
A striking characteristic of neoplastic processes is the partial or total release
of the involved tissue from control by those factors that regulate development
and differentiation. A consequence of this release from control is the
occurrence of several paraneoplastic syndromes due to secretion by the tumor
cells of one or more substances. The secretion of these substances may be
the result of the expression of a gene not normally expressed in the tissue,
and, hence, a totally foreign molecule may be synthesized, e.g., ACTH secretion
by bronchogenic carcinoma (“ectopic” hormone production). On the other
hand, the substance may be secreted by the tissue normally, but the tumor,
being independent of feedback processes, elaborates an abnormally large
amount of the particular hormone and/or its precursors. One well-
characterized example is the insulinoma, which secretes insulin at a rate
often independent of plasma glucose levels and, moreover, may secrete large
quantities of the precursor molecule proinsulin so as to achieve a plasma
proinsulin/insulin ratio far greater than that resulting from normal secretion
by the pancreatic islets.

Renal cancer, or more specifically adenocarcinoma or hypernephroma,
frequently can be associated with such paraneoplastic syndromes [1], a point
of substantial clinical importance since a significant fraction of patients with
this tumor present with systemic but without specific genitourinary
symptomatology. Like bronchogenic carcinoma, renal adenocarcinoma may
secrete hormones or other substances not secreted by the normal organ
parenchyma, i.e., ectopic production. Examples include parathyroid hormone,
enteroglucagon and chorionic gonadotropin. But it must be emphasized that
the kidney has several endocrine functions of its own, and excess production
of renin, prostaglandins and erythropoietin (Epo) have all been reported in
patients with renal adenocarcinoma. It is the molecular mechanism of Epo
production by renal adenocarcinoma that will now be addressed.

Epo is a glycoprotein hormone that is the prime regulator of red blood cell
production. It also has numerous non-hematopoietic actions (reviewed in [2]).
In the adult, it is produced primarily by interstitial fibroblasts in the renal
cortex. Its rate of secretion ( corresponding to expression of the Epo gene) is
regulated by hypoxia (see below). Renal tumors may secrete excess Epo by
at least two different mechanisms. Firstly, the expanding mass may cause
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partial obstruction of adjacent blood vessels resulting in localized areas of
hypoxemia. This mechanism is the likely cause of increased Epo levels found
in some patients with benign renal cysts. It may, of course, also be operative
in some patients with malignant renal lesions. However, the second
mechanism, that of true synthesis of Epo by the malignant tissue itself, is the
more intriguing one, despite the difficulty in establishing it in a given case. 

Identification of hypoxia inducible factor-1 (HIF-1)– hypoxia
regulates more than the erythropoietin gene

In 1993, Wang and Semenza described hypoxia inducible factor 1 (HIF-1)
[3, 4]. It is a nuclear factor from Hep3B cells, an Epo-producing hepatoma cell
line, that was detected when cells were cultured in 1% oxygen but not in 20%
oxygen. Hypoxia also induced it in several cell lines that did not express Epo.
HIF-1 DNA binding activity disappeared rapidly when hypoxic cells were
exposed to increased oxygen. HIF-1 rapidly associates with and dissociates
from its DNA binding site in vitro (T1/2<1 min for both processes). The authors
also showed that the iron chelator desferrioxamine induced both Epo
expression and HIF-1 binding activity [5]. Desferrioxamine induced Epo gene
expression in the kidneys of mice in vivo. Importantly, desferrioxamine also
induced HIF activity in Epo non-producing cells, suggesting “a common
hypoxia signal transduction pathway leading to HIF-1 induction in different
cell types.”

HIF-1 activates the transcription of numerous genes other than
erythropoietin (see [6]). Semenza et al. showed that transcripts encoding the
glycolytic enzymes aldolase A, phosphoglycerate kinase 1 and pyruvate kinase
M were induced in cells by exposure to HIF inducers (1% oxygen, cobalt
chloride or desferrioxamine). Partial gene sequences from these enzymes
contained nucleotide sequences related to the HIF-1 binding site of the Epo
enhancer and bound HIF-1 specifically. These glycolytic enzyme gene
sequences containing HIF-1 binding sites were shown to mediate hypoxia
inducible transcription, further demonstrating the importance of hypoxic
regulation outside of the erythropoietin system. 

HIF-1 is a heterodimer [7]. Both subunits of HIF-1 (α and β) are basic helix-
loop-helix (bHLH) proteins containing a PAS domain. The PAS domain is
common to the Drosophila PER and SIM proteins and the mammalian ARNT
(aryl hydrocarbon receptor nuclear translocator) and AHR proteins. HIF-1 α is
related to SIM and HIF-1 β is one of a series of ARNT gene products. Thus,
the designations “HIF-1 β” and “ARNT” are often used interchangeably
throughout the literature.

The importance of HIF-1 action in hypoxic regulation of gene expression was
further emphasized when it was shown that vascular endothelial growth factor
(VEGF) gene transcription was activated by HIF-1. Forsythe et al. observed that
VEGF induced angiogenesis in several clinically important situations including
myocardial ischemia, retinal disease and tumor growth and that HIF-1 was
responsible [8]. Interestingly, in demonstrating that a 500 nt region of the 
3’ UTR of VEGF mRNA was critical for stabilization of VEGF mRNA [9, 10], Levy
et al. observed that the protein mRNA complex was elevated in cells lacking
the von Hippel-Lindau tumor suppression gene. This observation was to have
great importance in the elucidation of the oxygen sensor.

Other interacting proteins and the regulation Of HIF-1

The regulation of Epo gene expression as well as other hypoxia inducible
genes requires several regulatory proteins in addition to HIF-1 α and β. In a
study of 11 different orphan nuclear receptors, Galson et al. screened their
ability to bind to elements in the Epo promoter and enhancer by
electrophoretic mobility shift assay [11]. Four of these receptors bound
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matyczne mutacje genu VHL w komór-
kach nerki. Te przypadki czêsto charak-
teryzuj¹ siê zwiêkszonym wytwarzaniem
Epo i zespo³em erytrocytozy, towarzysz¹-
cym chorobie nowotworowej. Inne przy-
padki raka nerki, które powsta³y na sku-
tek mutacji w innych genach i posiadaj¹
normalny gen VHL, nie wytwarzaj¹ Epo.
Zatem istniej¹ca heterogennoœæ w dele-
cjach genu VHL w indywidualnych przy-
padkach raka nerki le¿y u podstaw wiêk-
szej z³o¿onoœci obrazu klinicznego tej
choroby. 
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specifically to the response elements in the Epo promoter
and enhancer, namely, hepatic nuclear factor 4 (HNF-4), TR2-
11, ROR α 1 and EAR3/COUP-TF1. By ectopically expressing
HNF-4 in HeLa cells, the authors observed an 8-fold increase
in hypoxic induction of a reporter gene construct containing
the minimal Epo enhancer and promoter.  Thus, HNF-4 is
an important positive regulator in tissue specific and
hypoxia inducible expression of the Epo gene.

The homologous transcription adaptors p300/CRB and
CBP also play a role in hypoxic regulation. Arany et al.
searched for specific p300 binding proteins and found that
HIF-1 α interacted with p300 [12] and that hypoxia induced
the formation of a DNA binding complex containing both
HIF-1 α and p300/CBP. p300/CBP-HIF complexes are
important in the regulation of hypoxia induced genes.

Ebert and Bunn provided an important insight into the
complex role played by p300/CRB in hypoxic regulation [13].
They analyzed the protein multimer that binds to the lactate
dehydrogenase A (LDH-A) promoter and demonstrated the
involvement of HIF-1, p300/CRB and CREB-1/ATF-1. Also ,
Bunn and his colleagues demonstrated the mechanism of
regulation of HIF-1 α. Huang et al. identified an ooxxyyggeenn
ddeeppeennddeenntt  ddeeggrraaddaattiioonn  ddoommaaiinn  ((OODDDDDD))  within HIF-1 α that
controlled degradation by the ubiquitin-proteasome
pathway [14]. Deletional mutagenesis of the domain yielded
a HIF-1 α that was stable and active in the absence of
hypoxic induction. 

The von Hippel-Lindau protein, proline
hydroxylation and the oxygen sensor

The von Hippel-Lindau protein was the seminal clue that
led to the identification of the oxygen sensor. Von Hippel-
Lindau (VHL) disease is an inherited disorder in which
individuals have a predisposition to develop clear cell renal
carcinoma, pheochromocytoma, spinal cord cerebellar and
retinal hemangioblastoma [15-21]. Hemangiomas of other
organs (adrenals, lungs, liver) and multiple pancreatic and
renal cysts occur as well. There is a clear pro-angiogenic
phenotype. Earlier, Levy et al. described the association of
VEGF expression and the absence of VHL protein (pVHL)
[10], and Iliopoulus et al. observed that VHL deficient cells
lacked hypoxic regulation that could be restored by
expression of VHL protein [22]. 

It was discovered that pVHL played a role in oxygen
dependent proteolysis of HIF [23]. In VHL deficient cells, 
HIF-1 α protein was constitutively stabilized in normoxia,
and HIF-1 was activated. Expression of pVHL restored
oxygen dependent instability of HIF-1 α. pVHL and HIF-1 α
interacted directly, and pVHL was detected in the hypoxic
HIF-1 DNA binding complex. pVHL and HIF-1 dissociated in
cells treated with desferrioxamine or cobalt. Thus, the
pVHL/HIF-1 interaction is iron dependent, and it is required
for oxygen dependent degradation of HIF-1 α.

Cockman et al. demonstrated that pVHL was essential
for an oxygen dependent degradation domain (ODDD)

mediated destruction of HIF-1 α by the ubiquitin-
proteasome pathway [14, 24]. HIF-1 α ubiquitinylation was
defective in VHL deficient renal carcinoma cells and that
exogenous expression of pVHL complemented this defect.
This effect was specific for HIF-1 α subunits. They went on
to demonstrate that short sequences within the internal
transactivation domains of HIF α were sufficient for
recognition by pVHL. Mutagenesis studies delineated the
structural requirement for this interaction. The authors
concluded that pVHL regulated HIF α degradation by
functioning as a “recognition component of a ubiquitin
ligase complex”. 

In a critical discovery, Jaakkola et al. showed that HIF-1 α
targeting to the pVHL ubiquitin E3 ligase complex was
dependent upon oxygen regulated prolyl hydroxylation [25].
Studies of HIF-1 α demonstrated that proline 564
hydroxylation was critical for this interaction [26, 27]. The
enzyme responsible for this reaction was designated as
HHIIFF αα pprroollyyll  hhyyddrrooxxyyllaassee  ((HHIIFF--PPHH)). The absolute requirement
for oxygen as a cosubstrate and iron as a cofactor
suggested that HIF-PH functioned directly as a cellular
oxygen sensor. Hydroxylation of proline 402 provides yet
another site for pVHL binding [28].

In addition to prolyl hydroxylation that regulates the
hypoxia inducibility/stabilization of HIF-1 α, hydroxylation
at another site in HIF-1 α plays a distinct role. The C-terminal
activation domain (CAD) of HIF-1 α and its regulation involve
hydroxylase activity that is not dependent upon pVHL [29].
This CAD hydroxylation is on asparagine 803 of HIF-1 α.
Indeed, a hypoxia inducible HIF asparagine hydroxylase,
identical to a previously identified HHIIFF  iinntteerraaccttoorr  ddeessiiggnnaatteedd
ffaaccttoorr  iinnhhiibbiittiinngg  HHIIFF  ((FFIIHH)) [30], was shown to downregulate
HIF α transactivation and was later shown to interact with
HIF-1 α and pVHL, thus mediating repression of HIF-1
transcriptional activity. This asparagine hydroxylation
abrogated p300 binding to HIF-1 α. Figure 1 depicts the
results of HIF-1 α proline and asparagine hydroxylation.

Von Hippel-Lindau (VHL) disease and acquired
VHL mutations

Von Hippel-Lindau disease is an autosomal dominant
cancer syndrome resulting from a germ line mutation in the
VHL gene [16-21]. Mutation or loss of the VHL gene results in
a propensity to develop numerous benign or malignant
tumors, as well as cysts in several organ systems [20]. Within
the central nervous system, individuals may develop retinal
hemangioblastomas, endolymphatic sac tumors and cranial
spinal hemangioblastomas of the cerebellum, brain stem,
spinal cord, lumbar sacral nerve roots and supratentorial
structures. Disorders of the viscera include renal cell
carcinoma and cysts, pheochromocytomas, pancreatic tumors
or cysts, epididymal cystadenomas and broad ligament
cystadenomas. Table 1 (modified from reference [20]) shows
the age of onset and frequency of VHL disease lesions.

Since VHL protein plays a critical role in the regulation
of the Epo gene, it is not surprising that some VHL disease
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tumors can produce Epo constitutively. Renal cell carcinomas

or cysts and cerebellar hemangioblastoma are most

frequently associated with elevated circulating Epo levels

[31-39]. There is no clear reason why other VHL disease

lesions may not also produce Epo. Perhaps they do, but not

at levels high enough to be detected clinically. There appears

to have been no systematic assessment of this

phenomenon among VHL disease patients or their

pathological tissues. 

Acquired VHL mutations also occur most frequently in

clear cell renal carcinoma [40-46]. Loss of chromosome 3p

or loss of heterozygosity can result in inactivation of VHL.

The incidence of erythrocytosis associated with renal

adenocarcinoma has been reported to be between 1-5%

[39, 47] and has not been correlated with the frequency of

VHL mutations. Besides loss or mutation of VHL, other genes

have been associated with renal cell carcinoma including

FHIT, FOXP1 and others [40, 46, 48-53]. This potential

TTaabbllee  11.. Von Hippel-Lindau disease lesions
TTaabbeellaa  11..  Zmiany patologiczne w chorobie Von Hippel-Lindau

MMeeaann  ((rraannggee))  aaggee FFrreeqquueennccyy  iinn  

ooff  oonnsseett,,  yyeeaarrss ppaattiieennttss  ((%%))

CCEENNTTRRAALL  NNEERRVVOOUUSS  SSYYSSTTEEMM

Retinal hemangioblastomas 25 (1-67) 25-60% 

Endolymphatic sac tumors 22 (12-50) 10% 

Craniospinal hemangjoblastomas 

Cerebellum 33 (9-78) 44-72% 

Brain stem 32 (12-46) 10-25% 

Spinal cord 33 (12-66) 13-50% 

Lumbosacral nerve roots Unknown <1% 

Supratentorial Unknown <1% 

VVIISSCCEERRAA  

Renal cell carcinoma or cysts 39 (16-67) 25-60% 

Pheochromocytoma 30 (5-58) 10-20% 

Pancreatic tumor or cyst 36 (5-70) 35-70% 

Epididymal cystadenoma Unknown 25-60% 

Broad ligament cystadenoma Unknown Unknown

OO22

HHIIFF  pprroollyyll HHIIFF  aassppaarraaggiinnyyll

hhyyddrrooxxyyllaassee hhyyddrrooxxyyllaassee  ((FFIIHH))
HHIIFF--11αα

PPrroo  440022 PPrroo  556644 AAssnn  880033

OOHH OOHH OOHH

VVHHLL  uubbiiqquuiittiinn PP330000
lliiggaassee ccooaaccttiivvaattoorr

DDeessttrruuccttiioonn  bbyy AAccttiivvaattiioonn  ooff
PPrrootteeaassoommee ttrraannssccrriippttiioonn

FFiigg..  11..  Regulation of HIF-1 α by hydroxylation of proline 402 and 564 and asparagine 803
RRyycc..  11..  Regulacja HIF-1 alfa przez hydroksylacjê proliny 402 i 564 oraz asparaginy 803
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multiplicity of causes of renal cell carcinoma may account
for the relatively low incidence of Epo production by this
tumor. Also, there is heterogeneity of VHL gene deletions
within individual renal cell carcinoma tumors [41]. 

Other erythropoietin-producing tumors 

Other, non-VHL associated tumors, may also produce
Epo. One of the most common is hepatocellular carcinoma
[54-56]. Epo gene expression by these cells may simply
reflect “de-differentiation” from the adult to a more fetal
phenotype (the liver is the principal source of Epo
production in the fetus). Also, Wilms’ tumors may produce
Epo [57-62]. More unusual types of Epo-producing tumors
include pancreatic ductal carcinoma [63], renal capillary
hemangioma [64-79] and uterine leiomyoma [65-79]. In
most of these more unusual situations, an investigation for
VHL mutations was not carried out.

Summary

Our present understanding of the mechanism of hypoxic
regulation of the Epo gene (and numerous other genes)
provides a direct link to the cause of some forms of renal
cancer, namely, the von Hippel-Lindau protein. Mutation or
loss of this gene, either in an inherited fashion or in a tissue-
specific acquired fashion, can lead to renal cysts and
carcinoma as well as neoplasms of several other organs. Loss
of hypoxic regulation of several genes plays a role in the
neoplastic process, and increased production of Epo is
recognized as the paraneoplastic syndrome of erythrocytosis.
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