Aim of the study: Genistein, an isoflavonoid, plays roles in the inhibition of protein tyrosine kinase phosphorylation, induction of apoptosis, and cell differentiation in breast cancer. This study aims to induce cellular stress by exposing genistein to determine alterations of miRNA expression profiles in MCF-7 cells.

Material and methods: XTT assay and trypan blue dye exclusion assays were performed to examine the cytotoxic effects of genistein treatment. Expressions of miRNAs were quantified using Real-Time Online RT-PCR.

Results: The IC_{50} dose of genistein was 175 μM in MCF-7 cell line and the cytotoxic effect of genistein was detected after 48 hours. miR-23b was found to be up-regulated 56.69 fold following the treatment of genistein. It was found that miR-23b was up-regulated for MCF-7 breast cancer cells after genistein treatment.

Conclusions: Up-regulated ex-expression of miR-23b might be a putative biomarker for use in the therapy of breast cancer patients. miR-23b up-regulation might be important in terms of response to genistein.

Key words: breast cancer, genistein, miRNA, MCF-7.
Genistein-induced mir-23b expression inhibits the growth of breast cancer cells

Cell culture
Breast cancer cell line (MCF-7) was cultured in RPMI-1640 medium supplemented with 100 IU/ml penicillin, 10 mg/ml streptomycin, 1% L-glutamine, and 10% heat-inactivated foetal bovine serum, at 37°C in a humidified 95% air 5% CO2 atmosphere.

Treatment of genistein and cytotoxicity assay
MCF-7 cells were incubated at a density of 2 × 10⁵ cells/ml of medium using 96-well plates for 24, 48, and 72 hours. Studied concentrations of genistein were 75 µM, 100 µM, 125 µM, 150 µM, 175 µM, and 200 µM. XTT assay and trypan blue dye exclusion assays were performed to examine the cytotoxic effect of IC₅₀ dose of genistein in the MCF-7 cell line. Formazan formation was quantified spectrophotometrically at 450 nM (reference wavelength 620 nM) with a microplate reader. Viability was calculated using the background-corrected absorbance. Cells without any treatment were taken as a control group.

Isolation of miRNA
miRNA was isolated from cells exposed to IC₅₀ dose of genistein and the control group. Isolation of miRNA and cDNA synthesis was performed using RT² qPCR-Grade miRNA Isolation Kit and RT² first Strand Kit, respectively, according to the manufacturers’ instructions.

Relative quantification of miRNAs
Relative quantitation of 88 microRNAs (Table 1) was measured by using real-time online RT-PCR (LightCycler 480). SNORD44, SNORD47, SNORD44, U6 were used as human endogenous controls. Alterations in the miRNAs expressions of genistein were compared to the control group. Data analysis was evaluated by ΔΔCT method, “Light Cycler® 480 Quantification Software” program, and statistical analysis was evaluated with web-based RT² Profiler PCR Array Data Analysis.

Results
Cytotoxic effect of genistein on MCF-7 cells
Cells were incubated at a density of 2 × 10⁵ cells/ml of medium using 96-well plates for 24, 48, and 72 hours. Studied concentrations of genistein were 75 µM, 100 µM, 125 µM, 150 µM, 175 µM, and 200 µM (Fig. 1). Untreated MCF-7 cells were considered as a control group. The IC₅₀ dose of genistein was 175 µM and the cytotoxic effect of genistein was detected after 48 hours.

mir-23b is up-regulated miRNA by genistein in MCF-7 cell line
Alterations in the expressions of miRNAs were compared with genistein untreated MCF-7 cells. miRNA expression was detected 48 hours after genistein treatment. SNORD44, SNORD47, SNORD44, and U6 genes were

Table 1. Target and housekeeping miRNAs that were analysed for the genistein group. Expression analyses for 88 target miRNAs were performed by real-time PCR. Table 1 describes the sequences of miRNAs
used for housekeeping miRNAs as the endogenous normalisation factor to define miRNA expression profiles of 88 miRNAs. miR-23b was found to be up-regulated 56.69 fold in the treatment of genistein compared to the control group of genistein untreated cells (Fig. 2).

Discussion

Several studies have reported that genistein, which is an isoflavonoid and is a prime anti-cancer component of soybean, can affect miRNA expression levels [17–20]. miR-151, which has an oncogenic effect, is up-regulated in prostate cancer cell lines (PCa), and genistein treatment down-regulates the relative expression of miR-151 in PCa [21]. It is known that genistein induces expression of miR-574-3p, which has a tumour suppressor role, and this induction inhibits cell proliferation, migration, and invasion in vitro and in vivo for prostate cancers [22]. Zaman et al. showed that genistein decreases the expression of miR-23b-3p in A-498 renal cancer cell line [23]. Furthermore, suppression of miR-23b-3p increases the number of total apoptotic cells and decreases cell invasion [23]. Although it is known that genistein affects chemotherapy agent efficacy and apoptosis, the effect of genistein on miRNA profiles is still unknown for breast cancer. In this study, it was found that treatment condition, which was genistein, affected miRNA expressions in MCF-7 breast cancer cell line. The cytotoxic effects of the defined group were examined independently. Cells in the genistein group were treated with an IC50 dose of genistein for three days. The cytotoxic effect of treatment group was observed after 48 hours. After the IC50 dose of genistein was determined, miRNA qPCR array method was performed to detect regulation of miRNAs expressions in MCF-7 cell line. In this study, it was found that expression of miR-23b was up-regulated in the genistein treatment group. Majid et al. clearly showed that miR-23b is a methylation-silenced tumour suppressor in prostate cancer, and a high expression level of miR-23b is associated with higher survival rates in prostate cancer patients [24]. Stable ectopic expression of miR-23b in HCT-116 colon carcinoma cell line reduces migration, invasion, and resistance to anoikis [25]. In vivo tumour models, which are generated from miR-23b-expressing HCT 116 cells, show that miR-23b-expressing tumours are encapsulated, non-invasive, and have low growth rate [25]. miR-23b regulates colony morphology and increases epithelial characteristics in MCF-7 cells. It is observed that miR-23b enhances focal adhesion connections and provides less lamellipodia structure after transfection in MDA-MB-231 breast cancer cells [26]. miR-23b regulates cytoskeletal reorganization and reduces cell motility and invasion via the PAK2 gene, which is a target for miR-23b in MCF-7 and MDA-MB-231 cells [26]. Furthermore, inhibition of miR-23b increases cell migration and metastasis for in vivo breast cancer models [26]. Because it is known that miR-23b has...
The authors declare no conflict of interest. This study was supported by Ege University Medical Faculty Research Project Subcommittee (Grant number:2008/ TIP/021).

References