Correlation between mixed venous blood saturation and cardiac output in patients undergoing cardiac surgery procedures

Bartosz Szurlej1, Magda Piekarska2, Dariusz Szurlej3, Andzej Węglarzy3, Tomasz Latusek1, Ryszard Bachowski4

1 student of Medical University of Silesia, Katowice
2 graduate of Medical University of Silesia, Katowice
3 Clinical Department of Cardiac Anesthesia and Postoperative Intensive Care, Upper Silesian Medical Centre SPSK No 7, Katowice
4 2nd Chair and Department of Cardiac Surgery, Medical University of Silesia, Katowice

Abstract

Background: The physiological reaction to a decrease of cardiac output (CO) is an increase of oxygen extraction. Patients with compromised circulation often are not capable of this reaction. The oxygen concentration in such cases will not change with respect to the CO; therefore the mixed venous blood saturation (SvO2) will not be a reliable indicator of the blood flow.

Aim of the study: The aim of the study was to determine the reliability of the correlation between hemodynamic parameters and indices of tissue oxygenation in patients undergoing cardiac surgery procedures.

Material and methods: We performed a retrospective analysis in 19 patients who required Swan-Ganz catheter (SGC) insertion. Measurements were taken at three time points. Values of cardiac index (CI), mixed venous oxygen saturation (SvO2), oxygen uptake (VO2), oxygen extraction ratio (O2ER), and base excess (BE) were analyzed and compared with oxygen partial pressure (PaO2), carbon dioxide partial pressure (PaCO2) and arterial blood saturation (SaO2).

Results: Our study revealed an increase of CI, VO2 and O2ER and a decrease of SvO2 after the operation in comparison with the preoperative period. There was a positive correlation between the trends of SvO2 and CI before and after the surgery.

Conclusions: Correct values of SaO2, PaO2 and PaCO2 do not mean that the level of subcellular processes associated with the extraction of oxygen proceed in a physiological way. Only SvO2 and CI results obtained with the SGC make it possible to assess the delivery of oxygen and its consumption at the tissue level.

Key words: Swan-Ganz catheter, cardiac surgery procedure, thermodilution.

Streszczenie

Wstęp: Fizjologiczną reakcją organizmu na obniżenie rzutu serca (cardiac output – CO) jest wzrost ekstrakcji tlenu. Pacjenci, u których występuje zaburzenie krążenia, często nie są zdolni do takiej reakcji. W takich przypadkach stężenie tlenu we krwi nie ulegnie zmianie w stosunku do CO i tym samym saturacja krwi żyłnej mieszanej (mixed venous oxygen saturation – SvO2) nie będzie wiarygodnym wskaźnikiem przepływu krwi.

Cel pracy: Ocena miarodajności korelacji między parametrami hemodynamicznymi a wskaźnikami utlenowania tkankowego u pacjentów poddawanych zabiegom kardiochirurgicznym.

 Wyniki: Badanie wykazało wzrost CI, VO2, O2ER oraz spadek SvO2 po zabiegu chirurgicznym w porównaniu z wartościami występującymi przed zabiegiem. Stwierdzono istnienie dodatniej korelacji między wartościami SvO2 i CI przed i po zabiegu.

Wnioski: Prawidłowe wartości SaO2, PaO2, PaCO2 nie oznaczają, że ekstrakcja tlenu na poziomie subkomórkowym przebiega w sposób fizjologiczny. Jedynie wartości SvO2 i CI uzyskane za pomocą cewnika S-G dają możliwość oceny dostarczania tlenu oraz jego zużycia przez tkanki.

Słowa kluczowe: cewnik Swana-Ganza, operacja kardiochirurgiczna, termodylucja.
Introduction

Cardiac surgery with cardiopulmonary bypass (CPB) is a source of stress reaction and burdens the organism. Also the surgical wounds lead to permanent adrenergic stimulation and pain which requires the use of strong analgesics. The blood supply of the organs begins to be dependent on the CPB and short episodes of blood pressure drops affect the incidence of periods of temporary ischemia in organs. Removing the blood from the operation field by suction leads to erythrocyte damage. Cardiopulmonary bypass is also associated with the risk of organ micro- and macroembolization.

The activation of coagulation (the intrinsic and the extrinsic coagulation pathway), and the fibrinolysis process are the causes of consumptive coagulopathy. Coagulation failure is intensified by heparin. The manifestation of all of the physiological aberrations in the function of the organism is the occurrence of systemic inflammatory response syndrome (SIRS) in every patient after cardiac surgery with the use of CPB [1].

Evaluation of blood oxygen status in patients during cardiac surgery procedures is routinely carried out by oxygen partial pressure (PaO₂), carbon dioxide partial pressure (PaCO₂) and arterial blood saturation (SaO₂). These parameters allow an intermediate assessment of the oxygen delivery. If there were indications for Swan-Ganz catheter (SGC) insertion, it was used during the cardiac surgery operation to monitor the hemodynamic and the gas exchange parameters [2-4]. Initially, we get ten parameters which describe the cardiovascular system efficiency and four parameters of the systemic oxygen transport: mixed venous blood saturation (SvO₂), dissolved oxygen (DO₂), oxygen uptake (VO₂) and oxygen extraction ratio (O₂ER).

Some of the hemodynamic parameters should be shown as an index value, that means calculated per 1 m² of the body surface area (BSA). In the case of cardiac output (CO) it is the cardiac index (CI) [5]. By the use of the SGC it is also possible to take samples of the venous blood from the right atrium and samples of the mixed venous blood from the pulmonary artery. Some types of SGC give the ability of continuous monitoring of SvO₂. The value of SvO₂ shows both the oxygen delivery and the oxygen consumption. This value is dependent on the hemoglobin concentration (Chb), arterial blood saturation and CO [5]. A proper compensation reaction of the decrease of CO is the increase of oxygen extraction (O₂ER) from the capillary vessels, which is necessary to keep a constant value of the oxygen uptake (VO₂). Oxygen extraction adjustment, depending on the requirement, is especially intensified in life-threatening states; thus decrease of SvO₂ may indicate a decrease of CO. Not every patient reacts with an increase of O₂ER to a decrease of blood flow. Often severely ill patients are not capable of such an adaptive reaction [6, 7]. In these patients oxygen concentration will not change due to the changes in CO; thus the value of SvO₂ will not be a reliable indicator of the blood flow [6].

Aim of the study

The aim of the study was to determine the reliability of the correlation between hemodynamic parameters and indices of tissue oxygenation in patients undergoing cardiac surgery procedures and to assess the correlation between SvO₂ and CI in the study group.

Material and methods

A retrospective analysis was performed for 19 patients undergoing cardiac surgery procedures at the 2nd Department of Cardiac Surgery, Medical University of Silesia in Katowice between February 2010 and April 2010. The study inclusion criterion was the requirement for hemodynamic and systemic oxygen transport monitoring by the use of the SGC. The study group is shown in Table I.

In all patients surgical anesthesia was performed by the same method of analgesic anesthesia by using etomidate, fentanyl and pancuronium. Anesthesia was maintained by using isoflurane and during CPB by continuous infusion of propofol and fentanyl.

Dopamine, adrenaline and noradrenaline were used for inotropic support as a monotherapy or in different combinations depending on the circulatory system condition. Values of CI, SvO₂, SaO₂ and BE_{ecf} (base excess in extracellular fluid) were analyzed.

Measurements by the SGC were taken in every patient at three time points: T₀ – after the intubation and after the insertion of the SGC; T₁ – 15 minutes after discontinuing CPB; and T₂ – 30 minutes after admitting the patient to the postoperative unit.

Obtained values were compared with the parameters used for the assessment of intermediate oxygen delivery: PaO₂, PaCO₂, SaO₂ and CI. DO₂, VO₂ and O₂ER were also analyzed.

Results

Statistical analysis was performed using Statistica PL v.5.0. Data from time points T₀ and T₂ were analyzed. The analysis did not contain data from time point T₁ because of the large range of obtained values.

Data Values

<table>
<thead>
<tr>
<th>Data</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients (n)</td>
<td>19</td>
</tr>
<tr>
<td>Age</td>
<td>62 ±12</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>12/7</td>
</tr>
<tr>
<td>BMI (m²/kg)</td>
<td>28.02 ±2.8</td>
</tr>
<tr>
<td>BSA (m²)</td>
<td>1.9 ±0.2</td>
</tr>
<tr>
<td>CPB time (min)</td>
<td>74 ±30</td>
</tr>
<tr>
<td>Cross-clamp time (min)</td>
<td>46 ±28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Types of cardiac surgery procedures (n)</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABG</td>
<td>10</td>
</tr>
<tr>
<td>AVR + MVR</td>
<td>4</td>
</tr>
<tr>
<td>MVR + CABG</td>
<td>2</td>
</tr>
<tr>
<td>AVR + CABG</td>
<td>1</td>
</tr>
<tr>
<td>AVR</td>
<td>1</td>
</tr>
<tr>
<td>aortic wrapping</td>
<td>1</td>
</tr>
</tbody>
</table>

BMI – body mass index; BSA – body surface area; CPB – cardio-pulmonary bypass; CABG – coronary artery bypass graft; AVR – aortic valve replacement; MVR – mitral valve replacement
Increase of the average value of CI after the operation (Fig. 1) in comparison with the value before the operation (p < 0.05) was observed.

In the study group there was a decrease of SvO₂ after the operation (Fig. 2) in comparison with the preoperative period (p < 0.05).

In two patients at time point T₀ high values of SvO₂ were noted: 95% and 96%.

There was a positive correlation between the trends of SvO₂ and CI in patients before and after the surgery. The correlation coefficient (r) before the operation (Fig. 3) was 0.38 (p > 0.05) and after the operation (Fig. 4) it was 0.52 (p < 0.05).

The CI increased in 63% of patients, it decreased in 16%, while in 21% of patients it did not change. Correct values of CI in the study group before the operation were noted in 31% of patients and in 69% of patients this value was below the lower reference limit (reference limits: 2.4-4.0 l/min/m²). After the operation CI within the correct reference limits was noted in 42% of patients.

The VO₂ after the operation increased in 84% of patients, a decrease was noted in 11%, and in 5% of patients this value did not change (p < 0.05). In 15% of patients before the operation values of VO₂ were noted within the reference limits (reference limits: 110-160 ml/min × m²). In 85% of patients the value of VO₂ was below the lower reference limit while after the cardiac surgery procedure values within the reference limits were noted in 31% of patients. Values below the lower reference limit were noted in 50% of patients.

An increase of DO₂ took place in 58% of patients, a decrease in 37%, and in 5% of patients this value did not change. Before the operation in 90% of patients values below the lower reference limit (reference limits: 520-570 ml/min × m²) were noted. None of the patients had a DO₂ within the reference limits after the operation.

The O₂ER was within the reference limits (reference limits: 20-30%) in 53% of patients. An increase of O₂ER was noted in 84% of patients. After the cardiac surgery procedure an increase of O₂ER above the upper reference limit was noted in 58% of patients. In 5% of patients the value of O₂ER was below the lower reference limit. Values within the reference limits were noted in 27% of patients.

The BEₐₑcf before the operation was below the lower reference limit in 10% of patients and above the upper reference limit in 5% of patients. After the operation BEₐₑcf was below the lower reference limit in 53% of patients and above the upper reference limit in 5% of patients.

In 50% of patients the postoperative course was complicated with atrial fibrillation (n = 4), increased postoperative drainage (n = 2), thrombocytopenia (n = 2), infection of the upper respiratory tract (n = 2) and urinary infection (n = 1). There was one death in the study group.

Discussion

The mean value of cardiac index (CI) after cardiac surgery using cardiopulmonary bypass was increased compared with the value before the operation, which leads to a posi-
The operation [6]. Increase of VO₂ is related to the growth of required to compensate the oxygen debt acquired during the oxygen extraction of the body’s needs. The periodic increase of VO₂ is referred to as the “overshoot effect”. The periodic increase of VO₂ is related to the growth of the body’s compensatory response. When the metabolism is increased, even normal values of oxygen consumption are not sufficient to maintain the body’s oxygen supply to the tissues, it is highly important to carry out an oxygen therapy. Because hemodilution used during cardiac surgery procedures impacts on the oxygen saturation, we calculate the rate of BSA. We analyzed the BSA value, which, although it is not very specific, is however a better indicator of metabolic body weight, because it is less influenced by changes of the cardiovascular system. In some patients post-surgery, with continuous monitoring of SvO₂ by SGC, found a strong correlation between changes in SvO₂ and CI values: \(r = 0.69 \) [17]. The high values of SvO₂ at \(T_0 \) may indicate a leak caused by the change of direction of arterial blood flow (shunting) in peripheral tissues. This phenomenon occurs in states such as sepsis, and cirrhosis of the liver [18]. After excluding the possibility of existence of such diseases in patients, a probably cause of such high values of SvO₂ was the admixture of oxygenated blood coming from the alveolar capillaries. To further characterize the patient, we determined BMI (28.02 ±2.8 kg/m²) we calculated the rate of BSA. We analyzed the BSA value, which, although it is not very specific, is however a better indicator of metabolic body weight, because it is less influenced by the excess amount of body adipose tissue. In three patients the BSA was greater than 2.0 m², and these patients had a decrease of SvO₂ and a decrease of CI values after surgery.

The values of BE were below the lower reference limit, and there was a decrease of \(DO_2 \). Perhaps for that reason, the results enriched with information such as \(DO_2 \), \(VO_2 \) and \(O_2ER \) can be very useful in treatment of patients with severe conditions, in whom the body is unable to restore homeostasis after surgery [13, 23-25].

Conclusions

1. An increase of CI after the operation in comparison with CI before the operation was observed.
2. In the study group there was a decrease of SvO₂ after the operation in comparison with the values of SvO₂ before the operation.
3. There was a positive correlation between the trends of SvO₂ and CI before and after the cardiac surgery.
4. In the study group there was an increase of VO₂ after the operation in comparison with the VO₂ before the operation.
5. In the study group there was an increase of O₂ER after the operation in comparison with O₂ER before the operation.

References