b acute monocytic leukemia; 2-5% of cases

M6 acute erythroid leukemia; 3-5% of cases

M7 acute megakaryoblastic leukemia; 3-5% of cases

TTaabbllee  22..  WHO AML classification

AAMMLL  ssuubbttyyppee DDeessccrriippttiioonn

AML with recurrent AML with translocation t(8;21)(q22;q22)
genetic AML with inv(16)
abnormalities AML with 11q23 translocations

AML with RAR fusions t(15;17)

AML with after a preceding myelodysplastic 
multilineage syndrome (MDS)
dysplasia without previous MDS

AML therapy-related alkylating agent and radiation Therapy 
Related AML
topoisomerase II Inhibitor Related AML 
(MDS)

AML not otherwise AML minimally differentiated (FAB – M0)
categorized AML without maturation (FAB – M1)

AML with maturation (FAB – M2 and M3)
acute myelomonocytic leukemia ( FAB – M4)
acute monoblastic leukemia and monocytic 
leukemia (FAB – M5a i M5b)
acute erythroleukemia (FAB – M6)
acute megakarioblastic leukemia (FAB – M7)
acute basophilic leukemia
acute panmyelosis with myelofibrosis
myeloid sarcoma
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ceptor influence the induction of apoptosis by caspase-8 ac-
tivation. Additionally, they postulated that the DRIP205 pro-
tein (vitamin D-interacting protein 205), which functions as
a PPARγ co-activator, is also pivotal determinant of differ-
entiation.

Carcinogenesis is often initiated by changes in the pattern
or level of protein phosphorylation. STAT5 (STAT – signal trans-
ducers and activators of transcription) are such proteins which
undergo constitutive phosphorylation in AML cells. In some
cases, phosphorylation of these proteins correlates with the
occurrence of mutations in FLT3 and KIT genes. This phe-
nomenon has recently been quite well explored [15, 16]. How-
ever, the mechanism of STAT5 protein phosphorylation is still
unclear in the case of lack of mutation in FLT3 and KIT genes,
which is observed in 35% of patients. This phenomenon was
investigated in AML cell lines using the immunoprecipitation,
technique involving monoclonal antibodies specific for
phosphotyrosine, and MS for protein identification [17]. As
a result, janus kinase (JAK2) was identified as the factor re-
sponsible for tyrosine residues phosphorylation in STAT5 pro-
teins. Additionally, this observation was confirmed using RNAi-
induced gene silencing techniques. The mechanism of the
STAT5 phosphorylation was explained and it was suggest-
ed that the JAK2 kinase might become an effective therapeutic
target in AML patients without mutations in FLT3 and KIT
genes. In another study, Zhang et al. [18] attempted to ex-
plain the role of FLT3 gene mutations by assessing the phos-
photyrosine content in AML cells producing the wild type FLT3,

the protein with internal tandem duplication (FLT-ITD) and
the protein with a point mutation (FLT3 D835Y). This analy-
sis showed that the phosphorylation of tyrosine phosphatase
SHP1 abolishes the transformation potential although not to-
tally inhibits FLT3-D835Y kinase activity. Accordingly, Zhang
and coworkers concluded that both oncogenic mutations of
Flt3 (FLT-ITD and FLT3-D835Y) result in the different activa-
tion of aberrant signaling pathways in AML [18]. 

STP proteins are another objects of intensive studies aimed
at elucidating pathophysiology of acute leukemia [19, 20]. This
issue is particularly interesting and complex as in case of these
proteins the changes observed at the protein level are often
not reflected at the RNA level. The analysis of leukemic cells
isolated from patients belonging to various subgroups [21]
showed that the majority of them had an identical and undis-
turbed pattern of the expression of STP protein genes. For
example, in all subgroups, the levels of pAKT and pS6RP ki-
nases well correlated with the levels their substrates – GSK3
or P70S6K. Generally, STP activation is connected with poor-
er prognosis. It is known that AKT is an inactivator of the pro-
apoptotic BAD protein and an activator of mTOR kinase (mam-
malian target of rapamycin kinase). Kornblau et al. showed
that at high AKT.p473 and AKT.p308 concentrations, the lev-
els of phosphorylated proteins – BAD.p136 and MTOR.p – are
low and, conversely, the latter are high when the AKT.p473
and AKT.p308 concentrations are low. This finding revealed
some atypical relationships between the levels of gene ex-
pression and the activities of resultant proteins, which may
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imply the deregulation of signal transduction systems in
leukemic cells. An increased activity of AKT in leukemia usu-
ally results from the loss of PTEN phosphatase activity. How-
ever, it was observed that AKT.p308 and AKT.p473 levels in
one of the subgroups are high, similarly as the PTEN level. Such
a result may suggest that PTEN-dependent regulation of AKT
kinase dephosphorylation is ineffective. This phenomenon
seems to be an example of feedback failure when PTEN syn-
thesis is increased [22, 23]. 

Disturbance of the activity of acetyltransferases and hi-
stone deacetylases (HDAC) is another pathogenic mechanism
in AML. It leads to the dysfunction of systems controlling the
transcription of genes involved in cell cycle regulation, dif-
ferentiation and apoptosis. In acute promyelocytic leukemia
(APL), a significant element of pathomechanism is incorrect
HDAC recruitment by the PML-RAR fusion protein. Acute
promyelocytic leukemia therapy resulting in cell differenti-
ation disrupts HDAC-induced suppression of retinoic acid tar-
geted genes. These observations led to a dramatic in-
crease of studies on the potential factors modulating the
activity of proteins involved in chromatin modification, in-
cluding HDAC inhibitors. They can inhibit cell development,
differentiation and apoptosis both in vitro and in vivo by af-
fecting the mechanisms dependent on and independent of
transcription. Preliminary experiments showed that HDAC
inhibitors may affect the level of expression of 7-10% of genes.
Recently, however, it has been demonstrated that the pri-
mary HDAC activity may be also targeted directly at non-hi-
stone substrates. So far, over 1700 proteins of this type have
been identified. They include transcription factors, such as
GATA-1, p53 and STAT-3 as well as structural and chaperone
proteins such as HSP90 [7].

In general, the results presented above indicate that mass
spectrometry-based approaches to cell proteome analysis
may prove to be a valuable method for tracking various bi-
ological processes, including leukemogenesis. 

Proteomics in acute myeloid leukemia diagnostics

Rapid progress in research on molecular mechanisms of
leukemic transformation enforces continuous modification
of AML diagnostic and classification systems. Accordingly,
many projects focus on protein biomarkers that can be used
to differentiate AML from other types of leukemia and also
to differentiate AML subtypes. The research in this area was
started over 20 years ago when Hanash et al. [24] found in
acute lymphoblastic leukemia (ALL) cells a group of proteins
specific for particular subtypes of this disease as well as pro-
teins differentiating ALL from AML. This discovery can be con-
sidered a breakthrough, despite the fact that it was made
at a time when rapid protein identification was not possi-
ble yet. Only a few years later subsequent studies reported
the identification of the first potential protein biomarkers [25].
Researchers’ attention was drawn to the oncoprotein-18 (Op-18)
and non-metastaticprotein 23-H1 which accumulation in-
creased in mitogen-treated lymphocytes and in cells collected
from AML patients [26]. It was also found that an increase
of Op-18 concentration correlated with the level of this pro-
tein’s phosphorylation. Accordingly, it was suggested that
Op-18 might be involved in signal transduction during AML

development [27]. Recently, Shi et al. have found that the
platelet factor 4, the connective tissue-activating protein-
3 (CTAP-III) and two fragments of the C3a complement sys-
tem are potential protein biomarkers of ALL in children. These
biomarkers can be used to differentiate ALL patients from
both AML patients and from healthy persons [28]. 

In addition, proteins which are potential biomarkers dif-
ferentiating AML from the myelodysplastic syndrome (MDS)
were identified. For example, Aivado et al. postulated that serum
proteins CXCL4 (their other name is platelet factor-4 – PF4)
and chemokine (C-X-C motif) ligand 4 and 7 (CXCL4 and 7)
are specific biomarkers differentiating MDS and AML patients
[29]. Braoudaki et al., on the other hand, found that MOES,
EZRI and AIFM1 proteins should be considered as AML bio-
markers [30].

Research on protein biomarkers usually involves cell lines
or leukemic cells collected from patients. Plasma is also a very
useful material for such analyses, as it is an excellent source
of protein biomarkers. 2DE-MS analyses have shown that
eight proteins (including ATPases, subunits of 26S protea-
some and a fragment of haptoglobin-1) accumulate to
a higher concentration in plasma of AML patients than in plas-
ma of healthy persons [31]. Using the same methods, pro-
teomes of stem cells (with the AC133+ antigen) isolated from
AML patients and healthy persons were also compared. As
a result, the following proteins characteristic of AML cells were
identified: nuclear mitotic apparatus protein (NuMA), heat
shock proteins and redox regulators [32]. 

Due to the heterogeneity of AML, finding new biomark-
ers enabling its better classification is another important goal
of proteomic analyses. Few articles devoted to this issue have
been published so far. In one of them, Cui et al. [33] presented
a comparative 2DE-MS analysis of bone marrow mononu-
clear cells collected from 61 patients diagnosed with various
AML subtypes (FAB). As a result, 23 proteins specific for the
individual AML subtypes were identified, including proteinase
3, azurocidin and cation antimicrobial peptides which ac-
cumulated to high levels in AML-M2 and AML-M3 patients.
In another study, 13 AML patients classified according to the
WHO system were analyzed [34]. Interestingly, authors of this
studies identified a completely different set of proteins spe-
cific for AML subtypes, including: α-enolase, Rho-GDI β-pro-
tein, annexin I and X, catalase, peroxiredoxin 2 and
tropomyosin 3. A very small studied group was a significant
weakness of this analysis – each AML subtype was repre-
sented by only one or two patients. Yet another type of AML
patients classification was examined by Balkhi et al. [35].
These authors attempted to find protein biomarkers char-
acteristic for typical chromosomal aberrations observed in
AML. As a result, they determined that transcription factor
MafK is characteristic for patients with inv(16), the H17 vari-
ant of myeloperoxidase for patients with t(15;17) and sorcin
for patients with t(8;21) [35]. In 2009, Kornblau et al. applied
protein microarrays to determine differences between pro-
teomes of AML cells. They identified a set of 24 proteins which
can be used to distinguish between purely myeloid subtypes
of leukemia (M0, M1, M2) and those with the monocytic com-
ponents (M4, M5). Additionally, the analyses conducted by
Kornblau and coworkers showed that all these AML subtypes
(M0-5) differ from the remaining two FAB subtypes, i.e. AML
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M6 (erythroleukemia) and AML M7 (megakaryotic leukemia).
For example, the concentrations of the phosphorylated STAT1
and STAT5 proteins as well as a few proteins connected with
apoptosis were higher in AML, M0, M1 and M2 than in M4
and M5. Conversely, other phosphorylated signal transduction
proteins (AKT, TP38, PKC and SRC.p527) accumulated to the
higher levels in subtypes with the monocytic component [21].

Proper classification of AML patients still poses a lot of
difficulty. Persons with the same result of cytogenetic
tests, with identical genetic disorders and with similar risk
factors, can respond to therapy in quite different ways. Hence,
the identification of factors enabling the individualization of
AML treatment has become another important challenge for
proteomics. Accordingly, Irish et al. [36] employed multipa-
rameter flow cytometry to determine in a single AML cell the
changes in protein phosphorylation that are induced by
chemotherapy. They observed that the phosphorylation of
some important elements of signal transduction pathways
(STAT proteins and mitogen-activated protein kinases
(MAPK)) is associated with patient response to treatment.
As a result Irish and coworkers distinguished four phos-
phoprotein profiles that correlated with the prognosis and
response to the treatment, but not with the cytogenetic dis-
orders. Kornblau et al. [21] proposed yet another approach
to the classification of acute myeloid leukemia. The proteins
that could be analyzed by microarray analysis were divided
into 10 separate, interconnected “constellations”. Each of
them comprises proteins with a similar function. After the
experiment the accumulation of all proteins within each con-
stellation was summarized. Consequently, every sample was
characterized by 10 numbers corresponding to 10 constel-
lation. As a result, the authors distinguished 7 subgroups with-
in AML patients. This finding proved the exceptional potential
of proteomic research as a source of information, which can-
not be obtained with other classic or modern genomic meth-
ods. It should be remembered, however, that these results
often have a very preliminary character, so they require fur-
ther confirmation. 

Protein biomarkers for acute myeloid leukemia
remission, resistance and relapse

The identification of protein biomarkers, which can find
applications in AML prognostics, requires comparative
analyses of bone marrow or blood cell proteomes collected
from AML patients before treatment, after treatment and
when the disease relapses. Unfortunately, such research is
very rare due to the problems with obtaining appropriate ma-
terial for proteomic analyses. It is known that chemothera-
py results in the eradication of cancer cells and considerable
myelosuppression. Despite treatment, it is not possible to
eliminate all leukemic cells in some patients. In addition, non-
eliminated leukemic cells can proliferate intensively and ini-
tiate relapse. The few studies comparing three major AML
stages suggest that the immunophenotype of leukemic cells
at the beginning of the disease and during its relapse can
be different. Such changes were observed both in adult per-
sons [37] and in children suffering from AML [38]. A com-
parative analysis of proteomes isolated before and after treat-
ment showed a higher accumulation of BTG1 suppressor

protein (BTG1 – B-cell translocation gene 1) in cells collect-
ed from AML-M2 and -M3 patients with complete remission
[39]. Additionally, Western blot analyses of various heat shock
proteins (HSP) confirmed that in patients with medium and
high risk there is a correlation between an increase of HSP
concentration and the unfavorable course of the disease. This
observation showed that HSPs play a significant role in both
the apoptosis and AML resistance to chemotherapy [40]. The
so-called protein profiles characterizing the proteome com-
position in AML can also be useful for predicting disease out-
come. The developed patterns imply, for example, that the
lack of response to treatment in AML-M0, -M1 and-M2 de-
pends, to a large extent, on the resistance to apoptosis. The
blast growth and resistance to therapy in AML-M4 and -M5,
on the other hand may be connected with the transduction
of signals inducing proliferation and antiapoptotic reactions
[21]. Similarly, some differences in protein profiles seem to
be characteristic for typical cytogenetic disorders observed
in AML. Considering the current knowledge, it can be con-
cluded that patients with the disorders of chromosomes 
5 and 7 respond poorly to treatment and their survival is very
short. Advanced proteomic analyses of leukemic cells
showed significant similarities in protein profiles in patients
with monosomy of chromosomes 5, 7 (-5, -7, respectively)
or deletion in the long arm of chromosome 5 (5q) as well as
in patient with complex chromosomal aberrations, e.g. si-
multaneous monosomy of chromosomes 5 and 7, or simu -
ltaneous monosomy of chromosomes 5 and 7 accompanied
by trisomy of chromosome 8 (+8). Analyses of the gene ex-
pression profiles [6] led to identical observations. These re-
sults show that various cytogenetic changes may have a sim-
ilar influence on proteome composition and leukemic blast
activation. In patients with cytogenetic disorders -5 and -7,
an increase of survivin and GSK3 concentrations was also
observed. Survivin is a poor prognostic marker at the advance
stages of AML [41]. Increased concentrations of neuropi lin-1,
semaphorin receptor and mutated forms of p53 protein are
also considered as an unfavorable prognostic factors [42, 43].
An increased accumulation of MCL1 protein, on the other
hand, seems to be connected with resistance to AML treat-
ment [44].

Proteomics in the assessment of acute myeloid
leukemia patients’ response to treatment

Proteomic analyses play a very important role in the iden-
tification of both potential therapeutic targets and treatment-
induced changes in human cells. Thus, proteomic methods
also found application in the studies on mechanisms of the
action of drugs used in AML chemotherapy. For example,
daunorubicin-induced changes in leukemic cells were ana-
lyzed. It was found that the administration of this antracy-
clin cytostatic drug caused the protective proteins p23 and
HSP90 complex to be degraded by caspases. Similar effects
were observed if idarubicin, cytosine arabinoside and etopo-
side were used. As a result it was hypothesized that inhibi-
tion of the p23 protein may play a significant role in the search
of new targets in AML therapy [45]. The increased HSP90 con-
centration in AML cells had been shown previously. Accord-
ingly, HSP90 became the object of intensive research as a po-
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tential therapeutic target [46]. One of the functions of the
HSP90 chaperone complex is controlling and supporting the
proper folding of, among other things, tyrosine kinase receptors
c-Kit [47] and FLT3 (fms-like tyrosine kinase 3) [48]. Follow-
ing these clues, researchers have developed HSP90 in-
hibitors: geldanamycin and 17-allyl-amino-geldanamycin.
These compounds are currently tested [49, 50]. The results
obtained so far are very promising as cancer cells exhibit
a much higher affinity to these inhibitors than healthy cells
[51]. In addition, it turned out that the application of a gel-
danamycin derivative increases the sensitivity of cancer cells
to cytarabine, i.e. one of the cytostatics currently used [52].

A similar pattern of action was used for searching the re-
ceptors of all-trans-retinoic acid (ATRA) in acute promyelo-
cytic leukemia (APL). The application of ATRA induced leu -
kemic cell differentiation to mature forms of granulocytes.
As a result, complete remission was obtained in about 70%
of APL patients [53]. ATRA binds with fusion protein PML-RARα
(promyelocytic leukemia-retinoic acid receptor α) and induces
its decomposition. Consequently, the genes needed for cell
differentiation and apoptosis become reactivated [54]. As the
molecular mechanism underlying ATRA activity was not well-
understood, numerous reports describing this issue appeared
over a short period of time. Some authors attempted to solve
the problem using proteomic techniques. In one such
study, proteins whose concentrations change under ATRA
treatment were identified. This group included three isoforms
of the 14-3-3 protein which activate protein kinase C (PKC).
It was found that their decreased accumulation induces the
cascade of signals that activate of caspase protein family.
As a result, apoptosis is induced and the development of APL
is inhibited. The mechanism postulated based on the pro-
teomic studies (2DE and MS) was then confirmed with clas-
sical techniques, mostly Western blot [55]. These analyses
showed that ATRA affects the accumulation of several oth-
er proteins. The increased concentration of coronine, an actin-
binding protein, pyruvate kinase and glutathione transferase
were observed. Unfortunately, the observations made using
2DE-MS are not fully consistent with the results of DNA mi-
croarray analyses [56]. 

Arsenic trioxide (ATO) is another factor that induce partial
differentiation and apoptosis of APL cells. Xiong and Wang used
proteomic methods to determine the mechanisms of cytotoxic
and therapeutic activities of ATO [57]. Attempts to use both
drugs simultaneously, i.e. ATRA and ATO, brought a quite good
results and patient mortality rate was reduced [58]. The com-
bination of proteomic and genomic analyses and the appli-
cation of computational biology methods made it possible to
identify other genes and proteins whose activity is modulat-
ed by one or both drugs. At the same time, signal pathways
affected by ATO and ATRA were identified [59]. Moreover, it was
found that in ATRA-resistant patients better therapeutic ef-
fect can be obtained by application of ATRA together with in-
hibitors of histone deacetylase. Histone acetylation is one of
the basic mechanisms enabling the modulation of gene ex-
pression and, thus, differentiation of cells and their matura-
tion. Two key enzymes involved in histone modification are
acetyltrasferase and histone deacetylase. Histone deacetylase
inhibitors stimulate differentiation and/or selective apopto-

sis of cancer cells, so they are a very promising potential ther-
apeutics (e.g. trichostatin A, sodium butyrate and valproic acid).
Bartels et al. examined their influence on the development of
myeloid line, its potential to form colony, proliferation and dif-
ferentiation of neutrophils. They found that trichostatin
A gently reduced the proliferation of progenitor cells, while sodi-
um butyrate and valproic acid affected their proliferation and
apoptosis. Moreover, valproic acid stimulated the proliferation
of CD34+ cells. Additionally, sodium butyrate inhibited neutrophil
differentiation. The administration of 100 µM of valproic acid
increased the number of mature neutrophils with a differen-
tiation block. Sodium butyrate and valproic acid increased the
acetylation of histones 3 and 4. Moreover, all three tested sub-
stances (trichostatin A, sodium butyrate and valproic acid) af-
fected the acetylation of non-histone proteins [7].

For many years, researchers’ attention was focused on
GTP-binding proteins and RAS proteins. Mutations in their
genes are found in 15-25% of patients suffering from AML.
It was found that some of these mutations could activate the
RAF/MEK/ERK kinase pathway. One of numerous postulat-
ed treatment strategies involves the application of the mi-
togen extracellular kinase (MEK) inhibitor which should block
extracellular signal-regulated kinase (ERK). Research on two
MEK inhibitors showed that they protected against the ab-
normal activation of the RAF/MEK/ERK signal pathway. Both
inhibitors repress the development and formation of colonies
of numerous leukemia lines, at the same time exhibit low
toxicity to normal CD34+ cells [60, 61]. Hahn et al. [13] found
that spleen tyrosine kinase (SYK) could also be a good tar-
get in AML therapy. This protein belongs to the so-called non-
receptor kinases and it takes part in the differentiation of B
lymphocytes, signal transduction and it seems to be of par-
ticular importance in lymphomas and myelodysplastic syn-
dromes. It was found that genetic and pharmacological SYK
inactivation with gefitinib promote differentiation of AML cells
and reduce the in vivo development of leukemia [13].

One of the latest strategies in cancer treatment involves
inhibition of activity of the ubiquitin-proteasome system. Pro-
teasome 26S is an enzymatic complex present in the nucleus
and cytoplasm of each cell. It plays a vital role in protein degra-
dation and in this way participates in the cell cycle and tran-
scription regulation. Degradation of proteasome proteins ac-
tivates other factors significant for cell development.
Inhibitors of individual proteasome components constitute
a large number of drugs currently used or tested. This group
includes peptide aldehyde (MG132), dipeptidyl boronic acid
(PS-341), tripeptide vinyl sulfate (NLVS), epoxomycin and lac-
tacystin. The influence of MG132 and lactacystin on the com-
position of leukemic cell proteome was examined using 2DE
and MS techniques. It was found that the proteasome in-
hibitors affected the accumulation of 39 different proteins,
including 11 proteins connected with apoptosis [62]. Agar-
wal et al. observed that the administration of methotrexate
increased the accumulation of ubiquitinated proteins in 
a HL-60 cell line. The result indicated significant disturbance
of proteasome function [63].

Yet another strategy for the cancer treatment is based on
specific antigens of transformed cells. Therapies involving
monoclonal antibodies have already been successfully used
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in solid tumor treatment. The first reports describing the ap-
plication of this strategy in AML therapy have already ap-
peared [64]. Specific antibodies which induced a humoral re-
sponse in leukemic cells were detected by proteomic (2DE,
MS) and immunodetection methods. Antibodies against the
inhibitor of Rho GDP dissociation, actin-binding protein,
CAPZA1 and g-actin were identified. The antibodies against
the inhibitor of Rho-GDP dissociation were found in 71% of
AML patients, while in case of solid tumors and in healthy
controls, these antibodies were detected only in 5 and 4.5%
of persons, respectively. The individual antigens may, there-
fore, constitute both diagnostic markers and therapeutic tar-
gets also in AML treatment. 

Very interesting results of the proteomic analyses have
been recently published by Tsao et al. [14]. They showed an
elevated accumulation of peroxisome proliferator-activated
receptor γ (PPARγ) in 260 newly diagnosed AML patients.
PPARγ belongs to the family of transcription factors playing
an important regulatory role in cell development, differen-
tiation and apoptosis. Increased expression of the PPARγ tran-
scription factor gene induced its antagonists, thus increas-
ing the sensitivity of myeloid leukemia cells to apoptosis by
caspase-8 decomposition [14]. 

In conclusion: the dynamic development of modern
proteomic methods observed in recent years has opened new
perspectives in the research on mechanisms underlying can-
cerogenesis, including leukemic transformation. Special
attention is paid to the identification of new biomarkers that
ensure more effective diagnostics, treatment monitoring and
therapeutic outcome prediction. Accordingly, more and
more frequently proteomes (complex systems formed by pro-
teins that interact with one another and with other cell com-
ponents) are the object of medical studies. 

One of the major challenges faced by proteomics is its in-
tegration with other fields of biological sciences, especial-
ly with genomics, metabolomics, lipidomics, glycomics and
transcriptomics. Proteomics by itself is not sufficient to ex-
plore the mechanisms shaping extremely complicated bio-
logical phenomena such as cancer. The replacement of re-
ductionist methods and research approaches with holistic
methods and approaches appears to be the key to success.
In addition, some attempts are being made to introduce pro-
teomics into clinical diagnostics in the broad sense [65, 66].
Researchers dealing with this problem pay particular attention
to the necessity of selection, verification and determination
of the so-called standard operational procedures (SOP). They
obtain repeatable and clinically useful results by standard-
ization of the conditions under which samples are obtained
(material collection, transport and preparation directly be-
fore the analysis). The optimization of clinical tests is another
issue. It requires the introduction of high-performance an-
alytical platforms to obtain repeatability of results. These tests
must not only be efficient, but also easy to use; they have
to require minimum supervision and have to be easy to in-
troduce in a clinical laboratory. It is also necessary to develop
computational methods which would transform numerous
proteomic results into clinically useful data that could be in-
tegrated with hospital computer systems quickly and eas-
ily. Moreover, a system of biobanks and biorepositories should
be created and all formal and legal aspects of the research

should be regulated (patients’ consent, commercial use of
samples, etc.), preferably at an international level. 

Chronic myeloid leukemia (CML), which together with AML
is included among the myeloid diseases, is the best exam-
ple of a versatile use of proteomics in clinical trials. It is pos-
sible that CML will become the first leukemia for which con-
stant diagnostics and monitoring of therapy will be
introduced. As a result of the discovery of the association be-
tween t(9;22) and fusion BCR-ABL protein production, a drug
specifically inhibiting the activity of ABL tyrosine kinase was
created. At present, tests for BCR-ABL protein detection are
being prepared. They will be used to diagnose leukemia
(BCR/ABL positive) based on single cell proteome analysis
or single cell phenotype assessment in flow cytometry. There-
fore, analyses currently used in CML diagnostics will in fu-
ture function solely as confirming tests [67].

Chronic myeloid leukemia (CML), which together with AML
belongs to myeloid diseases, is the best example of a ver-
satile use of proteomics in clinical trials. It is possible that
CML will become the first leukemia, for which constant di-
agnostics and monitoring of therapy will be introduced. As
a result of the discovery of the association between the t(9;22)
and fusion BCR-ABL protein production, a drug specifically
inhibiting the activity of ABL tyrosine kinase was created. At
present, the tests for BCR-ABL protein detection are being
prepared. They will be used to diagnose leukemia (BCR/ABL
positive) based on a single cell proteome analysis or a sin-
gle cell phenotype assessment in flow cytometry. Therefore,
analyses currently used in CML diagnostics will in future func-
tion solely as confirming tests [67].
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