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Magnetocardiography in clinical cardiology. Status quo
and future applications
Magnetokardiografia w kardiologii klinicznej. Stan obecny i przyszłe zastosowania
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Special article/Artykuł specjalny

A b s t r a c t

Magnetocardiography (MCG) is a non-contact, non-invasive technique for the assessment of electromagnetic activity of the
human heart. Theoretical considerations and comparative studies indicate different information content between MCG and electro-
cardiography (ECG). Although many questions about cardiac pathophysiology and electrophysiology can be answered by MCG stud-
ies, measurement of biomagnetism is still only marginally recognized as a valuable tool. Although MCG instrumentation (SQUIDs,
MSR) and operation (liquid helium) are expensive and not available at the bedside, the gain of information drawn from the cardiac
magnetic field is worth the effort. The MCG has superior sensitivity for ischaemic myocardium both at rest and under stress. There-
fore, it may change one’s ideas of decision making about invasive procedures. Compared to scintigraphy, which is a cumbersome
method with the need of radioactivity exposure to the patient, MCG is as easy as bicycle ergometry but with higher sensitivity. In
terms of risk stratification for sudden cardiac death, it seems to be possible that MCG in the future will provide additional informa-
tion as to which patient will not benefit from prophylactic defibrillator implantation. However, appropriate clinical studies are lack-
ing. Most interestingly, MCG appears to be practical and informative in the diagnosis of cardiac arrhythmias, and has sufficient spa-
tial accuracy necessary for clinical purposes. It seems realistic that MCG-based localization of arrhythmogenic spots may guide the
operator’s ablation catheter, e.g. in patients with relapsing AF after a first successful ablation procedure. There is enough room for
fantasy which question in clinical cardiology remains to be answered by MCG.

KKeeyy  wwoorrddss::  magnetocardiography, coronary heart disease, ischaemia, risk stratification, arrhythmia, atrial fibrillation

S t r e s z c z e n i e

Magnetokardiografia (ang. magnetocardiography, MCG) jest bezkontaktową, nieinwazyjną metodą pomiaru pola magnetycznego ludz-
kiego serca. Założenia teoretyczne oraz badania porównawcze wskazują, że MCG i EKG dostarczają odmiennych informacji. Pomiar pola
magnetycznego jest nadal w niewielkim stopniu uważany za wartościowe narzędzie, pomimo że badania MCG mogą udzielić odpowiedzi
na wiele pytań dotyczących patofizjologii serca i elektrofizjologii. Chociaż oprzyrządowanie konieczne do MCG (SQUIDs, MSR) i jego obsłu-
ga (ciekły hel) są drogie i nie są dostępne jako badania przyłóżkowe, to informacja uzyskiwana z badań pola magnetycznego serca jest
warta tych wysiłków. Magnetokardiografia charakteryzuje się większą czułością w wykrywaniu niedokrwienia miokardium zarówno
w warunkach spoczynkowych, jak i po obciążeniu. W porównaniu z scyntygrafią, która jest metodą niewygodną, związaną z narażeniem
pacjenta na promieniowanie radioaktywne, wykonanie badania MCG jest tak łatwe jak wykonanie próby wysiłkowej na ergometrze rowe-
rowym, ale charakteryzuje się większą czułością. W odniesieniu do stratyfikacji ryzyka nagłego zgonu sercowego wydaje się prawdopo-
dobne, że w przyszłości MCG może dostarczyć dodatkowych informacji wskazujących, którzy pacjenci nie odniosą korzyści z wszczepie-
nia defibrylatora w profilaktyce pierwotnej. Nie ma jednak odpowiednich badań klinicznych. Co najbardziej interesujące, MCG wydaje się
mieć praktyczne zastosowanie i dostarczać informacji w diagnostyce zaburzeń rytmu serca oraz ma wystarczającą rozdzielczość prze-
strzenną wymaganą do zastosowania klinicznego. Wydaje się realne, że oparta na badaniu MCG lokalizacja arytmogennych ognisk może
służyć operatorowi w trakcie ablacji przezskórnej, np. u pacjentów z nawracającym migotaniem przedsionków po pierwszym skutecznym
zabiegu ablacji. Być może wiele problemów w kardiologii klinicznej może być rozwiązane przy użyciu MCG.

SSłłoowwaa  kklluucczzoowwee::  magnetokardiografia, choroba wieńcowa, niedokrwienie, stratyfikacja ryzyka, zaburzenia rytmu, migotanie przed-
sionków
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Introduction
In 1887, Augustus Waller was the first to record the

electrical activity of the human heart [1]. Nowadays, the
method to measure electric potential differences on the
body surface originating from the cardiomyocytes of the
beating heart, known as electrocardiography (ECG), is the
most important tool for the diagnosis of heart diseases in
clinical routine. The same bioelectric activity that generates
electric potentials also induces biomagnetic fields, which
were recorded from the heart for the first time in 1963 by
Baule and McFee [2]. The method was termed magneto -
cardiography (MCG). However, cardiac magnetic signals are
several orders of magnitude weaker than the earth’s
magnetic field, which is in the order of 10–5 Tesla (T), or the
urban environmental AC magnetic background (10–3 T)
(fig. 1) [3]. Therefore, it was not until the introduction of
highly sensitive superconducting quantum interference
device (SQUID) sensors at the beginning of 1970 that
accurate and low-noise detection of cardiac biomagnetism
became feasible [4]. For a detailed technical description of
SQUIDs the reader is referred to a specific review [5]. The
sensors are immersed in liquid helium at the low critical
temperature of –269°C necessary to maintain super -
conductivity, and mounted in a vacuum-isolated container
called a dewar [6] (fig. 2). The use of magnetically shielded
rooms (mSR) further improved the signal quality during
recording by reducing external magnetic noise [4].
Unfortunately, the costs of MSR are high due to the use of

aluminium and mu-metal, which is an expensive
ferromagnetic material. Further disadvantages are
immovability, hence no bedside availability of MCG, and
its sensitivity to metal implants or pacemakers. In the last
10 years, different companies have developed MCG
systems which are now used under clinical routine
conditions (tab. 1). Most of them are large multichannel
systems containing more than 60 SQUID sensors covering
an area of up to 0.3 m in diameter of the patient’s chest.
Two of these systems were primarily constructed to record
magnetic fields of the brain (magnetoencephalography,
MEG), which is, although a most interesting subject, not
in the scope of this review.

Biomagnetism
In principle, both electrical and magnetic signals derive

from the same ionic currents flowing within myocardial
fibres during cardiac activity. The magnetic field generated
by an electrical current flowing in a conductor wire (or
a heart muscle cell) is characterized by circular and
concentric field lines having their centre on the wire and
the orientation of a clockwise screw advancing in the same
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direction as the electrical current (fig. 3). The ECG and MCG,
therefore, have morphological features such as T-, P-, and
Q-waves, and the QRS complex in common. However, the
differences of physical properties of magnetic fields
compared to electric currents determine the bulk of
additional information about the heart, which can be drawn
from the reconstruction of cardiac magnetic fields: the
magnetic signal is much less influenced by variations of
conductance in body tissues than electric currents [7].
Hence, MCG is much more sensitive to very weak signals
such as tangential or vortex currents of the heart muscle,
which are induced by radial spreading of the wave front
from the endocardium towards the epicardium (fig. 3).
Moreover, in contrast to ECG, closed loop currents inside
the chest can be detected by MCG [8]. The extraordinary
sensitivity is best demonstrated by fetal MCG, which is the
only reliable diagnostic tool to detect prenatal cardiac
rhythm disturbances at certain stages of gestation (for
review see [9-11]). Moreover, in healthy males, significant
changes of repolarization during pharmacologically induced
stress were found with MCG but not with ECG [8, 12]. Also
in contrast to ECG, sex and age dependent variation at
different time points of the cardiac cycle can be detected
with MCG [13]. Due to the fact that no direct body contact
is necessary to study biomagnetism, cardiac magnetic field
recording is not hampered by false contacts of skin
electrodes or variable sensor positions [14]. Thus, excellent
reproducibility of MCG findings is clearly a major advantage.
The measurement is absolutely passive without any
physical interaction or any kind or energy applied to the
patient. Nevertheless, although MCG seems to be able to
improve non-invasive diagnostics in cardiology, the method
is of limited availability and clinical validation is still
incomplete.

Coronary artery disease
The diagnosis of haemodynamically relevant coronary

artery disease (CAD) is still a clinical challenge. This is true
for both asymptomatic patients with numerous
cardiovascular risk factors and patients with a first episode

of acute chest pain without any clinical signs of CAD. But
there is also a dilemma for cardiologists and their patients
with known CAD, after multiple coronary interventions and
finally coronary bypass grafting, who after a symptom-free
period of three years develop angina again. Neither
established diagnostic methods such as 12-lead ECG,
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echocardiography, and radionuclide imaging at rest and
under stress, nor innovative cardiac imaging based on
magnetic resonance imaging or computed tomography
have sufficient accuracy to reliably rule out de novo or
relapsing myocardial ischaemia [15-20]. Transient
myocardial ischaemia, however, causes well-recognizable
changes in a variety of MCG parameters, first described by
Cohen and Kaufman in 1975 [21]. The action potential is
affected in different ways, e.g. reduction of cellular
membrane potential (ST depression [22-24], ST-T signal
amplitude [25], QRS and ST-T integrals [26, 27]) or
conduction velocity, followed by changes of time intervals
(QT interval [28]). Ischaemia also leads to repolarization
disturbances. The resulting QT dispersion can be spatially
evaluated with MCG.

With the first 9-channel MCG system developed for
clinical use without an MSR (CMI, Cardiomag Imaging,
USA), Park and Jung were able to define criteria for
ischaemia within the T-wave and to identify myocardial
ischaemia in patients with unstable angina with a positive
predictive value of 91% and a negative predictive value of
96% [29]. However, due to the use without an MSR only
a poor signal-to-noise-ratio could be achieved. In
a following clinical study it could be demonstrated that
MCG on admission in patients presenting with acute chest
pain and without ST-segment elevation was superior for
the detection of CAD compared to ECG, ECHO, and
troponin-I. Owing to the unshielded environment, the
magnetic field recording of 63 out of 264 patients (24%)
could not be interpreted [30]. Tolstrup et al. published
comparable results using the same device and software
[31]. Interestingly, a multivariate regression analysis after
a 3-year follow-up revealed the highest mortality risk for
patients with diabetes mellitus and an abnormal MCG at
admission (RR = 18.0; 95% CI: 2.49-133.3) [32]. By the use

of a shielded 55-sensor multichannel MCG system (ATB,
Italy), allowing the recording of the heart’s entire magnetic
field every 2 ms, a further clinical study showed that MCG
can be performed together with a standard dobutamine/
atropine stress protocol [33]. Assuming an ischaemia-
induced reduction of epicardial current density and
strength, the study compared the epicardial current
distribution at the time point of maximal QRS strength at
rest or under stress conditions. Figure 4 shows the
epicardial current distribution of a patient with a high-grade
stenosis of the posterior descending artery. Using this
analysis the authors were able demonstrate that
dobutamine stress (DS) MCG yielded significantly higher
accuracy for the detection of significant coronary artery
stenosis (sensitivity 98%, specificity 83%, positive
predictive value 80%, negative predictive value 98%) than
DS-ECG in patients with intermediate pre-test probability
for CAD [33]. Moreover, in most cases spatial resolution of
MCG allows assignment of the ischaemic myocardial area
to the corresponding coronary artery.

A different algorithm for CAD identification calculating
the maximum amplitude and maximum current-arrow
magnitude of the subtracted ST-T waveform was published
by Kanzaki et al., showing a sensitivity and specificity of
detecting CAD and normal control patients of 74.6% and
84.1%, respectively [34]. Van Leeuwen et al. used a spatio-
temporal analysis of the MCG data and demonstrated that
disturbances in cardiac electrogenesis resulting from CAD
may be assessed using MCG signal analysis [35]. In
a pathophysiological study using a 49-channel system from
Physikalisch Technische Bundesanstalt, Berlin, Germany,
together with a multiple time and area analysis, Morguet
et al. showed that an accurate patient classification with
regard to the extent of myocardial scar within the viable
tissue in comparison to PET analysis was possible [36]. Last
but not least, a very active Finnish group around Hänninen
and Takala contributed substantially to the knowledge
about the detection of myocardial ischaemia or healed
myocardial infarction by analysing cardiac magnetic fields
[25, 37-39].

Electrophysiological studies
In patients with arrhythmias surgical or catheter

ablative strategies can be considered when antiarrhythmic
medication is not effective or unfeasible. These procedures
require previous exact localization of the arrhythmogenic
substrate, which is currently achievable only with an
electrophysiological (EP) study. However, besides being
invasive and uncomfortable for the patient, EP studies are
considerably time consuming and associated with relevant
X-ray exposure for both the patient and the operator. Since
1985, magnetocardiographic mapping has been carried out
in patients with severe ventricular arrhythmias, related to
primary cardiomyopathy and ischaemic heart disease, 
for the purpose of non-invasive localization of the

FFiigg..  44..  Epicardial current distribution of a patient
with a high-grade stenosis of the posterior
descending artery (schematically indicated as
a black line) at rest (left) and under dobutamine-
induced stress (right)
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(przedstawiony schematycznie jako czarna linia) 
w spoczynku (po lewej) i po obciążeniu dobutami -
ną (po prawej)
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arrhythmogenic focus or evaluation of patients at risk of
sudden cardiac death. The first review about the
localization of arrhythmogenic substrates was published
in 1993 [40]. At that time, either single channel MCG or
the first 4-channel system was used. However, in 1998,
using the Helsinki multichannel system with an acceptable
signal-to-noise ratio, Fenici et al. demonstrated that MCG
is an effective clinical tool for non-invasive three-
dimensional electro-anatomical imaging [41]. Accurate
localization of the accessory pathway has been
successfully performed in patients with Wolf-Parkinson-
White (WPW) syndrome [42-46]. In these studies the
accuracy of the non-invasive MCG localization of
arrhythmogenic substrates has been evaluated by
comparison with the results of conventional invasive
catheter mapping.

Further electropathophysiological entities which can
be detected by MCG are long-QT syndromes (LQTS) and
Brugada syndrome (BS). Kandori et al. calculated current
arrow maps from MCG signals of fetuses and adults and
identified spatial current dispersions in both the QRS
complex and T-wave, which could be used to make
a prenatal diagnosis and to distinguish between different
LQTS forms in adults [47-49]. It was also the group around
Kandori who used a whole-heart electrical-activation
diagram (W-HEAD) model for visualization of the spatial
time-variant activation of the whole heart. They described
activation of R-peak and posteromedian left ventricle
excitation with half the amplitude of RBBB, as well as a low
electrical conduction rate to the posterosuperior septum
area as to be typical for BS [50]. Joung et al. showed that
during depolarization the horizontal spatiotemporal
activation graph location and maximum current angle of
the r' wave were useful to distinguish BS from either right
bundle branch block (RBBB) or normal findings. The
magnetic dispersion was a more frequently observed
finding in BS patients than in RBBB and normal patients
during late repolarization [51].

Atrial fibrillation (AF) as the most common cardiac
arrhythmia in clinical practice may be the most interesting
field to be developed for MCG. The number of invasive
ablative procedures is increasing but despite recent
progress in techniques, current catheter ablation success
rates fall short of expectations [52, 53]. Pioneering work
using a single-channel system concerning MCG as
a valuable tool for detection of supraventricular
arrhythmias was done by Mäkijärvi et al. [54]. Twelve years
later, multichannel systems demonstrated superior
sensitivity compared to ECG for evaluation of atrial
depolarization features [55]. Kim and associates introduced
a novel beamforming method named Separative Surface
Potential Activity Beamformer (sSPAB) for MCG source
localization. This method, particularly useful for localization
of rhythmic activities, obtained f-waves showing periodic
oscillatory behaviour. By using the sSPAB, the f-waves were

separated from other activations and the position of a re-
entry circuit corresponding to the f-wave was localized. By
separating the f-wave time-by-time and visualizing the
activity map for action potentials for each time-separated
waveform, the propagation trace of the AF could be
inferred. After the MCG map-guided minimal AF surgery,
the patient converted to sinus rhythm, well preserved after
several follow-ups [56]. Finally, Jurkko et al. contributed
substantially to refinement of MCG studies in AF. They
described clinical subclasses of lone AF possessing distinct
signal profiles of atrial depolarization, which may reflect
pathogenetic variations and could have implications on
diagnostics and therapy [57]. Moreover, with a 99-channel
system, this group of researchers could show that MCG
mapping is capable of distinguishing intra-atrial conduction
pathways. In 27 patients undergoing catheter ablation of
paroxysmal AF, MCG was recorded prior to determination
of the LA activation sequence during sinus rhythm using
invasive electroanatomical mapping. The MCG was able
to identify three different pathways, the Bachmann bundle,
the margin of the fossa ovalis, and the coronary sinus
ostial region, as breakthrough of electrical activation from
the right to the left atrium [58]. It could be further shown
that susceptibility to paroxysmal lone AF is associated with
propagation of the atrial signal to the LA via the margin
of the fossa ovalis or multiple pathways. When conduction
occurs via the Bachmann bundle, it is related to prolonged
atrial activation. Thus altered and alternative conduction
pathways may contribute to pathogenesis of lone AF [59].
Interestingly, in patients with persistent AF after
cardioversion, MCG but not signal-averaged ECG or
echocardiography identified electrophysiological alterations
with incomplete recovery after 1 month in stable sinus
rhythm [60].

The accuracy of non-invasive MCG localization of
arrhythmogenic foci will turn out to be the crucial point
for acceptance in clinical electrophysiology. Pioneering work
concerning the exactness of biomagnetic localization was
done by Moshage et al. [61]. The authors studied patients
with ventricular arrhythmias by combining MCG data with
magnetic resonance imaging (MRI). Analysing the magnetic
field distribution at the onset of ectopic action potentials
could localize the ectopic focus. In order to verify the
exactness of orientation, MRI-visible non-magnetic pacing
catheters were used for endocardial stimulation during
MCG recording. Likewise, the orientation of stimulated
ectopic beats was calculated from the magnetic field
distribution and verified by MRI. The authors concluded
that multichannel magnetocardiographic studies enable
the completely non-invasive localization of ventricular
arrhythmias [61]. The results were obtained in parallel by
other investigators [62]. Given the data of Jurkko
mentioned above, preoperative MCG may also be helpful
for the interventional electrophysiologist going in for
ablation of atrial fibrillation or flutter.
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Another aspect of electropathophysiology is worth
mentioning, which is identification of patients with
cardiomyopathy or ischaemic heart disease at risk for
ventricular arrhythmias. In 2000, Korhonen et al. published
a first clinical MCG study in 100 patients with remote
myocardial infarction (MI), 38 with and 62 without history
of ventricular tachycardia (VT). High-resolution MCG and
signal-averaged ECG as a comparative method were
recorded. It could be shown that late fields of the MCG
QRS complex indicate propensity to life-threatening VT in
post-MI patients. This discriminative ability persists in the
presence of severe left ventricular dysfunction, where ECG
late potentials lose their informative value [63]. The authors
completed the concept of risk prediction in patients with
dilated cardiomyopathy, showing that the prolongation of
the end part of the T wave was related to malignant
ventricular arrhythmias [64]. In terms of ischaemic heart
disease, the results were in line with smaller studies on
MCG late potentials done by other groups [65-67].
However, the clinical value of late potential analysis is
under discussion [68] and analysis with MCG appears not
to be of significant advantage when compared to high-
resolution ECG recordings [69]. In contrast, fragmented
electrograms in infarcted myocardium, generated by viable
cells within fibrotic regions, seem to be of higher predictive
value [70]. Gödde et al. published one of the first studies
on MCG mapping of QRS fragmentation [71]. They found
patients with a history of VT characterized by increased
QRS fragmentation and large areas of high fragmentation
in 2D contour maps. In parallel, the group around Korhonen
could show that in post-MI patients with left ventricular
dysfunction, increased intra-QRS fragmentation in high-
resolution magnetocardiography predicted arrhythmic
events. They concluded that the analysis of intra-QRS
fragmentation by MCG might assist in guiding therapy of
post-MI patients, for example, by selecting those who
would benefit most from prophylactic implantable
cardioverter-defibrillator therapy [72].

Conclusions and future prospects
The MCG is a non-contact, non-invasive technique for

the assessment of electromagnetic activity of the human
heart. Theoretical considerations and comparative studies
indicate different information content between MCG and
ECG. Although many questions about cardiac patho -
physiology and electrophysiology can be answered by MCG
studies, measurement of biomagnetism is still only
marginally recognized as a valuable tool. 

Although MCG instrumentation (SQUIDs, MSR) and
operation (liquid helium) are expensive and not available
at the bedside, the gain of information drawn from the
cardiac magnetic field is worth the effort. The MCG has
a superior sensitivity for ischaemic myocardium both at
rest and under stress. Therefore, it may change one’s ideas
of decision making about invasive procedures. Compared

to scintigraphy, which is a cumbersome method with the
need of radioactivity exposure to the patient, MCG is as
easy as bicycle ergometry but with higher sensitivity. In
terms of risk stratification for sudden cardiac death, it
seems to be possible that MCG in the future will provide
additional information as to which patient will not benefit
from prophylactic defibrillator implantation. However,
appropriate clinical studies are lacking. Most interestingly,
MCG appears to be practical and informative in the
diagnosis of cardiac arrhythmias, and has sufficient spatial
accuracy necessary for clinical purposes. It seems realistic
that MCG-based localization of arrhythmogenic spots may
guide the operator’s ablation catheter, e.g. in patients with
relapsing AF after a first successful ablation procedure.
There is enough room for fantasy which question in clinical
cardiology remains to be answered by MCG.
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