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Introduction

On 31 December 2019, the WHO was informed  
of cases of pneumonia of unknown cause in Wuhan City, 
China. A novel coronavirus was identified as the cause 
by Chinese authorities on 7 January 2020 and was tem-
porarily named “2019-nCoV” [1]. By mid-March 2020, 
the WHO European Region had become the epicentre  
of the epidemic, reporting over 40% of globally confirmed 
cases. As of 28 April 2020, 63% of global mortality from 
the virus was from the region. According to the WHO,  
by the end of 2020, nearly 100 million patients world-
wide had been diagnosed with COVID-19, with more than  
2 million deaths. By September 2021, almost 2 years af-
ter COVID-19 was first identified, there had been more 
than 200 million confirmed cases and over 4.6 million 
lives lost to the disease [1]. 

At the time of writing (February 2022), the number 
of new COVID-19 cases remains similar to that report-
ed in the last week of January 2022, while the number 
of new deaths increased by 9% [2]. Across the 6 WHO 
regions, over 22 million new cases and over 59,000 
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Abstract

The current global COVID-19 mortality rate is estimated to be around 3.4%; however, it is dependent on age, 
sex, and comorbidities.

Epidemiological evidence shows gender disparities in COVID-19 severity and fatality, with non-menopausal 
females having milder severity and better outcomes than age-matched males. However, the difference vanishes 
when comparing postmenopausal women with age-matched men.

It has been suggested that, to some extent, this is due to the protective role of female hormones, such  
as anti-Müllerian hormone and oestradiol (E2), in non-menopausal women.

Oestrogens have been hypothesized to be crucial in modulating viral infection and the progression  
of the disease via an action on immune/inflammatory responses and angiotensin-converting enzyme type 2 ex-
pression. Hence, the most likely explanation is that, because the levels of oestrogen in females after menopause 
decrease, oestrogen no longer offers a beneficial effect as seen in younger females.

The COVID-19 pandemic has highlighted the serious negative effects arising from the state of E2 deficiency. 
Therefore, hormone replacement therapy gains further support as the damaging effect of the decline in ovar-
ian function affects many biological systems, and recently with the COVID-19 pandemic, oestrogen’s vital role 
within the immune system has become quite clear.

However, additional clinical investigations regarding hormone replacement therapy are urgently needed  
to further verify the protective and therapeutic effects of E2 on menopausal women with COVID-19.
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new deaths were reported. As of 30 January 2022, over  
370 million confirmed cases and over 5.6 million 
deaths have been reported globally. At the regional lev-
el, increases in the number of new cases were reported  
by the Western Pacific (37%) the Eastern Mediterranean 
(24%) and the European (7%) regions, while a decrease 
was reported by the Region of the Americas (20%) and 
the South-East Asia Region (8%) [2]. 

COVID-19 epidemiological data

The current global mortality rate is estimated to be 
around 3.4%; however, it is dependent on age, sex, and 
comorbidities [3]. 

Interestingly, a noticeable difference has been ob-
served in various epidemiological studies when cases 
were analysed by gender, with women showing signif-
icant protection against severe disease presentations 
and related outcomes in response to the COVID-19 infec-
tion [4–7]. Early epidemiological observations indicated 
that severe acute respiratory syndrome coronavirus  
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(SARS-CoV-2) infects all age groups, but with a higher 
rate among men (58.1%) than women (41.9%) [8]. 

This observation was confirmed by several national 
organizations of disease control and prevention (China 
– 4.7%: 2.8%, Italy – 10.4%: 6.2%, and Korea – 2.99%: 
1.91% in male vs. female, respectively) [9–11], with sim-
ilar trends in Iran, Germany, France, the U.S., and the 
U.K. [12, 13].

In 34 out of the 35 countries that provided sex dis-
aggregated data, the male/female ratio is always above 
1.1 (Pakistan is the exception, with a ratio of 0.9), inde-
pendently of age [14, 15].

Men account for over 50% of total deaths, and 
almost twice as many men with COVID-19 suffer se-
vere symptoms or death in comparison to women 
[12, 16]. This was confirmed in a  meta-analysis con-
ducted in 2020, which showed, that male sex was as-
sociated with the development of severe disease as 
measured by ITU admission (OR = 2.84; 95% CI: 2.06–
3.92;  p = 1.86 × 10−10) and death (OR = 1.39; 95% CI: 
1.31–1.47; p = 5.00 × 10−30) [17].

 All these reports suggest that men are more adverse-
ly affected and have worse clinical outcomes compared 
to women, with higher morbidity and mortality [13].

COVID-19 transmission, infection, 
replication, and clinical effect

The enveloped virus contains a positive-sense, sin-
gle-stranded RNA genome and a nucleocapsid of helical 
symmetry of ∼120 nm [18]. There are several plausible 
pathways for viruses to be transmitted from person  
to person, including virus transmission via direct (depos-
ited on persons) or indirect (deposited on objects) con-
tact and airborne (droplets and aerosols) routes [19–21]. 

It is now established that the airborne transmis-
sion of COVID-19/SARS-CoV-2 is highly virulent and 
represents the dominant route to spread the disease 
[18]. This finding was obtained based on the analysis  
of the trend and mitigation measures in 3 different cit-
ies considered epicentres of COVID-19: Wuhan, China, 
Italy, and New York City, in the period from 23 January to  
9 May 2020 [22]. While transmission via direct or indi-
rect contact occurs in a short range, airborne transmis-
sion via aerosols can occur over an extended distance 
and time. Inhaled virus-bearing aerosols deposit direct-
ly along the human respiratory tract [18].

In short, SARS-CoV-2 enters the cell via the an-
giotensin-converting enzyme type 2 (ACE-2) receptor, 
which is expressed by pneumocytes and leads to the 
down-regulation of ACE-2 levels. Angiotensin-convert-
ing enzyme type 2 is normally responsible for convert-
ing angiotensin II (Ang II) into vasodilatory and less im-
mune augmenting variants of angiotensin [23]. 

Angiotensin II binds type 1 angiotensin receptors 
(AT1R) in the lung to induce vasoconstriction and inflam-

mation via activation of the nuclear factor κB (NF-κB) 
pathway, which increases cytokine synthesis [24]. Low 
levels of ACE-2 and high levels of Ang II lead to increased 
pulmonary vessel permeability, which results in inflam-
matory damage to the lung tissue [25]. 

This enveloped positive-sense, single-stranded RNA 
virus is capable of infecting multiple organ systems in 
its host, and the density of ACE-2 receptors in each tis-
sue correlates with the severity of organ-specific pa-
thology [26].

The proposed primary reason for severe COVID-19 
is the cytokine storm (excessive production of proin-
flammatory cytokines) [27]. In an attempt to protect 
the body from SARS-CoV-2, immune cells infiltrate the 
lungs, causing hyperactivation of monocytes and mac-
rophages, and elevated production of proinflamma-
tory cytokines (e.g. interleukin-6 (IL-6), interleukin-1β  
(IL-1β), tumour necrosis factor α (TNF-α]), and chemok-
ines (e.g. monocyte chemoattractant protein-1 (MCP-1/
CCL2) [27]. These patients rapidly develop respiratory 
distress syndrome, and lung oedema and failure (often 
associated with hepatic, myocardial, and renal injury 
and haemostasis alteration) [28]. Interestingly, when 
compared with non-intensive care patients, intensive 
care patients have higher levels of IL-2, IL-7, and TNF 
[28]. Many cytokines detected in these patients belong 
to the Th17 type response. The consequent IL-17-relat-
ed pathway promotes broad pro-inflammatory effects 
by induction of specific cytokines, such as IL-1β, IL-6, 
TNF (responsible for systemic inflammatory symp-
toms), chemokines, and matrix metalloproteinases 
(responsible for tissue damage and remodelling) [29]. 
Moreover, pro-inflammatory cytokines, including IL-1β 
and IL-6, are directly induced by SARS-CoV-2 by interac-
tion between viral components (probably nucleocapsid 
proteins) and toll like receptors of the host cells [30]. 
Increased production and elevated local and systemic 
IL-6 is hypothesized to be central to the development 
of the cytokine storm [31, 32], resulting from an un-
checked inflammatory response that damages the lung 
tissue. This could be worsening some patients’ condi-
tion severely enough to require assisted ventilation and 
eventually causing death in a  substantial percentage  
of cases [33]. 

Pathophysiological context and the role  
of oestrogens

Sex-specific infection and mortality rates have been 
documented in humans [23]. As mentioned earlier,  
the number of deaths due to COVID-19 infection is low-
er in women than in men [12, 16, 34, 35]. When consid-
ering men and women of all ages, women seem to be 
infected at similar rates to men, but the infection is less 
lethal to women [36]. Additionally, in the cohort of their 
study, Liu et al. found that female patients had lower 
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disease severity and mortality than male patients, es-
pecially aged ≤ 55 years old. The authors believe that  
the influence of oestrogen, especially E2, on the regula-
tion of inflammatory response and immune cell function 
may be one of the protective factors [37]. Moreover, Liu  
et al. reported that among patients in their cohort aged  
≤ 55 years, females had a much lower incidence of de-
veloping complications than male patients, especially in 
terms of lung injury (such as dyspnoea or ARDS). How-
ever, this difference in incidence between males and 
females vanished among the patients aged more than 
55 years [37]. Again, the authors believe that the most 
likely explanation is that because the levels of oestro-
gen in females after menopause decrease, oestrogen 
no longer offers a beneficial effect as seen in females 
younger than 55 years old [37].

In the last 2 years, several papers have been pub-
lished trying to offer an explanation as to why the out-
come of human coronavirus infections is strongly sex-de-
pendent [38–40]. Once more, oestrogens have been 
hypothesized as crucial in modulating viral infection and 
the progression of the disease via an action on immune/
inflammatory responses and ACE-2 expression [35].

Although most of the immune regulatory genes 
are encoded by X chromosomes, resulting in a gener-
ally stronger immune response in women, this sex dif-
ference in inflammatory response is postulated to be 
largely driven by sex hormones [41]. Although oestro-
gen plays a  complex role in modulating the immune 
system, generally in a  dose-dependent manner, it is 
reported to have an anti-inflammatory effect at nor-
mal physiological levels in premenopausal women [42, 
43]. Most cytokines, namely, IL-6, IL-8, and TNF-α, are 
inhibited by periovulatory dosages of oestrogen, while 
low levels of oestradiol (E2) can augment inflammato-
ry mediators, which could explain the proinflammatory 
states that most postmenopausal women suffer from 
(e.g. atherosclerosis) [42]. 

 As mentioned above, SARS-CoV-2 virions use ACE-2 
as a host-cell receptor for viral uptake [44]. 

Entrance is facilitated by a host type 2 transmem-
brane serine protease, TMPRSS2, that is responsible for 
priming the viral S glycoprotein. Increased tissue (co-)
expression of ACE-2 and TMPRSS2 at the virus entry 
sites may enhance infection, while downregulation may 
prevent SARS-CoV-2 binding to target cells [45]. Human 
ACE-2 is an essential part of the renin-angiotensin sys-
tem and is encoded on the X chromosome [46]. Angio-
tensin-converting enzyme type 2 is widely distributed in 
tissues, including lung alveolar (type II) epithelial cells, 
the vascular endothelium, heart, kidney, and testis [47]. 
It has extensive vascular and organ-protective func-
tions mediated via angiotensin (Ang 1–7), by the Ang II 
receptor type 2, and the Mas receptor (MasR) [48]. 

As mentioned earlier, expression of ACE-2 is down-
regulated by E2 [35, 49]. Oestradiol is also able to in-

hibit the production of the TMPRSS2 protein, which is 
necessary for trimming and activating the SARS-CoV-2 
spike protein to bind ACE-2 [50] and to increase the ex-
pression of A disintegrin and metalloproteinase, mainly 
ADAM-17 [14], which is able to cleave the ACE-2 ecto-
domain with release of highly soluble circulating and 
SARS-CoV-2-neutralizing ACE-2 [51].

Additionally, oestrogen modulates the cytokine 
storm by suppressing IL-1β and IL-6 production, and 
hence lowers the risk of acute lung inflammation in 
women [52]. Oestrogen might also play a major role in 
lowering the exhaustion of T cells caused by the cyto-
kine storm [53].

Indirect evidence of the protective effect of oestro-
gen has been confirmed by Channappanavar  et al. in 
a  mouse model, demonstrating that female mice ad-
ministered with oestrogen receptor antagonist have 
a higher mortality rate due to SARS-Cov2 when com-
pared with control female mice, while this effect was 
not demonstrated in male mice. They also showed poor 
prognosis and extensive lung involvement with pro-in-
flammatory cytokines/chemokines in ovariectomized/
gonadectomized female mice [54].

Oestrogens downregulate the AT1R signalling path-
way and inhibit ACE activity [55, 56]. This classical ACE/
AngII/AT1R regulatory axis counter-regulates (upregu-
lates) the ACE-2/Ang 1–7/MasR axis, whereas the oes-
trogen levels are high [57]. 17ß-oestradiol also increas-
es ACE-2 activity in the adipose tissue, kidneys, and 
myocardium [58, 59].

Summarizing, for most infectious diseases, wom-
en have been consistently observed to mount a stron-
ger immune response when compared to men [60]. In 
general, the female immune system responds more 
efficiently to pathogens, producing higher amounts of 
interferons and antibodies; however, this protective ef-
fect, mediated primarily by oestrogen, is attenuated in 
postmenopausal women [42].

COVID-19 infection, menopause,  
and hormonal therapy 

Immunosenescence contributes to a decreased 
capacity of the immune system to respond effective-
ly to infections or vaccines in the elderly [61, 62], and 
it is characterized by the inability to mount effective 
(protective) humoural and cellular immune responses 
against a pathogen, as well as a systemic low-grade in-
flammatory state, which contributes to the dysregula-
tion of several components of the innate and adaptive 
immune systems [63–66].

The aging process affects sexual dimorphism re-
garding immunocompetence and disease susceptibility 
[41, 67, 68]. Notably, however, immune-pathological ef-
fects may also decrease after menopause; for example, 
in severe forms of dengue and influenza [69, 70].
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The menopause has a distinct impact on the female 
immune system [41]. Postmenopausal women exhibit 
a reduced number of total lymphocytes, mainly B and 
CD4+T lymphocytes [71].

Pronounced endocrine changes alter the expression 
of inflammatory mediators, thereby elevating plasma 
IL-1β, IL-6, IL-10, and TNF-α with menopause [72–74]; 
however, these levels are reduced with the use of hor-
mone therapy, especially oestrogen-containing types, 
to premenopausal levels [41].

Additionally, the activated oestrogen receptor, spe-
cifically oestrogen receptor-α, has been found to inhibit 
NF-κB-mediated inflammation response and cytokine 
production via immune cells, lymphocytes, macro-
phages, and neutrophils [75].  The finding that Ang II 
activates the NF-κB pathway to increase cytokine syn-
thesis after SARS infection while oestrogen can shut 
down the NF-κB pathway holds possible relevance for 
COVID-19 treatment strategies in female patients [23].

In the last 2 years the relationship between meno-
pausal status and COVID-19 outcomes has become  
of interest. The first study comparing COVID-19 out-
comes of premenopausal and postmenopausal women 
with men for hospitalized patients based on a well-con-
ducted propensity score matching analysis (retrospec-
tively) was published by Wang et al. [76]. In this study, 
the authors observed that men were significantly 
more likely to experience severe disease compared  
to premenopausal women; however, the mortality rates 
were not significantly different between the 2 groups. 
Additionally, the odds of experiencing severe disease 
and mortality were not significantly different between 
men and postmenopausal women. This data sug-
gests that a menopausal status bias exists in patients  
with COVID-19 [76].

A similar result was also noted in an Italian study, 
in which the authors suggested that by acting on the 
immune system, oestrogens may reduce disease pro-
gression and favour virus clearance [38, 40, 77], making 
COVID-19 infection less lethal in women of reproductive 
age, whereas the opposite may occur in postmenopaus-
al women due to decreased oestrogen levels [35].

Loss of ovarian function at menopause and  
the resulting change in the concentration of sex hor-
mones may contribute to the increased risk of COVID-19 
[75]. Given that oestrogen plays a crucial role in protect-
ing female mice from SARS-CoV infection and that ova-
riectomy or oestrogen receptor blockage increases the 
susceptibility to infection and mortality [54], the results 
may be explained in part by the protective effect of oes-
trogen against COVID-19 in premenopausal women [76]. 

In addition to its immunomodulatory effects, oes-
trogen modulates the expression of Th1 and Th2 cy-
tokines, deactivates excessive inflammatory processes, 
and restores homeostatic conditions, thus potentially 
inhibiting cytokine storm syndrome (a proposed prima-

ry reason for the morbidity and mortality in COVID-19) 
in women [78–80]. Additionally, in vitro data suggest 
that oestrogen might exert a direct antiviral effect on 
SARS-CoV-2 by downregulating the expression of ACE-2 
mRNA in bronchial epithelial cells, which has been prov-
en to be the major receptor responsible for mediating 
virus entry into cells [76, 81]. 

In support of the above, the data from SARS-CoV-2 
indicate that the use of oestrogen therapy could be 
effective in the fight against COVID-19 [82], also em-
phasizing the necessity of further research in patients 
treated with these agents. Additionally, Chanana  
et al. suggested that the reversible effects of the hor-
mones allow short-term hormone therapy treatment in 
COVID-19 patients, hence avoiding any long-term side 
effects [83].

Ding et al. suggested that menopause is an inde-
pendent risk factor for female COVID-19 patients [84]. 
In their paper, the logistic regression analyses showed 
that the levels of E2 and anti-Müllerian hormone in 
the non-severe group were higher than those in the 
severe group, potentially playing vital roles in the pro-
gression of COVID-19. Additionally, E2 levels were neg-
atively correlated with IL 2R, IL-6, IL-8, and TNF-α in 
the luteal phase (p = 0.033, p = 0.048, p = 0.054, and  
p = 0.023) and C3 in the follicular phase (p = 0.030), and 
E2 is attributed to its regulation of cytokines related to 
immunity and inflammation [84]. The data indicated 
that non-menopausal females presented milder dis-
ease severity and better outcomes than age-matched 
males, whereas the differences disappeared between 
menopausal women and age-matched men, indicating 
that female hormones of premenopausal females may 
provide protection [84].

Seeland et al. in their study focused on the inci-
dence and outcome of COVID-19 infections by consid-
ering an age- and sex-disaggregated data analysis [48]. 
The authors identified a  sex-specific distribution of 
COVID-19 incidence rates, with the highest frequencies 
being among premenopausal women in the 20–55-year 
age range. They also found a  higher fatality rate  
of men compared to age-matched women, beginning 
at 50 years of age, and that E2 hormone use reduced 
fatality rates for women in this 50+ age range [48]. 

The data in the Seeland et al. study indicate that 
pre-menopausal women are disproportionately more 
infected with coronavirus than men in the same age 
range, but they do not become as seriously ill, as shown 
by lower fatality rates [48]. 

Interestingly, among post-menopausal women, 
Seeland et al. observed a significant difference in the 
rates of death between women with regular E2 use 
(user group) and those without E2 sex hormone intake 
(non-user group). This important finding – that the fatal-
ity risk for women > 50 years receiving E2 therapy (user 
group) is reduced by more than 50% (OR 0.33, 95% CI: 
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0.18–0.62 and hazard ratio 0.29, 95% CI: 0.11–0.76) 
compared to the non-users group – was described for 
the first time [48]. Hence, the authors concluded that 
the chief finding of their study is the strong positive 
effect of regular E2 hormone therapy on the survival 
rates of post-menopausal women.

Moreover, based on the main finding of their study, 
Seeland et al. believe there are no concerns regarding 
continuation of the use of sex hormones that contain 
E2 prior to SARS-CoV-2 infection [48]. Even though 
the data indicate that the risk of infection is higher  
in pre-menopausal women with higher endogenous E2 
levels, compared to either men of the same age strata 
or to post-menopausal women, it should be noted that 
the clinical course of COVID-19 disease, and the ulti-
mate mortality rate, is lower in women with higher E2 
levels [48]. Additionally, higher survival probabilities are 
particularly evident in post-menopausal women who 
are infected with SARS-CoV-2 and who regularly use ex-
ogenous E2 (e.g. for postmenopausal complaints) [48].

Also, data from the Youn et al. study support the hy-
pothesis that oestrogen may be used to alleviate viral 
infection and cytokine storm-induced endothelial dys-
function, resulting in therapeutic effects to attenuate 
disease progression, severity, and mortality [85]. They 
demonstrated that oestrogen-mediated attenuation 
of NADPH  oxidases NOX2 activation, reactive oxygen 
species production, and monocyte chemoattractant 
protein-1 MCP-1 upregulation in response to S pro-
tein/IL-6 exposure of endothelial cells underlie protec-
tion against COVID-19 in females. Hence, these data 
indicate that oestrogen administration can be used  
as a robust treatment option for COVID-19 to effectively 
reduce disease severity and improve survival [85]; how-
ever, the pro-coagulant effect cannot be ignored [86].

As mentioned earlier, E2 has receptors on all in-
nate and adaptive immune cells and is a key player in  
the immune response, which includes both pro-inflam-
matory and anti-inflammatory functions [87]. Oestradi-
ol is a modulator of the renin-angiotensin-aldosterone 
system, a major force in the instigation of the inflam-
matory response and in the resolution of inflammation 
[88]. Oestradiol plays a  major role in regulating lipid 
mediators and peptides involved in the processes need-
ed for an optimal immune response, improving the like-
lihood of a successful outcome in the fight against an 
infectious agent such as SARS CoV-2 [89, 90].

Additionally, in the letter to the Editor of Clinical In-
fectious Diseases regarding a paper published by Ding 
et al. [84], Gersh et al. [90] advocate the use of phys-
iologically dosed human-identical transdermal E2 as 
a  hormone replacement, combined with human-iden-
tical cyclic progesterone, in recently menopausal wom-
en without contraindications in connection of E2 levels 
and menopausal status with outcomes from infections 
with SARS-CoV-2 in women [91]. 

Their recommendations are based on a significant 
body of preclinical and clinical data [92], confirming 
that the findings of a distinctly protective effect of E2 
in women with functioning ovaries in the study by Ding  
et al. is in complete alignment with the position  
of Gersh et al. and with scientific reports [91].

Conclusions

The COVID-19 pandemic has highlighted the serious 
negative effects arising from the state of E2 deficien-
cy. Therefore, the use of hormone replacement therapy 
has gained further support because the damaging ef-
fect of a decline in ovarian function affects many bio-
logical systems. Accordingly, the signs and symptoms 
of menopause include central nervous system-related 
disorders; metabolic, weight, cardiovascular and mus-
culoskeletal changes; urogenital and skin atrophy; and 
sexual dysfunction [93], and recently with the COVID-19 
pandemic, oestrogen’s vital role within the immune sys-
tem became quite clear. Therefore, in view of the above, 
it should be emphasized again that appropriate post-
menopausal women should be considered for hormone 
replacement therapy.

However, additional clinical investigations regard-
ing hormone replacement therapy are urgently needed  
to further verify the protective and therapeutic effects 
of E2 on menopausal women with COVID-19 [84].
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